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Learning spatiotemporal piecewise-geodesic trajectories from longitudinal manifold-valued data

We introduce a hierarchical model which allows to estimate both a group-representative piecewisegeodesic trajectory in the Riemannian space of shape and inter-individual variability. Following the approach of [3], we estimate a representative piecewise-geodesic trajectory of the global progression and together with spacial and temporal inter-individual variabilities. We first introduce our model in its most generic formulation and then make it explicit for recist [4] score monitoring, i.e. for one-dimension manifolds and piecewise-logistically distributed data.

Medical context -RECIST score

• New anti-angiogenic therapies. Patients su ering from the metastatic kidney cancer take a drug each day [START_REF] Escudier | Renal cell carcinoma: Esmo clinical practice guidelines for diagnosis, treatment and follow-up[END_REF];

• Tumoral growth. The recist score (response evaluation criteria in solid tumors) is a set of published rules that measures the tumoral growth;

• Patient's response. The response to a given treatment has generally two distinct phases: first, tumor's size reduces; then, the tumor grows again;

• Moreover, a practical question is to quantify the correlation between both phases and to accurately determine when the patient's response escape to treatment. a family of isometries defined on M 0 ;

2 '¸oe J1, mK we set M 0 = " 0(M 0 ) and " 0 = " 0 ¶ "0 ;

3 A piecewise-geodesic curve. We define " 0 as

" 0 = " 1 0 1 ]≠OE,t 1 R ] + m≠1 X X X ¸=2 " 0 1 ]t ¸≠1 R ,t Ŗ] + " m 0 1 ]t m≠1 R ,+OE[ ;
4 Boundary conditions. We impose boundary conditions on the rupture times to ensure continuity.

Individual trajectories (" i ) ioeJ1,nK . Let i oe J1, nK.

We build " i to derive from " 0 through spatiotemporal transformations.

1 Time warps (Â i ) ¸oeJ1,mK . We choose a ne time warps constrains by the continuity of each individual paths;

2 Space warps (" i) ¸oeJ1,mK have to be defined in view of applications. We require

" i ¶ " 0(t Ŗ) = " ¸+1 i ¶ " ¸+1 0 (t Ŗ) ;
3 Last, '¸oe J1, mK we set " i = " i ¶ " 0 ¶ Â i and

" i = " 1 i 1 ]≠OE,t 1 R,i ] + m≠1 X X X ¸=2 " i 1 ]t ¸≠1 R,i ,t Ŗ,i ] +" m i 1 ]t m≠1 R,i ,+OE[ ; 4 Gaussian noise. 'j oe J1, k i K, y i,j = " i (t i,j ) + Á i,j where Á i,j ≥ N (0, ‡ 2 ), ‡ oe R + .
Chemotherapy monitoring: Piecewise-logistic curve model
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Figure 2: From average to individual path. Boundary conditions and transition from " 0 to " i through spacial and temporal warps.

z pop = ⇣ " init 0 , " escap 0 , " fin 0 , t R , t 1 ⌘ and z i = (› 1 i , › 2 i , • i , fl 1 i , fl 2 i , " i ).
Our observations consist of patient's recist score over time. So, we set m = 2, d = 1 and M 0 = ]0, 1[ equipped with the logistic metric. Let ‹ oe R and i oe J1, nK.

• Representative trajectory " 0 . Let " init 0 , " escap 0 , " fin 0 oe R. We map M 0 onto ]" escap 0 , " init 0 [ and ]" escap 0 , " fin 0 [ through a ne transformations and require that " 1 0 (t 0 ) = " init 0 ≠ ‹, " 1 0 (t R ) = " 2 0 (t R ) = " escap 0 + ‹ and " 2 0 (t 1 ) = " fin 0 ≠ ‹ ;

• Time warps (Â 1 i , Â 2 i ). We seti = e › i , ¸oe {1, 2} ;

• Space warps

(" 1 i , " 2 i ). Given (fl 1 i , fl 2 i , " i ) oe R 3 , we set " i : x ' ae e fl i (x ≠ " 0 (t R )) + " 0 (t R ) + " i , ¸oe {1, 2} .

Parameters estimation with the MCMC-SAEM algorithm

Existence of the MAP

Given the piecewise-geodesic model and the choice of probability distributions for the parameters and latent variables of the model, for any dataset (t, y), there exists b ◊ M AP oe argmax ◊oe q(◊|y).

• Parameters. We assume that z pop ≥ N(z pop , pop ) where pop is a diagonal matrix with small fixed entries [START_REF] Kuhn | Maximum likelihood estimation in nonlinear mixed e ects models[END_REF] and that z i ≥ N (0, ) where oe S 6 (R).

Let ◊ = ⇣ " init 0 , " escap 0 , " fin 0 , t R , t 1 , , ‡ ⌘ ; • Hierarchical model. Let z = (z pop , z i ) ioeJ1,nK . We have 8 > > > > > > > > > < > > > > > > > > > : y | z, ◊ ≥ n O i=1 ki O j=1 N ⇣ " i (t i,j ), ‡ 2 ⌘ z | ◊ ≥ N(z pop , pop ) n O i=1 N (0, ) ( , ‡) ≥ W ≠1 (V, m ) ¢ W ≠1 (v, m ‡ )
where V oe S 6 (R) and v, m , m ‡ oe R ;

• Estimation. We use a symmetric random walk Hastings-Metropolis sampler in a stochastic version of the em algorithm.

Experimental results

Synthetic data. Experiments are performed for the piecewise-logistic model. Real data. Figure 1 illustrates the qualitative performance of the model on the first 8 patients. 

Figure 1 :

 1 Figure 1:After 600 iterations. First 8 patients among the 176 Longitudinal dataset: Given n oe N ú individuals and (k i ) ioeJ1,nK , we observe the sequences t = (t i,j ) ioeJ1,nK joeJ1,kiK oe R k and y = (y i,j ) ioeJ1,nK joeJ1,kiK oe R kd where k = P n i=1 k i . Data points are seen as noisy samples along trajectories.Real data consists of recist scores of a drove of 176 patients of the hegp, with an average of 7 visits per subjects (min:3, max:22).

Mixed-e ects≠OE < t 1 R

 1 model for piecewise-geodesically distributed data Group-representative trajectory " 0 . Given m oe N ú and t R = ⇣ " 0 in order it to be geodesic on each ]t ¸≠1 R , t Ŗ].1 Let M 0 µ R d a geodesically complete manifold,
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 3 Figure 3:Individual random e ects.Figure 3a: › 1i and › 2 i against • i . Figure3b: fl 1 i and fl 2 i against " i . In both figure, the color corresponds to the individual rupture time t i R .

  Figure 3:Individual random e ects.Figure 3a: › 1i and › 2 i against • i . Figure3b: fl 1 i and fl 2 i against " i . In both figure, the color corresponds to the individual rupture time t i R .

Figure 4 :

 4 Figure 4:Distribution of the individual rupture times t i R . In black bold line, the estimated average rupture time t R .

Table 1 :

 1 Mean (standard deviation) of relative error (expressed as a percentage) for the population parameters z pop and the residual standard deviation ‡ for 50 runs according to the sample size n.

	n	50	100	150
	" init 0	1.63 (1.46) 2.42 (1.50) 2.14 (1.17)
	" escap 0	9.45 (5.40) 9.07 (5.19) 11.40 (5.72)
	" fin 0	6.23 (2.25) 7.82 (2.43) 5.82 (2.55)
	t R 11.58 (1.64) 13.62 (1.31) 9.24 (1.63)
	t 1	4.41 (0.75) 5.27 (0.60) 3.42 (0.71)
	‡ 25.24 (12.84) 10.35 (3.96) 2.83 (2.31)
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