Uncertainty Quantification for Stochastic Approximation Limits Using Chaos Expansion - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Uncertainty Quantification for Stochastic Approximation Limits Using Chaos Expansion

Résumé

We analyze the uncertainty quantification for the limit of a stochastic approximation (SA for short) algorithm. Typically, this limit φ is deter-ministic and given as the zero of a function written as an expectation. In our setup, the limit φ is modeled as uncertain through a parameter θ. We aim at deriving the probabilistic distribution of φ (θ), given a probability distribution π for θ. We introduce an SA algorithm in increasing dimension for computing the basis coefficients of a chaos expansion of φ on an orthogonal basis of a suitable Hilbert space. The procedure returns a series of estimated coefficients, the corresponding approximation φ (·) of φ (·), and simple approximations of the expectation and variance of { φ (θ); θ ∼ π} (as well as higher order moments when the basis is made of polynomials). The evaluation of more general statistics is possible using φ (·) and extra i.i.d. Monte-Carlo draws of θ ∼ π. Under explicit assumptions on stochastic approximation limits without uncertainty, we establish the almost sure convergence in the Hilbert space of the algorithm.
Fichier principal
Vignette du fichier
UncertaintyQuantificationForSA.pdf (742.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01629952 , version 1 (07-11-2017)
hal-01629952 , version 2 (25-06-2018)
hal-01629952 , version 3 (31-01-2019)
hal-01629952 , version 4 (28-05-2020)

Identifiants

  • HAL Id : hal-01629952 , version 1

Citer

Stéphane Crépey, Gersende Fort, Emmanuel Gobet, Uladzislau Stazhynski. Uncertainty Quantification for Stochastic Approximation Limits Using Chaos Expansion. 2017. ⟨hal-01629952v1⟩
1070 Consultations
751 Téléchargements

Partager

More