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Abstract

We analyze the uncertainty quantification for the limit of a stochastic
approximation (SA for short) algorithm. Typically, this limit φ? is deter-
ministic and given as the zero of a function written as an expectation. In
our setup, the limit φ? is modeled as uncertain through a parameter θ.
We aim at deriving the probabilistic distribution of φ?(θ), given a prob-
ability distribution π for θ. We introduce an SA algorithm in increasing
dimension for computing the basis coefficients of a chaos expansion of φ?

on an orthogonal basis of a suitable Hilbert space. The procedure returns
a series of estimated coefficients, the corresponding approximation φ̂?(·)
of φ?(·), and simple approximations of the expectation and variance of

{φ̂?(θ); θ ∼ π} (as well as higher order moments when the basis is made of
polynomials). The evaluation of more general statistics is possible using

φ̂?(·) and extra i.i.d. Monte-Carlo draws of θ ∼ π. Under explicit assump-
tions on stochastic approximation limits without uncertainty, we establish
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the almost sure convergence in the Hilbert space of the algorithm.

Keywords: stochastic approximation, chaos expansion, uncertainty quan-
tification, stochastic programming, Hilbert space, almost sure convergence,
algorithm.
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1 Introduction

Since the seminal work of Robbins and Monro [RM51], the method of stochastic
approximation (SA for short) has become mainstream for various applications,
such as optimization, parameter estimation, signal processing, adaptive control,
Monte Carlo optimization of stochastic systems (see [KY97, BMP90]), stochastic
gradient descent methods in machine learning (see e.g. [BC05, SSS08, BCN16]),
adaptive Monte Carlo sampler (see e.g. [HST01, AT08, FMP11, FJLS16, FS00,
DVA98]), and efficient tail computations [BFP09], among others.

Typically, SA is used to find zeros of a function that is only available in the
form of an expectation, i.e. for solving equations of the form E[H(z, V )] = 0,
where V is some random source of noise. In this work our goal is to study the
uncertainty quantification (UQ for short) problem for the stochastic approxima-
tion limits (the zeros), denoted by φ?. The field of model uncertainty deals with
the situation where the law of the random noise V is not known exactly. This is
expressed in the form of a parametric dependence V ∼ µ(θ, dv) where the distri-
bution of V depends on an unknown parameter θ for which only some probability
distribution π is available. The uncertainty can also come from the function H,
through a dependency in the uncertain parameter θ. Therefore, the equation to
solve becomes

h(z, θ) :=

∫
V
H(z, v, θ)µ(θ, dv) = 0, π-a.s., (1.1)

so that the zero φ? depends on θ, i.e. φ? = φ?(θ). For the sake of simplicity
in this and the next section, we assume a one-to-one mapping φ? (belonging to
a suitable Hilbert space), but in Section 3 our main algorithm is proved to be
convergent even in the case of multiple zeros (so that it covers the important
VaR/CVaR example, see Remark 3.1).

In this setup the UQ problem consists in determining the distribution of
{φ?(θ) : θ ∼ π}. Among the possible methodologies reviewed in Section 1.1, we
choose the chaos expansion, which consists in computing the coefficients of the
function φ? on an orthogonal basis of the L2 space with respect to the distribu-
tion π. The distribution of {φ?(θ) : θ ∼ π} can then be approximated by an
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empirical distribution, i.e. by sampling independent and identically distributed
θ and computing our approximation of φ? at the corresponding values of θ.

Here, obviously, the most demanding part is the numerical computation of
φ?. In this paper, we design an SA algorithm for φ? so that each iteration lies
in finite dimensional subspace of the Hilbert space, while the dimension of these
subspaces goes to infinity. Like usual SA algorithms, our algorithm is sequential,
so that at any iteration it can be stopped and provides a numerical approximation
of φ? with some controlled accuracy.

Beyond model uncertainty, applications of our approach include sensitivity
analysis, with respect to θ, or quasi-regression in the sense of reconstructing
a whole unknown function, for instance in the context of nested Monte Carlo
computations involving a nonlinear inner function φ? = φ?(θ). These applications
are developed in the companion paper [BCD+17].

1.1 Literature Background

In UQ applications (see [LK10, Smi14]), the function φ? is typically given as the
solution to an auxiliary problem, which requires some numerical computations.
Quite often, φ? is solution to a partial differential equation (PDE for short). In
our SA setup, the function φ? is given as limits of an SA algorithm parameterized
by θ.

A first possible approach is based on crude Monte-Carlo (MC) methods, which
consist in sampling M independent and identically distributed θ and computing,
for each sample θm, φ?(θm) or a numerical approximation φ̂?(θm) (in our setting,
it would be the output of a standard SA algorithm for fixed θm, see Section 2.1).
The distribution of the random variable {φ?(θ), θ ∼ π} is then approximated by

the empirical distribution of {φ̂?(θm) : 1 ≤ m ≤ M}. When φ? solves a PDE, a
global error analysis is performed in [BTZ04], accounting for both the sampling
error and the PDE discretization error, which are decoupled in some way. Our
approach is different since we would like to couple in an efficient way the outer
sampling of θ and the inner simulations used in the SA algorithm.

An alternative method developed in [LBM86, KH92] is a perturbative ap-
proach taking advantage of a stochastic expansion of {φ?(θ), θ ∼ π} that is avail-
able when θ has small variations (a restriction that we do not need or want to
impose in our case).

Approximation in L2-Spaces. A third strategy, which dates back to Wiener
[Wie38] and has been developed in the fields of engineering and uncertainty
quantification in the 2000s (see [GS03, LK10] and references therein), is based
on chaos expansions. This technique, also known as the spectral method, con-
sists in projecting the unknown function φ? : Θ 7→ Rq on an orthonormal basis
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{θ 7→ Bi(θ), i ∈ N} of the L2 space with respect to the distribution π, computing
the coefficients of φ = φ? in its decomposition

φ =
∑
i≥0

uiBi. (1.2)

In the most common case where B0 ≡ 1, once the Rq-valued projection coefficients
{ui, i ≥ N} have been computed, the expectation and the variance-covariance
matrix are available for free as

Eθ∼π[φ(θ)] = u0 and Varθ∼π(φ(θ)) =
∑
i≥1

uiu
>
i .

In the case of a polynomial basis, higher order moments are also usually com-
putable explicitly, see [LK10, Appendix C]. This makes this approach potentially
much cheaper than the above-mentioned crude MC method.

In the case of an explicitly known function φ, finding individual coefficients ui
is straightforward by MC simulation. But, even then, the global convergence of
the method is subject to a nontrivial tuning of the speeds at which the number
of coefficients and the number of simulations go to infinity (see [GS14]). In
the present paper we deal with the case where the function φ = φ? is not known
explicitly (but only implicitly as the solution to (1.1)), making both the algorithm
itself and its convergence analysis more complicated.

In [KB09], the authors provide a finite dimensional procedure to approximate
the function φ? minimizing

∫
Θ
L(φ(θ), θ)π(dθ), for some explicitly known function

L, and they analyze the error due to finite dimensional truncation. In our SA
setup (1.1), which would correspond to

∇zL(z, θ) = h(z, θ) (1.3)

(cf. (1.1)), restricting the functional space to a finite dimensional subspace would
lead to intractable error analysis (cf. Section 2.3). Moreover it requires to choose
the dimension in advance, while our approach chooses it adaptively.

Stochastic Approximation in Hilbert spaces for Statistical Learning.
Recently numerous works have been devoted to statistical learning in Hilbert
spaces, in particular, reproducing kernel Hilbert spaces (see e.g. [DB16] and ref-
erences therein). However, these works cannot be directly related to our problem.
First, the setting (typically a regression problem) is different. Second, the loss
function in the optimization is usually quadratic plus a penalization term ac-
counting for the regularity of the unknown function. As far as the SA algorithm
is concerned, our h would correspond to the gradient of their loss function (cf.
(1.3)). In our study, we consider more general functions H.
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Stochastic Approximation in Infinite Dimension. There exists a large
number of works on infinite dimensional SA. In [Wal77], [BS89] and [YZ90] the
authors study SA in Hilbert spaces in the case of a noise that is independent of
the SA iteration, i.e. H(z, V ) = H̃(z) + V . The conditions of convergence are
then similar to those of the finite dimensional case. In [BM13] the authors provide
nonasymptotic analysis of SA algorithms in Hilbert spaces with applications to
machine learning.

But, although interesting from a theoretical point of view, these SA algorithms
are defined directly in the infinite dimensional Hilbert space, so that they are not
feasible in practice. By contrast, our SA algorithm works in iteratively increasing
dimension (possibly to ∞ in the limit).

There have been already several papers in this direction, generally known as
the sieve approach. [Gol88] proves almost-sure convergence in the norm topology
for a modified Kiefer-Wolfowitz (see [KW52]) procedure in infinite dimensional
Hilbert space using a sieve approach. [Nix84] shows asymptotic normality for a
modified sieve-type Robbins-Monro procedure. [Yin92] proves almost-sure con-
vergence in the weak topology for a sieve-type Robbins-Monro procedure. The
latter three papers treat the case of independent noise H(z, V ) = H̃(z)+V , while
[CW02] combine the abstract approach [Wal77, BS89, YZ90] with the sieve ap-
proach [Nix84, Gol88, Yin92], deriving results on the convergence and asymptotic
normality for SA with growing dimension in a quite general setting. However,
this literature is unsufficient for dealing with uncertainty quantification, for the
following reasons:

• Most of the previous papers in a Hilbert space H consider a noise term
of the form Ĥ(φk(·), Vk+1) with Ĥ : H × V → H. By contrast, in our
case, H(φk(·), Vk+1, ·) can only be simulated θ by θ, as the distribution of
Vk+1 may depend on θ (let alone that simulating “all the θ simultaneously”
would be computationally too demanding);

• The above-mentioned results are proved under fairly general but at the same
time abstract conditions. In an uncertainty quantification framework, we
aim at formulating hypotheses in terms of underlying problems correspond-
ing to fixed values of θ (without uncertainty). Many of the assumptions in
[YZ90] and [CW02] are hard to check, others simply do not hold in our
setting (see Remark 3.3);

• Previous works do not discuss implementation details, complexity issues or
numerical tests. In various places the actual implementation is unclear. By
contrast we provide a fully constructive, easy to implement algorithm.
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1.2 Contributions and Outline of the Paper

In this paper:

• We design a convergent SA algorithm, of the sieve type, for analyzing the
uncertainty quantification of SA limits, in a chaos expansion setup;

• This is a fully constructive, detailed, and easy to implement algorithm (the
USA algorithm, Uncertainty for Stochastic Approximation);

• The convergence conditions are explicit hypotheses on finite dimensional
problems for fixed values of θ, as opposed to abstract assumptions involving
Hilbert space notions that are often hard to check in practice;

• We provide extensive reports and discussion on numerical tests.

Section 2 provides a detailed presentation of the problem and introduces three
possible algorithms for solving it. Section 3 states the almost sure convergence of
the USA algorithm and its Lp convergence with respect to the underlying Hilbert
space norm. The proof is deferred to Section 4. Section 5 presents the results
of numerical experiments, including a detailed discussion of the choice of the
method parameters.

2 Problem Formulations and Algorithmic Solu-

tions

Let V be a metric space endowed with its Borel σ-field, Θ be a subset of Rd, and
H : Rq × V × Θ → Rq. Let π be a probability distribution on Θ and µ be a
transition kernel from Θ to V . We define the scalar product induced by π by

〈f ; g〉π :=

∫
Θ

f(θ)g(θ)π(dθ), (2.1)

for any measurable functions f, g : Θ → R. By extension, for measurable func-
tions f = (f1, · · · , fq) : Θ→ Rq and g : Θ→ R, we write in vector form

〈f ; g〉π :=

〈f1; g〉π
· · ·
〈fq; g〉π

 . (2.2)

We denote by Lπ2,q the Hilbert space of functions f : Θ→ Rq such that the norm

‖f‖π :=
√∑q

i=1 〈fi; fi〉π is finite.
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We consider the following problem:

Finding φ? in Lπ2,q such that

∫
V
H(φ?(θ), v, θ)µ(θ, dv) = 0, π-a.s. (2.3)

We work on a probability space with expectation denoted by E.

2.1 SA Approach “θ by θ”

A naive approach for solving (2.3) is to calculate φ?(θ) for each value of θ sepa-
rately, for example by the following standard (unparameterized) SA scheme (see
[BMP90, Duf97, KY97]): Given a deterministic sequence {γk, k ∈ N} of positive
step sizes and a sequence of independent and identically distributed (i.i.d.) r.v.
{Vk, k ∈ N} sampled from µ(θ, ·), obtain φ?(θ) as the limit of an iterative scheme

φk+1(θ) = φk(θ)− γk+1H(φk(θ), Vk+1, θ). (2.4)

Explicit conditions can be formulated to the effect that φ?(θ) = limk φ
k(θ) holds

on the convergence set of the sequence {φk, k ∈ N} (see e.g. [Duf97, Chapter 1]).
For limk kγk = O(1), the error Eθ∼π

[
|φk(θ)− φ?(θ)|2

]
after k iterations (and thus

k Monte Carlo samples) is O(1/k) (see [Duf97, Chapter 2]).
However, except in the case where Θ is finite with few elements, the esti-

mation of φ?(θ), separately for each θ ∈ Θ, is unfeasible (or too demanding
computationally).

2.2 Chaos Extension Setup and Approach “Coefficient by
Coefficient”

Let {θ 7→ Bi(θ), i ∈ N} be an orthonormal basis of Lπ2,1 (for the scalar product
(2.1)). Orthonormal polynomials are natural candidates, but there are other
possibilities.

Example 1 (of orthogonal bases). See [CHQZ06, Chapter 2] for the four first
examples based on orthogonal polynomials in dimension d = 1. An orthonormal
basis {Bi, i ∈ N} can then be obtained by renormalization of the given orthogonal
basis.

(i) If π(dθ) has the density 1/(π
√

1− θ2) with respect to the Lebesgue measure
on Θ = [−1, 1], then the Chebyshev polynomials of the first kind form an
orthogonal basis.

(ii) If π(dθ) has the density 2
√

1− θ2/π w.r.t. the Lebesgue measure on Θ =
[−1, 1], then the Chebyshev polynomials of the second kind form an orthog-
onal basis.
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(iii) If π(dθ) is the uniform distribution on the interval Θ = [−1, 1], then the
Legendre polynomials form an orthogonal basis.

(iv) More generally, if π(dθ) is the distribution on [−1, 1] with density propor-
tional to (1− θ)α(1 + θ)β for some α, β > −1, then the Jacobi polynomials
form an orthogonal basis.

(v) If π(dθ) is the uniform distribution on the interval Θ = [−π, π], then we
have the orthogonal Fourier basis {1, cos(iθ), sin(iθ), i ∈ N?}.

(vi) If {Bi, i ∈ N} is an orthogonal basis on Θ ⊂ R with respect to the distri-
bution π(dθ) = π(θ)dθ, then, for any continuously differentiable increasing
function ϕ, {Bi(ϕ(·)), i ∈ N} is an orthogonal basis on ϕ−1(Θ) with respect
to the distribution π(ϕ(v))ϕ′(v)dv.

(vii) For a multidimensional distribution (d > 1), with independent components,
an orthogonal basis is given by the set of all possible products of basis func-
tions of a single variable (see [CHQZ06, Section 5.8]).

For x, y ∈ Rq we denote by x · y and |x| the scalar product and the Euclidean
norm in Rq. We denote by l2,q the normed vector space of the Rq-valued sequences
{ui, i ∈ N} with

∑
i≥0 |ui|2 < +∞. As is well known, given an orthonormal basis

{Bi, i ∈ N} in Lπ2 of Lπ2,1, any function φ ∈ Lπ2,q is characterized by a sequence
{ui, i ∈ N} in l2,q such that φ =

∑
i≥0 uiBi. Throughout the paper, we use the

natural isomorphism Is : l2,q → Lπ2,q given by

φ = Is(u) =
∑
i≥0

uiBi, i.e. ui = 〈φ;Bi〉π for each i ∈ N, (2.5)

and the corresponding isometry ‖φ‖π = ‖u‖l2,q (see [Mus14, Proposition 10.32]).

In view of this, the problem (2.3) can be restated on l2,q as

Finding u? in l2,q;

∫
V
H

(∑
i≥0

u?iBi(θ), v, θ

)
µ(θ, dv) = 0, π-a.s.. (2.6)

Hence, an alternative strategy for solving (2.3) consists in the estimation of the
Rq-valued coefficients {u?i , i ∈ N} of φ?, combined with a truncation at a fixed
level m of the expansion (2.5) and a Monte Carlo approximation of the coefficients
{u?i , i ≤ m}.

Let us discuss the computational cost of this approach, in the case q = 1 for
ease of notation (and dimension d of θ). In the case of a Jacobi polynomial basis,
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the following control on the truncation error of φ holds (see [Fun92, Theorem
6.4.2] or [CHQZ06, Chapter 5]):∥∥∥∥∥∑

i>m

uiBi

∥∥∥∥∥
2

π

= O
(
m−

2(η−1)
d

)
, (2.7)

where η is the order of continuous differentiability of φ (in some cases the order

may be strengthened to O
(
m−

2η
d

)
). Furthermore, for i ∈ N, we have

ui = 〈φ;Bi〉π ≈ ûi :=
1

M

M∑
k=1

φ̂(θk,i)Bi(θk,i), (2.8)

where {θk,i, k ∈ N, i ≤ m} are i.i.d. with distribution π and φ̂(θk,i) is an ap-
proximation of φ(θk,i). Neglecting the error associated with the approximation

φ̂(θk,i) ≈ φ(θk,i), we have

E

∥∥∥∥∥
m∑
i=0

(ui − ûi)Bi

∥∥∥∥∥
2

π

 = O
(m
M

)
. (2.9)

For balancing the error components (2.7) and (2.9), we must set M = m1+
2(η−1)
d .

To reach a precision ε, m has to increase as ε−d/(2(η−1)) and M has to increase
as ε−(1+d/(2(η−1))). The computational cost in terms of number of Monte Carlo
samples to estimate m coefficients is therefore ε−(1+d/(η−1)). This quantity suffers
from the curse of dimensionality, which makes this approach fairly inefficient when

combined with a nested procedure for the computation of φ̂(θk,i), e.g. through
(2.4) if φ = φ?.

2.3 The USA Algorithm

Note that the problem (2.3) is equivalent to finding φ? ∈ Lπ2,q such that∫
Θ

(∫
V
H (φ?(θ), v, θ) µ(θ, dv)

)
Bi(θ)π(dθ) = 0Rq , ∀i ∈ N. (2.10)

This observation can be used for devising an original SA scheme for the u?i in
(2.6).

A first attempt in this direction is to restrict the problem to a set of functions
φ of the form

∑m
i=0 uiBi, for some fixed m ∈ N. If, in addition, µ(θ, dv) =

µ(dv), and assuming the scalar product 〈·; ·〉π (corresponding to the integral in
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(2.11)) computable exactly (possibly at a large computational cost), then an SA
algorithm for the computation of {u?i , i ≤ m} consists in iterating (cf. [CW02]
and the related discussion in the end of Section 1.1):

uk+1
i = uki − γk+1

∫
Θ

H

(
m∑
j=0

ukjBj(θ), Vk+1, θ

)
Bi(θ) π(dθ) i = 0, · · · ,m,

(2.11)
where the {(Vk), k ≥ 0} are i.i.d. with distribution µ(dv) and {γk, k ∈ N} is a
deterministic stepsize sequence. In the more general case, an SA algorithm for
the computation of {u?i , i ≤ m} is given by

uk+1
i = uki − γk+1 H

(
m∑
j=0

ukjBj(θk+1), Vk+1, θk+1

)
Bi(θk+1), i = 0, · · · ,m,

(2.12)
where the {(θk, Vk), k ≥ 0} are i.i.d. with distribution π(dθ)µ(θ, dv).

However, in practice, we do not know whether φ? is of the form
∑m

i=0 uiBi and,
even if so, we may not know for which m. We emphasize that, in the general
case φ? ∈ Lπ2,q, as the first argument of H in (2.12) is the current truncation∑m

i=0 u
k
iBi(θk+1) and not φ?(θk+1), this algorithm does not provide the projection

of φ? onto the space spanned by {B0, · · · , Bm}. See the numerical evidence
reported in Section 5.4.

Accordingly, the final version of the algorithm tackles the infinite dimension-
ality of the problem space Lπ2,q on which the problem is stated by increasing m,
to recover in the limit the full sequence of the coefficients {u?i , i ≥ 0} defining
a solution φ? =

∑
i u

?
iBi. Toward this aim, we introduce a sequence mk which

specifies the number of coefficients ui that are updated at the iteration k. The
sequence {mk, k ≥ 0} is nondecreasing and converges to ∞.

The USA algorithm corresponds to the update of the sequence {uki , i ≥ 0}
through the following SA scheme, where ΠA denotes the projection on a suitable
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convex subset A of l2,q:

Input: Sequences {γk, k ≥ 1}, {mk, k ≥ 1}, {Mk, k ≥ 1}, K ∈ N,
{u0

i , i = 0, . . . ,m0}, a convex set A ⊆ l2,q
for k = 0 to K − 1, do

sample (θsk+1, V
s
k+1), s = 1 . . . ,Mk+1, under the distribution

π(dθ)µ(θ, dv) for i > mk+1 define uki = 0
for i = 0 to mk+1, do

ûk+1
i = uki − γk+1M

−1
k+1

∑Mk+1

s=1 H
(∑mk

j=0 u
k
jBj(θ

s
k+1), V s

k+1, θ
s
k+1

)
Bi(θ

s
k+1)

uk+1 = ΠA(ûk+1)

Output: The vector {uKi , i = 0, . . . ,mK}.
Algorithm 1: The USA algorithm for the coefficients of the basis decom-
position of φ?.

The inputs of the algorithm are: a positive stepsize sequence {γk, k ≥ 1};
two integer valued sequences {mk, k ≥ 1} and {Mk, k ≥ 1} corresponding to the
number of nonnull coefficients in the approximation of φ? and to the number of
Monte Carlo draws of the pair (θ, V ) at each iteration k; an initial value u0 ∈ Rm0 ;
a total number of iterations K; a subset A of l2,q on which to project each newly
updated sequence of coefficients.

The output of the algorithm is a sequence uK = {uKi , i ≤ mK} approximating
a solution u? to the problem (2.6). The corresponding approximation φK of a
solution φ? to the problem (2.3) is then

φK :=

mK∑
i=0

uKi Bi. (2.13)

Remark 2.1. The motivations for the introduction of the projection set A and
for the averaging over Mk draws at step k are discussed in the respective sections
3.2 and 5.5.3.

3 The USA Algorithm Converges

3.1 Assumptions

For simplicity of presentation above, we assumed a one-to-one mapping φ?. How-
ever, the USA algorithm is proved below to converge even in the case of multiple
zeros. Accordingly, Problem (2.6) is reformulated as

Finding u? in T ? where
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T ? :=

{
u? ∈ l2,q;

∫
V
H

(∑
i≥0

u?iBi(θ), v, θ

)
µ(θ, dv) = 0, π-a.s.

}
. (3.1)

We do not restrict ourselves to the case of a singleton T ?. However, we introduce
the following assumption on the target set T ? in order to guarantee the existence
of a (random) limit point φ∞ of the algorithm in this set:

H1. The set T ? is compact and non-empty.

Remark 3.1. Allowing for multiple limits is quite standard in the SA literature.
From the point of view of the application to UQ, it may seem meaningless to
quantify the uncertainty of a non-uniquely defined quantity. However, enabling
multiple limits appears to be the right setting when some components of the vector-
valued function φ?(·) ∈ Is(T ?) are unique and some other are multiple. This
encompasses the important case of computing quantiles and average quantiles
(cf. [BFP09]) of a (uncertain) distribution: the SA approximation for the quantile
component may converge to several limits (especially when the distribution has
atoms), while for the average quantile component, the limit is unique.

H2. {Mk, k ≥ 1} and {mk, k ≥ 1} are deterministic sequences of positive integers;
{γk, k ≥ 1} is a deterministic sequence of positive real numbers such that, for
some κ > 0,∑

k≥1

γk = +∞,
∑
k≥1

γ1+κ
k < +∞,

∑
k≥1

γ2
k

Qmk

Mk

< +∞,
∑
k≥1

γ1−κ
k qmk < +∞, (3.2)

where the sequences {qm,m ∈ N} and {Qm,m ∈ N} are defined by

qm := sup
u?∈T ?

∑
i>m

|u?i |2, Qm := sup
θ∈Θ

∑
i≤m

|Bi(θ)|2. (3.3)

Remark 3.2. Since T ? is compact, we have limm qm = 0 (cf. the proof of Lemma
2). Assumption H2 requires, in particular, that Qm < +∞ for any m. If Θ is
bounded, then this is verified for any basis of continuous functions. In the case
of polynomial basis, the coefficients Qm are related to the Christoffel functions
[Nev86].

H3. For any z ∈ Rq, ∫
Θ×V
|H(z, v, θ)|µ(θ, dv)π(dθ) <∞;

For any z ∈ Rq and θ ∈ Θ,

h(z, θ) :=

∫
V
H(z, v, θ)µ(θ, dv)

12



exists; For any φ ∈ Lπ2,q, the mapping h(φ(·), ·) : θ 7→ h(φ(θ), θ) is in Lπ2,q; The
mapping φ 7→ h(φ(·), ·) from Lπ2,q into itself is continuous.

H 4. For π-almost every θ, for any zθ, z
?
θ ∈ Rq such that h(zθ, θ) 6= 0 and

h(z?θ , θ) = 0,

(zθ − z?θ) · h(zθ, θ) > 0.

Remark 3.3. Previous works on SA in a Hilbert space H typically require an
assumption of the type∫

Θ

(φ(θ)− φ?(θ)) · ĥn(φ(θ), θ)π(dθ) > 0, ∀φ ∈ Lπ2,q \ Is(T ?), φ? ∈ Is(T ?),

for n large enough, where ĥn(φ(·), ·) is the approximation of h(φ(·), ·) using the
first n elements of a basis of H: See e.g. [CW02, Assumption A3P(2)], which
only requires the above condition for every φ 6= φ? in the vector space spanned
by the first n basis functions Bi. However, even this relaxed assumption does
not hold in general in our setting. As a counter-example, one may take any
φ? =

∑
i∈N u

?
iBi with non null coefficients u?i , h(z, θ) = z − φ?(θ), and φ = φn

given, for every n, as the truncation

φn := Truncn(φ?) =
∑
i≤n

u?iBi

of order n of φ?. Then, as Truncn(φn−φ?) = 0Lπ2,q (by definition of φn), we have∫
Θ

(φn(θ)−φ?(θ))·ĥn(φ(θ), θ)π(dθ) =

∫
(φn(θ)−φ?(θ))·Truncn(φn−φ?)(θ)π(dθ) = 0,

for every n.
By contrast, H4 is the standard assumption for SA with fixed θ.

H5. a) There exists a constant CH such that, for any z ∈ Rq,

sup
θ∈Θ

∫
V
|H(z, v, θ)|2µ(θ, dv) ≤ CH(1 + |z|2).

b) The map from Lπ2,q into R defined by φ 7→
∫
V×Θ
|H(φ(θ), v, θ)|2π(dθ)µ(θ, dv)

is bounded, i.e. it maps bounded sets into bounded sets.

Note that H5-b implies that φ 7→ h(φ(·), ·) is a bounded map from Lπ2,q into
itself.

H6. For any B > 0, there exists a constant CB > 0 such that, for any (φ, φ?) ∈
Lπ2,q × Is(T ?) with ‖φ− φ?‖π ≤ B,∫

(φ− φ?) (θ) · h(φ(θ), θ) π(dθ) ≥ CB min
φ̄∈Is(T ?)

∥∥φ− φ̄∥∥2

π
.

Note that the above minimum exists since Is(T ?) is compact, by H1.

13



3.2 Projection Set

We address the convergence of the algorithm 1 for three possible choices regarding
the projection set A (which always includes T ?).

Case 1. A := l2,q.

Case 2. A is a closed ball of l2,q containing T ?.

Case 3. A is a closed convex set of l2,q containing T ?, with compact intersections
to closed balls of l2,q.

Note that the projection set A is bounded in Case 2 and unbounded in the two
other cases (for sure in Case 1 and potentially in 3).

Case 1 is the most convenient from the algorithmic viewpoint since no actual
projection is required. However, it requires a stronger condition H5-a to ensure
the stability and an additional assumption H6 for the convergence.

The projection on a ball {u ∈ l2,q : ‖u‖l2,q ≤ B} is given simply by

u 7→ min

(
1,

B

‖u‖l2,q

)
u. (3.4)

Hence, the projection required in Case 2 is quite straightforward. The milder
assumption H5-b is required for the stability but one still needs H6 for the con-
vergence.

Case 3 requires a potentially nontrivial projection on a closed convex set: see
e.g. Example 2 below. The stronger condition H5-a is required for both the
stability and the convergence, but H6 is not needed.

We now give an example of the set A in Case 3.

Example 2. Given a positive sequence {an, n ∈ N} such that
∑

i≥0 a
2
i <∞ and

an increasing sequence of non-negative integers {dn, n ∈ N}, define the closed
convex set A:

A :=

u ∈ l2,q :
∑

dn≤i<dn+1

|ui|2 ≤ a2
n ∀n ∈ N

 . (3.5)

When d0 = 0, the set A is a compact convex subset of l2,q (see Lemma 2). Other-
wise, it is not necessarily compact. However, the set A∩{u ∈ l2,q :

∑
i≥0 u

2
i ≤ B}

is a compact subset for any B > 0 (see Corollary 2). The orthogonal projec-
tion on A consists in projecting (udn , . . . , udn+1−1) on the ball of radius an for all
n ∈ N.
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3.3 Main Result

Theorem 1. Assume H1 to H4 and H5-a if A is unbounded or H5-b if A is
bounded. Let there be given i.i.d. random variables {(θsk, V s

k ), 1 ≤ s ≤ Mk, k ≥
1} with distribution π(dθ)µ(θ, dv). Let uK and φK be the outputs of the USA
Algorithm (cf. (2.13)).

Stability. For any φ? ∈ Is(T ?), limk→+∞
∥∥φk − φ?∥∥

π
exists, is finite a.s., and

we have
sup
k≥0

E
[∥∥φk − φ?∥∥2

π

]
< +∞. (3.6)

Convergence. In addition, in case 3, and in cases 1 and 2 under the additional
assumption H6, there exists a random variable φ∞ taking values in Is(T ?)
such that

lim
k→∞

∥∥φk − φ∞∥∥
π

= 0 a.s. and, for any p ∈ (0, 2), lim
k→∞

E
[∥∥φk − φ∞∥∥p

π

]
= 0.

(3.7)

Remark 3.4. The standard assumption ensuring a central limit theorem (CLT)
for SA algorithms in a Hilbert space (cf. [CW02, Assumption B3(1)] or [Nix84,
Section 3, equation 3.3]) is not satisfied in our setup: as a counter-example, one
can take any polynomial basis and a function h(z, θ) such that ∂zh(φ?(θ), θ) = θ,
due to the recurrence relations of order two that are intrinsic to such bases. The
study of convergence rates and CLT for the USA algorithm is therefore a problem
per se, which we leave for future research.

4 Proof of Theorem 1

Throughout the proof, we will use the notation

φk :=
∑
i≥0

ukiBi =

mk∑
i=0

ukiBi

(recalling that uki = 0 for any i > mk in the USA Algorithm). For any z =
(z1, · · · , zq) ∈ Rq and any real-valued sequence p := {pi, i ≥ 0} such that∑

i≥0 p
2
i < ∞ we write

z ⊗ p := ((z1p0, · · · , zqp0), (z1p1, · · · , zqp1), · · · ) ∈ l2,q.

Set Bm(θ) := (B0(θ), . . . , Bm(θ), 0, 0, . . .). Define the filtration

Fk := σ (θs` , V
s
` , 1 ≤ s ≤M`, 1 ≤ ` ≤ k) , k ∈ N.

We fix u? ∈ T ?, which exists by H1, and we set φ? := Is(u?).
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4.1 Stability

The first step is to prove that the algorithm is stable in the sense that

lim
k

∥∥uk − u?∥∥
l2,q

exists a.s. , (4.1)

sup
k

E
[∥∥uk − u?∥∥2

l2,q

]
< +∞, (4.2)

lim inf
k→∞

∫
Θ

(φk(θ)− φ?(θ)) · h(φk(θ), θ)π(dθ) = 0, a.s. (4.3)

Using the definition of uk+1 in the USA algorithm and the property ΠA(u?) = u?,
we obtain (recalling that, in all cases 1 to 3, T ? ⊆ A)∥∥φk+1 − φ?

∥∥2

π
=
∥∥uk+1 − u?

∥∥2

l2,q
=
∥∥ΠA(ûk+1)− ΠA(u?)

∥∥2

l2,q
≤
∥∥ûk+1 − u?

∥∥2

l2,q

=
∥∥uk − u? − γk+1Hk − γk+1η

k+1
∥∥2

l2,q
,

where

Hk := E

[
1

Mk+1

Mk+1∑
s=1

H
(
φk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)

∣∣∣Fk]
=

∫
Θ×V

H
(
φk(θ), v, θ

)
⊗Bmk+1(θ) π(dθ)µ(θ, dv)

=

∫
Θ

h(φk(θ), θ)⊗Bmk+1(θ) π(dθ),

ηk+1 :=
1

Mk+1

Mk+1∑
s=1

H
(
φk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)−Hk.

For the equivalent definitions ofHk, we used the Fubini theorem and H3. Observe
that, by definition of Bmk , Hk and ηk+1 are sequences in l2,q such that, for all
i > mk+1,

Hk
i = 0Rq , ηk+1

i = 0Rq .

Define

Hk

i :=

{
Hk
i i ≤ mk+1,∫

Θ
h(φk(θ), θ)Bi(θ) π(dθ) i > mk+1.
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Recalling that uki = 0Rq for i > mk+1, we obtain

∥∥uk+1 − u?
∥∥2

l2,q
=
∥∥uk − u?∥∥2

l2,q
− 2γk+1

mk+1∑
i=0

(uki − u?i ) · Hk
i

− 2γk+1

mk+1∑
i=0

(uki − u?i ) · ηk+1
i

+ 2γ2
k+1

mk+1∑
i=0

ηk+1
i · Hk

i + γ2
k+1

∥∥ηk+1
∥∥2

l2,q
+ γ2

k+1

∥∥Hk
∥∥2

l2,q

=
∥∥uk − u?∥∥2

l2,q
− 2γk+1

∑
i≥0

(uki − u?i ) · H
k

i

+ 2γ2
k+1

mk+1∑
i=0

ηk+1
i · Hk

i − 2γk+1

mk+1∑
i=0

(uki − u?i ) · ηk+1
i

− 2γk+1

∑
i>mk+1

u?i · H
k

i + γ2
k+1

∥∥ηk+1
∥∥2

l2,q
+ γ2

k+1

∥∥Hk
∥∥2

l2,q
. (4.4)

H4 implies that, for each θ,∑
i≥0

(
(uki − u?i ) · h

(
φk(θ), θ

))
Bi(θ) = (φk(θ)− φ?(θ)) · h

(
φk(θ), θ

)
≥ 0.

Taking expectation with respect to θ ∼ π and applying the Fubini theorem (which
follows from H3), we obtain for all k ≥ 0

Lk :=

∫
Θ

(φk(θ)− φ?(θ)) · h
(
φk(θ), θ

)
dθ =

∑
i≥0

(uki − u?i ) · H
k

i ≥ 0. (4.5)

Note also that
∑+∞

i=0 (uki − u?i ) · Hk
i ∈ Fk. By definition, E

[
ηk+1
i |Fk

]
= 0, so that

E

[
mk+1∑
i=0

ηk+1
i · Hk

i

∣∣∣Fk] = 0, E

[
mk+1∑
i=0

(uki − u?i ) · ηk+1
i

∣∣∣Fk] = 0. (4.6)
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Let us consider the term
∥∥ηk+1

∥∥2

l2,q
. We write

E
[ ∥∥ηk+1

∥∥2

l2,q
|Fk
]

≤ E

∥∥∥∥∥ 1

Mk+1

Mk+1∑
s=1

H
(
φk(θsk+1), V s

k+1, θ
s
k+1

)
⊗Bmk+1(θsk+1)−Hk

∥∥∥∥∥
2

l2,q

|Fk


≤ 1

Mk+1

∫
Θ×V

∥∥H (φk(θ), v, θ)⊗Bmk+1(θ)
∥∥2

l2,q
π(dθ)µ(θ, dv)

=
1

Mk+1

∫
Θ×V

∣∣H (φk(θ), v, θ)∣∣2(mk+1∑
i=0

Bi(θ)
2

)
π(dθ)µ(θ, dv)

≤
Qmk+1

Mk+1

∫
Θ×V

∣∣H (φk(θ), v, θ)∣∣2 π(dθ)µ(θ, dv). (4.7)

Next we consider the term 2γk+1

∑
i>mk+1

u?i · H
k

i . By using 2ab ≤ a2 + b2 with

a← (γ1−κ
k+1 )1/2|u?i | and b← (γ1+κ

k+1 )1/2|Hk

i |, we have∣∣∣∣∣∣2γk+1

∑
i>mk+1

u?i · H
k

i

∣∣∣∣∣∣ ≤ γ1−κ
k+1

 +∞∑
i>mk+1

|u?i |2
+ γ1+κ

k+1

 +∞∑
i>mk+1

∣∣∣Hk

i

∣∣∣2


≤ γ1−κ
k+1qmk+1

+ γ1+κ
k+1

∥∥∥Hk
∥∥∥2

l2,q
, (4.8)

where we used H2 in the last inequality. Note that

∥∥∥Hk
∥∥∥2

l2,q
=

+∞∑
i=0

∣∣∣∣∫
Θ

h(φk(θ), θ)Bi(θ) π(dθ)

∣∣∣∣2 =

∫
Θ

∣∣h(φk(θ), θ)
∣∣2 π(dθ)

≤
∫

Θ×V

∣∣H (φk(θ), v, θ)∣∣2 π(dθ)µ(θ, dv). (4.9)

Combining (4.4), (4.5), (4.6), (4.7), (4.8), and (4.9), we obtain

E
[∥∥uk+1 − u?

∥∥2

l2,q
|Fk
]

≤
∥∥uk − u?∥∥2

l2,q
− 2γk+1L

k + γ1−κ
k+1qmk+1

+

(
γ2
k+1 + γ1+κ

k+1 + γ2
k+1

Qmk+1

Mk+1

)∫
Θ×V

∣∣H (φk(θ), v, θ)∣∣2 π(dθ)µ(θ, dv). (4.10)

To control the integral in (4.10), we distinguish two cases.
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First case: A is unbounded. Using H5-a we write∫
Θ×V

∣∣H (φk(θ), v, θ)∣∣2 π(dθ)µ(θ, dv) ≤ CH

∫
Θ

(
1 +

∣∣φk(θ)∣∣2) π(dθ)

≤ C1

(
1 +

∥∥uk − u?∥∥2

l2,q

)
,

where C1 := 2CH(1 + supu?∈T ? ‖u?‖
2
l2,q

). Note that C1 is finite by H1.

Second case: A is bounded. Note that, by definition of uk, there exists a constant
B such that a.s. supk≥0

∥∥uk∥∥
l2,q
≤ B. Assumption H5-b implies that, for

some finite and positive C2,

sup
k≥0

∫
V×Θ

|H(φk(θ), v, θ)|2π(dθ)µ(θ, dv) ≤ C2.

In either case, we deduce from (4.10) that

E
[ ∥∥uk+1 − u?

∥∥2

l2,q
|Fk
]
≤
∥∥uk − u?∥∥2

l2,q
− 2γk+1L

k + γ1−κ
k+1qmk+1

(4.11)

+

(
γ2
k+1 + γ1+κ

k+1 + γ2
k+1

Qmk+1

Mk+1

)
(C1 ∨ C2)

(
1 +

∥∥uk − u?∥∥2

l2,q

)
.

Conclusion. In view of the above controls and of H2, the assumptions of the
Robbins-Siegmund lemma are verified (see [RS71]). An application of this lemma

yields that limk

∥∥uk − u?∥∥2

l2,q
exists and

∑
k≥0 γk+1L

k < +∞ a.s.. This concludes

the proof of (4.1). Taking expectations in (4.11) and applying the Robbins-

Siegmund lemma to the sequence E
[∥∥uk − u?∥∥2

l2,q

]
yields (4.2). Note also that

L := lim inf
k→+∞

Lk = 0, a.s.. (4.12)

Indeed, on the event {L > 0}, there exists a finite random index K such that
Lk > L/2 holds for any k ≥ K, which implies that

∑
k≥0 γk+1L

k < +∞ (as,

by assumption,
∑

k≥1 γk = +∞). Therefore {L > 0} ⊆ {
∑

k≥0 γk+1L
k < +∞},

where we saw above that {
∑

k≥0 γk+1L
k < +∞} is a zero probability event.

Hence so is {L > 0}, which proves (4.3).
We know from (4.1) that limk

∥∥φk − φ′∥∥
π

exists a.s. for any φ′ ∈ Is(T ?). For
later use we need the existence of this limit simultaneously for all φ′ ∈ Is(T ?)
with probability one. Note that limk

∥∥φk − φ′∥∥
π

is continuous in φ′ (by triangle
inequality). Using that Is(T ?) is separable as a subset of a separable Hilbert
space Lπ2,q, we deduce that

lim
k

∥∥φk − φ′∥∥
π

exists for all φ′ ∈ Is(T ?), a.s. (4.13)
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4.2 Proof of the Almost Sure Convergence in (3.7)

Proof for Case 1 or Case 2. Under the assumption H1, Is(T ?) is bounded
so that, by (4.1), the random variable B := supφ?∈T ? supk

∥∥φk − φ?∥∥
π

is finite

with probability one. Since by (4.12) lim infk L
k = 0, with probability one, there

exists a subsequence {ζ(k), k ≥ 1} such that limk L
ζ(k) = 0.

From (4.5) and by H6 applied with φ ← φζ(k) and φ? ← Is(u?), there exists
a positive random variable CB (finite a.s. and independent of k by definition of
the r.v. B) such that

Lζ(k) ≥ CB min
φ̄∈Is(T ?)

∥∥φζ(k) − φ̄
∥∥2

π
.

Let {φ̄k, k ≥ 0} be an Is(T ?)-valued sequence such that, for all k,

min
φ̄∈Is(T ?)

∥∥φζ(k) − φ̄
∥∥2

π
=
∥∥φζ(k) − φ̄k

∥∥2

π
.

Such a sequence exists since T ? is compact by H1. Using that limk L
ζ(k) = 0 we

obtain limk

∥∥φζ(k) − φ̄k
∥∥
π

= 0 a.s.. Since the sequence {φ̄k, k ≥ 0} is in a compact
set Is(T ?) (see H1), up to extraction of a subsequence it converges to a random
limit φ∞ ∈ Is(T ?). Hence

lim
k

∥∥φζ(k) − φ∞
∥∥
π

= 0 a.s..

In view of (4.13), we deduce

lim
k

∥∥φk − φ∞∥∥
π

= lim
k

∥∥φζ(k) − φ∞
∥∥
π

= 0 a.s..

This concludes the proof of (3.7).

Proof for Case 3. Since by (4.12) lim infk L
k = 0 with probability one, there

exists a (random) subsequence {ζ(k), k ≥ 1} such that limk L
ζ(k) = 0 a.s. Since

the sequence {uζ(k), k ≥ 0} is bounded in l2,q a.s.(as limk

∥∥uk − u?∥∥
l2,q

exists a.s.)

and belongs to the convex set A by construction, hence it belongs to a compact
set (see Corollary 2). Therefore we can assume (up to extraction of another
subsequence) the existence of u∞ ∈ Lπ2,q such that limk

∥∥uζ(k) − u∞
∥∥
l2,q

= 0 a.s.

We now prove that u∞ is a T ?-valued random variable (possibly depending on
the choice of u? ∈ T ?). Set φ∞ := Is(u∞) and define

L∞ :=

∫
Θ

(φ∞ − φ?) (θ) · h(φ∞(θ), θ) π(dθ).
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Then for any j ≥ 1,

Lj − L∞ =

∫
Θ

(
φj − φ∞

)
(θ) · h

(
φj(θ), θ

)
π(dθ)

+

∫
Θ

(φ∞ − φ?) (θ) ·
(
h
(
φj(θ), θ

)
− h (φ∞(θ), θ)

)
π(dθ).

By either H5-b or H5-a (depending on whether A is bounded or not) and since

supk
∥∥uk∥∥

l2,q
<∞ a.s., we have supk

∥∥h (φζ(k)(·), ·
)∥∥2

π
<∞ a.s.. Since

lim
k

∥∥φζ(k) − φ∞
∥∥
π

= lim
k

∥∥uζ(k) − u∞
∥∥
l2,q

= 0, a.s.,

hence

lim
k

∫
Θ

(
φζ(k) − φ∞

)
(θ) · h

(
φζ(k)(θ), θ

)
π(dθ) = 0, a.s.

Furthermore, since, by H3, φ 7→ h(φ(·), ·) is continuous in Lπ2,q, we have

lim
k

∫
Θ

(φ∞ − φ?) (θ) ·
(
h
(
φζ(k)(θ), θ

)
− h (φ∞(θ), θ)

)
π(dθ) = 0 a.s.

Hence 0 = limk L
ζ(k) = L∞ a.s. In view of the definition of L∞ and of H4, we

deduce that u∞ ∈ T ? a.s.. I̊n view of (4.13), this implies that limk

∥∥φk − φ∞∥∥
π

=

limk

∥∥φζ(k) − φ∞
∥∥
π

= 0.

4.3 Proof of the L2-Control (3.6) and of the Lp-Convergence
in (3.7)

The L2-control
sup
k≥0

E
[∥∥φk − φ∞∥∥2

π

]
< +∞

follows directly from (4.2) and the boundedness of T ? (see H1). This proves (3.6).
Let C > 0 and p ∈ (0, 2). We write

E
[∥∥φk − φ∞∥∥p

π

]
= E

[∥∥φk − φ∞∥∥p
π

1{‖φk−φ∞‖
π
>C}

]
+E

[∥∥φk − φ∞∥∥p
π

1{‖φk−φ∞‖
π
≤C}

]
.

The first term on the right hand side converges to 0 as C → +∞, uniformly in
k: indeed, we have

E
[∥∥φk − φ∞∥∥p

π
1{‖φk−φ∞‖

π
>C}

]
≤

supl≥0 E
[∥∥φl − φ∞∥∥2

π

]
C2−p .

For any fixed C > 0, the second term converges to zero by the dominated con-
vergence theorem. This concludes the proof of Theorem 1.
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5 Numerical Investigations

In this section, we discuss the parameterization of the USA algorithm and we
test empirically the sensitivity of its performance with respect to its parameters.
Notably, the possibility of letting the number mk of estimated coefficients u?i tend
to infinity appears not only as a necessary ingredient for proving the theoretical
convergence (see Theorem 1), but also as a key feature for its numerical per-
formance, even regarding the estimation of the lower order coefficients u?i . We
illustrate this assertion numerically, by testing both the genuine USA algorithm
with increasing mk and the fixed dimension version with mk = m (for different
values of m), respectively referred to as the “increasing mk” and the “fixed m”
algorithms henceforth.

There cannot be any comparison, performance-wise, between the USA algo-
rithm and the naive algorithms of Sections 2.1 and 2.2. The “θ by θ” algorithm of
Section 2.1 is of course no option unless a finite set Θ, with reasonable cardinal-
ity, is considered. As for the “coefficient by coefficient” algorithm of Section 2.2,

it requires one (standard, admittedly) SA algorithm for each estimate φ̂(θk,i) of
φ(θk,i) in (2.8): since k indexes Monte Carlo draws, it means a nested Monte Carlo
approach, which can only be achieved, on realistic applications, by resorting to
concurrent computing resources. Instead, the USA algorithm is a single SA pro-
cedure (in increasing space dimension) for the joint estimation of the coefficients
u?i .

5.1 Design Parameterization of the USA Algorithm

When running the USA algorithm, the user has to choose some design parameters:
given a problem of the form (3.1) and the corresponding sequence {qm,m ∈ N}
via (3.2), the user has to choose the orthogonal basis {Bi(θ), i ∈ N}, which fixes in
turn the sequence {Qm,m ∈ N}. It remains to choose {γk, k ∈ N}, {mk, k ∈ N}
and {Mk, k ∈ N}. In this section, we consider sequences of the form

γk = k−a, mk = bkbc+ 1, Mk = bkpc+ 1, (5.1)

for a, p ≥ 0 and b > 0, and we discuss how to choose these constants assuming
that

qm = O
(
m−δ

)
, Qm = O

(
mL
)
, (5.2)

for some δ > 0 and L ≥ 0.
An easy calculation shows that H2 is satisfied (κ > 0 ensuring H2 exists) if

0 < a ≤ 1, 2− δb < 2a, bL+ 1 < 2a+ p. (5.3)

Given δ > 0 and L ≥ 0, there always exist a, b, p satisfying these conditions.
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Figure 1 displays the lines x 7→ 1, x 7→ 2(1 − x)/δ and x 7→ (2x − 1)/L for
different values of the pair (δ, L) with L > 0. The colored area corresponds to
the points (a, b) satisfying the conditions (5.3) in the case p = 0, i.e. in the case
where the numbers of Monte Carlo draws is constant over iterations. Note that
this set becomes all the more restrictive that δ → 0 and L→∞. Choosing p > 0
gives more flexibility but it also leads to higher computational cost (since the
number of Monte Carlo simulations increases along iterations).

Figure 1: For different values of (δ, L), in the case p = 0, the colored area is
the admissible set of points (a, b) satisfying (5.3). From left to right: (δ, L) =
(2, 1), (0.5, 1), (4, 3), and (0.5, 5).

5.2 Benchmark Problem

We consider the problem (3.1) in the case where

Θ = [−π, π], π(dθ) =
1

2π
1[−π,π] dθ, (5.4)

the function H is given by

H(z, v, θ) = (z − φ?(θ))
(

1 +
cos(v)

2
sin(z − φ?(θ))

)
(5.5)

with

φ?(θ) =

∣∣∣∣45 +
1

4
exp(sin(θ))− cosh(sin(θ)2)

∣∣∣∣ (1 + sin(2θ)), (5.6)

and, for any θ ∈ Θ, the conditional distribution µ(θ, dv) is a centered Gaussian
law with variance θ2.

In real-life applications, the target function φ? is bound to be less challenging
than the present one, e.g. monotone and/or convex/concave with respect to θ or
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some of its components (for instance in the context of financial applications, see
e.g. [BCD+17]). Moreover, the user may be interested with a few coefficients u?i
only, whereas we show numerical results up to mK = 250 below.

The choice of N (0, θ2) for the kernel µ(θ, dv) is purely illustrative. This law
could be replaced by any other one (simulatable i.i.d.) without expectable im-
pact regarding the qualitative conclusions drawn from the numerical experiments
below.

In this example, Is(T ?) = {φ?} and q = 1. The function h (cf. (1.1) and H3)
is equal to

h(z, θ) = (z − φ?(θ))
(

1 +
E[cos(θ G)]

2
sin(z − φ?(θ))

)
, G ∼ N (0, 1). (5.7)

It is easily checked that, for any z ∈ R and θ ∈ Θ, we have∫
V
|H(z, v, θ)|2µ(θ, dv) ≤ 4|z − φ?(θ)|2,

(z − φ?(θ)) · h(z, θ) ≥ 1

2
(z − φ?(θ))2.

Hence, the assumptions H3, H4, H5, and H6 are satisfied.
Finally, for the orthonormal basis {Bi, i ∈ N}, we choose the normalized

trigonometric basis on Θ = [−π, π] (cf. Example 1(v)). Therefore, we have
supi∈N supΘ |Bi(θ)| < +∞, so that

Qm = O(m),

i.e. L = 1 in (5.1). Since φ? extended by periodicity outside [−π, π] is piecewise
continuously differentiable, its truncation error satisfies (see Lemma 1)

+∞∑
i=m+1

|u?i |2 = O
(
m−2

)
,

i.e. we have δ = 2 in (5.2). Numerically, one can check that the practical rate
of convergence lies somewhere between 2 and 3, i.e. the theoretical value δ = 2
above is reasonably sharp (meaning that our example φ? is a “real” δ = 2 example
and not “easier”).

5.3 Performance Criteria

In the numerical experiments that follow, we compare the performances of the
algorithms with increasing mk and fixed m, for different choices of (a, b, p). The
comparison relies on the root-mean-square errors, when the exact expectation
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is approximated by the mean value over 50 independent runs of the algorithms.
After K iterations, the square of the total error E2 is decomposed into the mean
squared SA error E2

sa, which is the error restricted to the (mK + 1) estimated
coefficients, and the squared truncation error E2

tr, i.e. E2 = E2
sa + E2

tr where

E2 = E
[∥∥uK − u?∥∥2

l2,q

]
, E2

sa = E

[
mK∑
i=0

(uKi − u?i )2

]
, and E2

tr =
+∞∑

i=mK+1

(u?i )
2

(recalling uKi = 0 for i > mK). With the exception of Figure 4 that displays
functions φ? and φK , all our graphs are error plots in log-log scale.

5.4 Impact of the Increasing Dimension

In this section, we discuss the role of the sequence {mk, k ∈ N}. Since (δ, L) =
(2, 1), the set of admissible pairs (a, b) for our example is given by the leftmost
graph in Figure 1. When running the USA algorithm with increasing dimensions
(i.e. b > 0), we take (a, b) = (0.875, 0.45), which lies in the middle of the
admissibility set defined by (5.3) (not too close to the boundaries, see Figure 1,
for ensuring a better numerical stability). The choice b = 0.45 also follows from
commonly used values for the number K of iterations in the algorithm and for
the number mK of the coefficients of interest: For instance, with b = 0.45 and
K = 104, we obtain mK ≈ Kb ≈ 60 coefficients (cf. (5.1)).

In Figure 2, we show that having mk → +∞ appears as a key feature from a
numerical performance point of view, including for an accurate determination of
the lower order coefficients (e.g. in the case where only the first few coefficients
of the expansion of φ? are of interest to the user). In fact, as already mentioned
in Section 2.3, the algorithm with fixed m does typically not converge to the first
(m+ 1) coefficients of the decomposition of φ?. In Figure 2[left], the L2-error on
the first 4 coefficients is displayed as a function of the number of iterations K,
for two strategies on mk: the solid line is the case mk = O(kb) with b = 0.45 and
the dotted line is the case m = 3. In Figure 2[right], the total error E and the
truncation error Etr are displayed, resp. in dash-dot line and dashed line in the
case mk is the constant sequence equal to m = 3. These figures show that, when
mk → +∞, USA converges (which is the claim of Theorem 1), whereas, when
mk = m for any k, it does not: the total error does not reach the truncation
error since there is a non vanishing bias on the estimation of the first (m + 1)
coefficients (the SA-error Esa does not vanish when K → +∞).

Figure 3 displays the total error E for different strategies on the sequence
{mk, k ∈ N}: the solid line is the case mk = bk0.45c + 1, while the other lines
correspond to the cases mk = m = 10, 20, 30, 40, and 50. The algorithm with
increasing mk performs better throughout the whole path of USA. This holds
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Figure 2: [left] In the case mk → ∞ (solid line) and mk = m = 3 (dotted line),

the error E
[∑3

i=0(uKi − u?i )2
]1/2

as a function of the number of iterations K.
[right] In the case mk = m = 3, the truncation error Etr (dashed line) and the
total error E (dash-dot line) displayed as a function of K.

true in the burn-in phase, because, when mk → ∞, the dimension evolves with
k (with larger values of γk naturally associated with the estimation of the first,
larger coefficients), whereas, when mk = m is constant, the dimension is too
large in the beginning and the burn-in phase is longer. It is also true on the
convergence part, where the fixed dimension algorithms mk = m only converge
up to a certain accuracy depending on the value of m.

Figure 4 displays the result of a single run of the USA algorithm. In dashed
line, the function θ 7→ φK(θ) is displayed for θ ∈ [−π, π]. For comparison, the
function θ 7→ φ?(θ) is displayed in solid line. We show the estimated function
φK for different values of K (from top to bottom, K ∈ {128, 256, 512, 1024}) and
for mk increasing (left panels) versus mk = m = 30 for any k (right panels).
The increasing dimension mk leads to a smoother convergence, with intermediate
iterations looking closer to a projection of φ? on the subspace spanned by a
smaller number of basis functions.

5.5 Impact of the Design Parameters for the Increasing
mk USA Algorithm

In this section, we discuss the choice of a, b, p when b > 0 (see (5.1)).

5.5.1 Role of b

In this paragraph, we set a = 0.875, p = 0, and we compare different values of b ∈
{0.3, 0.4, 0.5, 0.6, 0.7}. The admissible values of b are in the range (0.125, 0.75).
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Figure 3: The total error E as a function of the number of iterations, for different
choices of the sequence {mk, k ∈ N}: mk increasing (solid line) and mk = m =
10, 20, 30, 40, 50 (other lines).

Figure 5 displays the evolution of the total error E as a function of the number
of iterations K for different values of b. We observe that larger b leads to better
convergence up to b = 0.70. However, as we may see, the gain in the speed
of convergence from taking larger b decreases as we approach the border of the
admissible interval. Moreover this analysis does not take into account higher
computational cost due to a dimension growing faster when b is larger. For
example, for b = 0.70 we made only K = 2500 iterations since the dimension
becomes too large beyond this value. To conclude we suggest that optimal values
of b (for given a) in terms of both convergence and cost lie in the upper part of
the admissible region but not too close to the boundary.

5.5.2 Role of a

In this paragraph, we set b = 0.45, p = 0, and we compare different values of
a ∈ {0.75, 0.80, 0.85, 0.90, 0.95, 1}: note that, since b = 0.45, the admissible values
of a are in the range (0.725, 1.0] (see (5.3)).

Figure 6 displays the total error E as a function of the number of iterations
K for different values of a. We can see that the convergence for a = 1 is not as
good as for a < 1. To analyze this effect further, Figure 7 displays the SA-error
(solid line) and the truncation error (dashed line) in the increasing mk case, as
well as the SA error (dash-dot line) for mk = m = 10. The vertical line indicates
the number of iterations when mk reaches 10 in the increasing-dimension setting.
The stepsize sequence γk = O(k−1) is well known to perform badly during the
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Figure 4: The functions φ? and φK are displayed in respective solid line and
dashed lines, as a function of θ ∈ [−π, π]. On the left, {mk, k ∈ N} is increasing
and on the right, it is constant and equal to m = 30. From top to bottom,
K ∈ {128, 256, 512, 1024}.
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Figure 5: Total error E as a function of the number of iterations K, for different
values of b in {0.3, 0.4, 0.5, 0.6, 0.7}.

burn-in phase, since the steps are too small and do not allow to get quickly close
to the solution. In our case, in the algorithm with increasing mk, a coefficient
u?i starts being estimated when the stepsize is γk(i) for k(i) such that mk(i) = i.
Hence, when γk decreases too fast, there are not enough iterations to estimate a
given coefficient before a new one enters the scene; the algorithm does not have
enough time to learn the successive coefficients and it produces a similar error
on the first (m + 1) coefficients as the algorithm with fixed mk = m. Thus, on
Figure 7[left], the SA-error of the increasing mk-algorithm is no better than the
SA error of the fixed mk = m-algorithm run for m = 10. On the contrary, for
lower values of a, the total error is dominated by the truncation error of order
mk (see Figure 7[right] in the case a = 0.9), which explains why such values of a
yield to numerical convergence with similar (numerical) convergence rates.

Figure 6: The total error E as a function of the number of iterations, for different
values of a in {0.75, 0.80, 0.85, 0.9, 0.95, 1.0}.
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Figure 7: When a = 1 [left] and a = 0.9 [right], the SA-error Esa (solid line) and
the truncation error Etr (dashed line) in the case mk →∞. The SA-error Esa in
the case m = 10 is also displayed (dash-dot line). The vertical line shows the
number of iterations k for which mk reaches 10.

5.5.3 Role of p

In this section we consider the case p > 0, i.e. the number of Monte Carlo samples
at each iteration increases along the USA iterations. One may check that all the
triples of the parameters (a, b, p) used below lie in the admissible set (cf. (5.3)).

In the analyses below, we want to keep track of the dependence of the error
with respect to a computational cost proxied by the total number of Monte Carlo
draws of the pair (θ, v), i.e., after K iterations,

∑K−1
k=0 Mk ≈ O(Kp+1). As we

want to have the same dimension growth speed with respect to the computational
cost for different tests, we take b = b̄(p+ 1) with b̄ = 0.45.

We first set a = 0.875. Figure 8 displays the total error E as a function of the
number of iterations (left) and as a function of the total number of Monte Carlo
draws (right) for triples of the form (a, b̄(p + 1), p) with various p and (a, b̄) =
(0.875, 0.45). It shows that, even though larger p yield a better convergence
in terms of the number of iterations K, there is no much difference when the
computational cost is taken into account (i.e. in terms of the number of Monte
Carlo draws).

Taking a larger p allows taking a smaller a (see (5.3)), so that γk decreases
at a lower rate. To see if it is possible to take advantage of this balance, we
test triples of the form

(
ā/(p+ 1), b̄(p+ 1), p

)
, with (ā, b̄) = (0.875, 0.45) and

different values of p. Figure 9 displays the results. The conclusions are similar as
for the previous test. Hence, on our problem, it seems difficult to take advantage
of the degree of freedom provided by Mk by going beyond the obvious choice
Mk = M for any k. Such a degree of freedom could still be useful to ensure the
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Figure 8: Total error E of the USA algorithm for different values of p ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5} as a function of the number of iterations [left] and of the
total number of Monte Carlo draws [right]. Here a = 0.875 and b = 0.45(p+ 1).

convergence of
∑

k≥0 γ
2
kQmkM

−1
k (as required by H2) in situations where L > 1

(i.e. Qm grows faster than in our example), and therefore ensure the convergence
of the algorithm in such cases, even if this comes at a higher computational cost.

Figure 9: Total error E of the USA algorithm for different values of p ∈
{0, 0.1, 0.2, 0.3, 0.4} as a function of the number of iterations [left] and of the total
number of Monte Carlo draws [right]. Here a = 0.875/(p+1) and b = 0.45(p+1).

In conclusion, we emphasize that the USA algorithm converges in all the stud-
ied cases for which the assumptions of Theorem 1 are verified. We can also observe
in echo to Remark 3.4 that, in our numerics, the total error seems to converge at
a rate of 1/kx, with x of varying from 0.5 to 1.0 depending, in particular, on the
choice of the parameter b, with a higher b seeming to imply a faster convergence
(but also more estimated coefficients and therefore a higher computational cost,
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although the dependence of the latter on b is harder to analyze than the one on
p studied in Section 5.5.3).

A Truncation error for trigonometric basis

Lemma 1. Let φ : R → R be 2π-periodic and piecewise continuously differen-
tiable. Let {ui, i ∈ N} be the coefficients of its decomposition with respect to the
normalized trigonometric basis (cf. Example 1(v)). Then for some C > 0

+∞∑
i=m+1

|ui|2 ≤ Cm−2.

Proof. Let φ2m+1 be the truncation of φ using the first (2m+ 1) elements of the
basis, i.e. the constant 1 and the normalized versions of the functions cos(iθ) and
sin(iθ), i = 1, . . . ,m. Let x ∈ [−π, π]. Define for t ∈ [−π, π]

g(t) :=
φ(x− t)− φ(x)

sin(t/2)
.

By the computation stated in the proof of [Rud64, Theorem 8.14], we have

φ2m+1(x)−φ(x) =
1

2π

∫ π

−π
g(t) cos(t/2) sin(mt)dt+

1

2π

∫ π

−π
g(t) sin(t/2) cos(mt)dt.

Using that φ (and thus g) is piecewise continuously differentiable we apply inte-
gration by parts and get

φ2m+1(x)− φ(x) =
1

2πm

∫ π

−π

d

dt
(g(t) cos(t/2)) cos(mt)dt

− 1

2πm

∫ π

−π

d

dt
(g(t) sin(t/2)) sin(mt)dt,

which implies the result since
∑

i>2m+1 |u2
i | = 1

2π

∫ π
−π |φ

2m+1(x)− φ(x)|2dx.

B Compact sets in l2,q

Lemma 2. For a positive sequence {an, n ∈ N} such that
∑

i≥0 a
2
i < ∞ and an

increasing sequence of non-negative integers {dn, n ∈ N} such that d0 = 0, the
closed convex set A:

A :=

u ∈ l2,q :
∑

dn≤i<dn+1

|ui|2 ≤ a2
n ∀n ∈ N

 (B.1)

is compact.
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Proof. By [KB09, Theorem 3] a subset A of l2,q is relatively compact if and only
if

sup
u∈A

∑
i≥n

|ui|2 is finite for every n and converges to 0 as n→ +∞.

For A given by (B.1) it is clear that for l such that dl ≤ n we have

sup
u∈A

∑
i≥n

|ui|2 ≤ sup
u∈A

∑
i≥dl

|ui|2 ≤
∑
j≥l

a2
j → 0

as n, l→ +∞. Since A is also closed we deduce that it is compact.

Corollary 2. Let A be defined by (B.1) (with d0 not necessarily 0). For any
constant B > 0 the set {u ∈ A : ‖u‖l2,q < B} is convex compact.

Proof. The result follows directly from Lemma 2 using that
∑

i<d0
|ui|2 ≤ B2 for

any u ∈ A.
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