Symbolic Computations of First Integrals for Polynomial Vector Fields - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2018

Symbolic Computations of First Integrals for Polynomial Vector Fields

Résumé

In this article we show how to generalize to the Darbouxian, Liouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a polynomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in $\tilde{\mathcal{O}}(N^{\omega+1})$, where $N$ is the bound on the degree of a representation of the first integral and $\omega \in [2;3]$ is the exponent of linear algebra. This result improves previous algorithms. Our algorithms have been implemented in Maple and are available on authors' websites. In the last section, we give some examples showing the efficiency of these algorithms.
Fichier principal
Vignette du fichier
cheze_combot_symb_first_int2.pdf (513.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01619911 , version 1 (19-10-2017)
hal-01619911 , version 2 (18-12-2018)

Identifiants

Citer

Guillaume Chèze, Thierry Combot. Symbolic Computations of First Integrals for Polynomial Vector Fields. 2018. ⟨hal-01619911v2⟩
252 Consultations
367 Téléchargements

Altmetric

Partager

More