Stochastic Model Reduction for robust dynamical characterization of structures with random parameters - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus Mécanique Année : 2017

Stochastic Model Reduction for robust dynamical characterization of structures with random parameters

Résumé

In this paper, we characterize random eigenspaces with a non-intrusive method based on the decoupling of random eigenvalues from their corresponding random eigenvectors. This method allows us to estimate the first statistical moments of the random eigenvalues of the system with a reduced number of deterministic finite element computations. The originality of this work is to adapt the method used to estimate each random eigenvalue depending on a global accuracy requirement. This allows us to ensure a minimal computational cost. The stochastic model of the structure is thus reduced by exploiting specific properties of random eigenvectors associated with the random eigenfrequencies being sought. An indicator with no additional computation cost is proposed to identify when the method needs to be enhanced. Finally, a simple three-beam frame and an industrial structure illustrate the proposed approach.
Fichier principal
Vignette du fichier
SMR_HAL.pdf (3.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01612787 , version 1 (08-10-2017)
hal-01612787 , version 2 (03-11-2022)

Licence

Identifiants

Citer

Martin Ghienne, Claude Blanzé, Luc Laurent. Stochastic Model Reduction for robust dynamical characterization of structures with random parameters. Comptes Rendus Mécanique, 2017, 345 (12), pp.844-867. ⟨10.1016/j.crme.2017.09.006⟩. ⟨hal-01612787v2⟩
153 Consultations
97 Téléchargements

Altmetric

Partager

More