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Learning spatiotemporal piecewise-geodesic trajectories

from longitudinal manifold-valued data

Juliette Chevallier, Stéphane Oudard and Stéphanie Allassonniére

CMAP, Ecole polytechnique — Oncology departement, HEGP — CRC, Université Paris Descartes

We introduce a hierarchical model which allows
to estimate both a group-representative piecewise-
geodesic trajectory in the Riemannian space of
shape and inter-individual variability. Following the
approach of [3], we estimate a representative
piecewise-geodesic trajectory of the global pro-
gression and together with spacial and temporal
inter-individual variabilities. We first introduce
our model in its most generic formulation and then
make it explicit for RECIST [4] score monitoring, i.e.
for one-dimension manifolds and piecewise-logistically
distributed data.

Medical context — RECIST score

= New anti-angiogenic therapies. Patients suffering from
the metastatic kidney cancer take a drug each day [1];

« Tumoral growth. The RECIST score (Response Evalua-
tion Criteria In Solid Tumors) is a set of published rules
that measures the tumoral growth;

= Patient’s response. The response to a given treatment
has generally two distinet phases: first, tumor’s size re-
duces; then, the tumor grows again;

= Moreover, a practical question is to quantify the corre-
lation between both phases and to accurately determine
when the patient’s response escape to treatment.
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Figure 1:After 600 iterations. First 8 patients among the 176

Longitudinal dataset: Given n € N* individuals and
(Ki)ic[Ln], we observe the sequences ¢ = (t”)i[ﬁllz]l]ﬂ € RF

and y = (y”)fel}[llz]’]]] € R¥ where k = Y7 k;.

Data points are seen as noisy samples along trajectories.

Real data consists of RECIST scores of a drove of 176
patients of the HEGP, with an average of 7 visits per
subjects (min:3, max:22).

Mixed-effects model for piecewise-geodesically distributed data

Group-representative trajectory ~p. Given m €

N*and tg = (=00 < th < ... < t~! < +00), we build

o in order it to be geodesic on each Jt% L, #5)].

olet My C R? a geodesically complete manifold,
("yg) ceum] family of geodesics on M, and (q&ﬁ) cefim]

a family of isometries defined on Mj;

oVl € [1,m] we set M{ = ¢f(Mp) and v = ¢ 075 ;

0 A piecewise-geodesic curve. We define 7, as

m—1
) .
Yo="7 L ooy + 2222 Yo ]l]t;_l’t%] +A ﬂ]t;;-l,+oo[=

o Boundary conditions. We impose boundary conditions
on the rupture times to ensure continuity.

Individual trajectories (Vi)igpin)- Let ¢ € [1,7].
We build v; to derive from 7y through spatiotemporal
transformations.

o Time warps (d}f)le[[lm]]‘ We choose affine time warps
constrains by the continuity of each individual paths;

@ Space warps (gbf)kﬂlﬁn]] have to be defined in view of
applications. We require ¢! o v§(t%) = ¢t o 45t (t%) ;

o Last, V0 € [1, m] we set 'yf = d)f o 'yg o z/;f and
m—1

£ .
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o Gaussian noise. Vj € [1, ki, yi; = vi(ti;) +€i; where
gij~N(0,0%), 0 € RT.

Chemotherapy monitoring: Piecewise-logistic curve model
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Figure 2: From average to individual path. Boundary conditions
and transition from vy to ~; through spacial and temporal warps.
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Zpop = ('Y() > Y% s 70 vtR:tl) and Zp = (5;1751277'17/)117%27@)

Our observations consist of patient’s RECIST score over
time. So, we set m = 2, d = 1 and M, = 0, 1[ equipped
with the logistic metric. Let v € R and i € [1,n].

« Representative trajectory 5. Let 7}{‘“'.7’78““?,73“ eR.
We map My onto ]y, 4t and |75, 4"[ through
affine transformations and require t?at "% <t°), =" v,

escaj p
W(tr) = 75(tr) = 0" + v and 4j(t) = A" — v

Time warps (YL, ¢2). We set af = o&, 0 € {1,2};

= Space warps (¢}, ¢7). Given (pl, p2,6;) € R?, we set
oL e (2 — yo(tr)) + 0(tr) + 6, £ € {1,2}.

Parameters estimation with the MCMC-SAEM algorithm

Existence of the MAP

Given the piecewise-geodesic model and the choice of

probability distributions for the parameters and latent
variables of the model, for any dataset (¢,y), there
exists Oyrap € argmax q(6y).

IEE)

« Parameters. We assume that zpop ~ N (Zpop, Spop)
where ¥, is a diagonal matrix with small fixed en-
tries [2] and that z; ~ N(0,X) where ¥ € Sg(R). Let

0= (0", " T 1,5, 0) ;

= Hierarchical model. Let 2z = (2pop, 2i)ie[1,n)- We have

n ki
ylz.0 ~ QRN (viltiy). o)

i=1 j=1

210 ~ N (Zpop, Zpop) @N’(O, )

(Ea U) ~ W71 (V’ mE) ® W71 (Ua mU)
where V' € S4(R) and v, my, m, € R;
We use a Symmetric Random walk

Hastings-Metropolis sampler in a stochastic version of
the EM algorithm.

= Estimation.

Experimental results

Synthetic data. Experiments are performed for the
piecewise-logistic model.
Table 1: Mean (standard deviation) of relative error (expressed as a

percentage) for the population parameters Z,o, and the residual
standard deviation o for 50 runs according to the sample size n.

n 50 100 150
0T 163 (1.46) 242 (1.50) 214 (1.17)
TP 945 (540)  9.07 (5.19) 1140 (5.72)
A | 623 (225) 782 (243) 5.82 (2.55)
T | 1158 (1.64) 13.62 (1.31) 924 (1.63)
T | 441 (075) 527 (0.60) 3.42 (0.71)
o [25.24 (12.84) 10.35 (3.96) 283 (2.31)

Real data. Figure 1 illustrates the qualitative perfor-
mance of the model on the first 8 patients.

T

Individual
rupture times th,

in days) 5,000

4,000

3,000

2,000

1,000

0 2 45 =200 10 5
ation factor ¢! 1 amplitude factor o

Low step High siepos

0

st respanse—s

Figure 3:Individual random effects. Figure 3a: & and &7 against 7.
Figure 3b: p} and p? against d;. In both figure, the color corresponds
to the individual rupture time t},.
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Figure 4: Distribution of the individual rupture times t}. In black
bold line, the estimated average rupture time ¢z.
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