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Abstract

In this paper, we characterize random eigenspaces with a non-intrusive method based on the
decoupling of random eigenvalues from their corresponding random eigenvectors. This method
allows us to estimate the first statistical moments of the random eigenvalues of the system with
a reduced number of deterministic finite element computations. The originality of this work is
to adapt the method used to estimate each random eigenvalue depending on a global accuracy
requirement. This allows to ensure a minimal computational cost. The stochastic model of the
structure is thus reduced by exploiting specific properties of random eigenvectors associated to
the random eigenfrequencies being sought. An indicator with no additional computation cost is
proposed to identify when the method needs to be enhanced. Finally, a simple three-beam frame
and an industrial structure illustrate the proposed approach.

Keywords: random eigenvalue problems – statistical distributions – linear stochastic systems –
perturbation – simplified resolution method – proximity factor
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1. Introduction
Requirements on system performance are increasingly stringent, which leads us to question the design
rules currently used in structural engineering. The use of safety factors which are often inconsistent and
confusing is no longer sufficient in many leading-edge fields, it is necessary to decrease the gap between
the observed behavior of a structure and predictions from numerical simulations based on deterministic
models. In order to accurately predict the real behavior of a structure, the variability of the observed
behavior needs to be modeled. This variability is mainly due to the system parameter’s randomness.
The probabilistic approach is adapted to numerical resolution [1, 2]. This is thus the framework adopted
for this work.

The aim is to robustly characterize the vibrational response of a structure in a random manner from
a finite element model of the structure. We are particularly looking for the eigenspace characterization
of linear systems with dynamic properties considered as random variables. Methods based on statistical
sampling provide a good framework to solve the random dynamic problem, nevertheless they need
intensive computation to remain accurate [3, 4]. The performance of this kind of method strongly
depends on the quality of the random number generator and the total computational cost increases
dramatically with the cost of one deterministic case. For these reasons, reduced order models in the
context such as PGD [5] for instance or non-sampling methods have been introduced. Along the non-
sampling methods, different techniques have been developed over the last few decades. Two particular
approaches are mainly used in the literature to approximate the statistical properties of the response
of a random system: the perturbation and the spectral methods.

The perturbation method is based on an approximation of the random variable of interest through
the truncation of its Taylor expansion. Its implementation is pretty easy but as high order perturba-
tion terms are computationally intensive, the expansion is generally limited to second order. Moreover,
variations of the system parameters should remain small to guarantee accurate estimation of statisti-
cal moments [6]. Generally, random variables are expanded by their Taylor series about their mean
value. For example, Collins and Thomson [7] estimate statistics of random eigenvalues and eigenvectors.
Adhikari and Friswell [8] propose to expand around an optimal point in order to better approximate
the first moments of random eigenvalues. Nair and Keane [9] use a perturbation method to define an
approximation subspace and to estimate the system random eigenvectors.

The Spectral Stochastic Finite Element Method (SSFEM) was introduced by Ghanem and Spanos in
[10], inspired by Wiener works [11]. The method is based on a discretization of the random variables of
interest among a finite random space. The random variables are decomposed on a basis of orthogonal
polynomials in terms of the multi-dimensional random variable with a specific probability distribution.
This basis is called the polynomial chaos. For problems with Gaussian random input parameters, the
best suited basis consists in a set of multidimensional Hermite polynomials [12], it ensures fast conver-
gence and accurate approximation of the random variables. If the input parameters are not Gaussian,
other proper bases have been developed to ensure an optimal convergence [13]. Once the decomposition
basis is chosen, the coefficients of the decomposed random variable need to be computed. For this
purpose, a Galerkin-based method described in [14] allows us to estimate the coefficients using Monte
Carlo sampling. This method suffers from its sensibility to the quality of the random number generator
[15, 16] and becomes quickly computationally intensive in the case of high-order polynomials or a high
number of random parameters. To overcome these drawbacks, Ghanem and Ghosh [14] propose another
Galerkin-based method for reducing the problem to a set of deterministic non-linear equations.

In order to characterize the eigenspace of a system with random dynamic properties, Polynomial
Chaos methods give a general and accurate framework but their implementation is rather complex.
On the other hand, perturbation methods are easy to implement but their intrinsic assumptions limit
their application to academic problems or small variations of the input parameters. Based on these
techniques, Pascual and Adhikari [17] have proposed and compared methods hybridizing perturbation
approach and polynomial chaos expansion applied on eigenvalue problem.

The aim of this paper is to propose a non intrusive approach to characterize random eigenspace with
a reduced number of deterministic finite element computations. A simple observation is at the origin
of the proposed approach : in some cases, the eigenvalues of a structure with random parameters are
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random but the corresponding eigenvectors are quite deterministic. In these cases a simple deterministic
computation is sufficient to characterize the random eigen mode. For the remaining eigenvalues it is
then necessary to use more accurate methods. This approach, referred as SMR method for Stochastic
Model Reduction approach, consists in adapting the stochastic modeling to each random eigenvalue
depending on the global accuracy requirements on the whole set of random eigenvalues. Finally, the
proposed approach minimizes the computational cost by concentrating computational resources on
particular eigendata sets according to their configuration. The next section describes the SMR approach
and its different refinement levels. As the proposed approach relies on the random eigenfrequencies
configuration, an appropriate indicator referred to as the "Proximity Factor" is also developed in this
section. Then a three-degrees-of-freedom test case illustrates the accuracy of the method depending
on the random eigenfrequencies configuration. We characterize the indicator for a large number of
configurations. In the fourth section, the approach is applied to a more realistic system consisting of
a frame with different random Young’s moduli. Finally, an industrial structure is used to illustrate
the efficiency of the SMR approach in terms of computation time and accuracy of statistical moments
estimation.

2. Stochastic Model Reduction
2.1. Problem presentation
The general eigenvalue problem of undamped or proportionally damped systems can be expressed for a
problem with nd degrees of freedom by

λk(θ)M(θ)Φk(θ) = K(θ)Φk(θ) (1)

where
λk(θ) ∈ R, Φk(θ) ∈ Rnd , M(θ) ∈ Rnd×nd , K(θ) ∈ Rnd×nd , θ ∈ Ω

λk and Φk are the kth eigenvalue and the kth associated eigenvector. The relationship between the
eigenvalues and the natural frequencies of the system is λk = ω2

k. The eigenvector Φk is assumed
to be mass normalized such that Φ⊤

k MΦk = 1. (Ω,F , p) is the abstract probability space associated
with the underlying physical experiments. θ ∈ Ω is a basic event from the complete probability space
Ω. The space of square integrable random variables is denoted by L2(Ω) and forms a Hilbert space
with the norm ‖ · ‖L2(Ω). Matrices M(θ) and K(θ) represent the mass and stiffness matrices of the
structure. Their randomness is due to the physical parameters of the structure such as mass density,
Young’s modulus or geometric properties. In this paper, E[·], Var[·] and σ[·] denote respectively the
mathematical expectation, variance and standard deviation.

To facilitate the understanding of the upcoming developments, we consider the case of a structure
composed of n sub-structures with n different Young’s moduli (Y1, Y2, ..., Yn), for example, a metallic
structure provided with piezoelectric patches. The Young’s moduli are assumed to be the only random
parameters in the considered problem. Thus the stiffness matrix K(θ) is a random matrix and M
remains deterministic. The global stiffness matrix can be written according to different stiffness matrices
relating to each sub-structure:

K(θ) =

n∑
i=1

Ki(θ) =

n∑
i=1

γi(θ)Ki (2)

where γi(θ) is the random parameter corresponding to the ith Young’s modulus and defined as:

γi(θ) =
Yi(θ)

Y0i
; Y0i = E[Yi(θ)] and E[γi(θ)] = 1

Ki are the sensitivity stiffness matrices of the global stochastic stiffness matrix K(θ) with respect
to the parameter γi(θ). With this notation the stochastic behavior is only took into account by the
coefficient γi(θ). These Rnd×nd matrices correspond in this linear case to a global sub-structure stiffness
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matrix obtained with the mean value of the young modulus (stiffness matrix of the sub-structure
reshaped in the whole basis of degrees of freedom of the considered problem). In addition, Ki(θ) are
the global sub-structure stochastic stiffness matrices.

The proposed approach relies on the observation that, considering a structure with random parameters
and a set of random eigenvalues to be determined, some eigenvectors associated with a particular
eigenvalue only vary slightly with respect to the input random parameters and therefore could be
considered as deterministic as a first approximation. It is then extremely cheap (in computational
terms) to estimate the corresponding random eigenvalues. The available computational resources could
be concentrated in more accurate methods to estimate the remaining random eigenvalues of the set
of interest. When the eigenvector can not be considered deterministic, we propose to expand it as
a function of the input random parameters. It allows us to take into account the variability of the
random eigenvector and then to deduce the corresponding random eigenvalue. With this approach, the
randomness of the kth eigenmode (λk(θ),Φk(θ)) is reduced depending on the eigenmode configuration.
This approach is referred as SMR for Stochastic Model Reduction. The approach has at least two
refinement levels that we refer to hereafter as SMR1 and SMR2.

2.2. The Stochastic Model Reduction approach
This subsection illustrates the basic assumptions of the SMR approach [18, 19]. First, we present the first
refinement level of the SMR approach. The determination of a particular couple eigenvalue-eigenvector
is based on the assumption that the eigenvector does not vary with the random input parameters. The
foundation of this refinement level is then illustrated with two different points of view. Then the SMR
second refinement level is presented. It is based on the expansion of the eigenvector as a function of the
input random parameters to take into account its variability and improve the random eigenvalue model.
A method to compute the eigenvector derivatives, adapted to the SMR framework, is then proposed.
Finally the SMR resolution approach is summarized and a criterion is proposed to identify when the
first or the second refinement level should be used.

2.2.1. First refinement level : SMR1

According to the first assumption of the SMR approach, it is assumed that Young’s moduli variations
around an expected value do not change the eigenvector shapes of the structure. Therefore, the matrix
of random eigenvectors corresponds to the matrix of eigenvectors calculated with the expected value
parameters.

Φ(θ) = Φ (3)

This assumption added to the mass normalization of eigenvectors Φk allows us to rewrite the kth random
frequency as :

λk(θ) = ω2
k(θ) =

n∑
i=1

γi(θ)Φk
⊤
KiΦk =

n∑
i=1

λkiγi(θ) (4)

where
λki = Φk

⊤
KiΦk (5)

The coefficients of this expansion are deterministic. The randomness of the eigenvalue is only due to
the input random parameters. This simplification could be used, for example, in the case of a structure
composed of two sub-structures of different sizes. The variation of Young’s modulus of the smallest
sub-structure around its expected value will have a negligible effect on the main structure.

2.2.2. First central moments

The main advantage of this first refinement level is to obtain the closed form of the approximate
eigenvalue. Therefore, the two first central moments of the random eigenvalues are obtained with
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no computational cost. Indeed, assuming the n Young’s moduli (Yi)1≤i≤n are independent random
variables, the expected value of the kth eigenvalue is obtained directly :

E[λk] =

n∑
i=1

E[γi]Φ
⊤
k KiΦk =

n∑
i=1

Φ⊤
k KiΦk =

n∑
i=1

λki = λk (6)

where λk represents the deterministic eigenvalue associated with the deterministic eigenvalue problem:

K0Φk = λkMΦk (7)

and

K0 = K|γi(θ)=1 =

n∑
i=1

Ki (8)

The variance of the kth eigenvalue is :

Var[λk] =

n∑
i=1

λ2
ki Var[γi] =

n∑
i=1

λ2
kiδ

2
i (9)

where δi = σ[Yi]/E[Yi] is the coefficient of variation of the random parameter Yi.

It can be noticed that the estimation of the two first statistical moments is obtained with only one
deterministic finite element computation and the knowledge of the first moment of the input random
parameters. In fact, there is no need for stochastic computation.

2.2.3. Two illustrations of the SMR first assumption

First order Taylor expansion The first assumption of the SMR approach could be illustrated consider-
ing a first order Taylor expansion of the kth random eigenvalue λk(γ(θ)) about the mean of E[γ(θ)] = γ0.
This approach corresponds to the perturbation method largely covered in the literature [6, 8]. Recall
that γ(θ) is the random vector representing the n input parameters of the vibrational system. For
convenience, the randomness dependency of γ(θ) will be implicit in this section and we will use the
following notation γ.

λk(γ) = λk(γ0) +

n∑
i=1

(
∂λk

∂γi

∣∣∣∣
γ=γ0

(γi − γi0)

)
(10)

As developed by Fox and Kapoor [20], the expression of the rate of change of an eigenvalue is:

∂λk

∂γi
(γ) = Φ⊤

k (γ)

[
∂K

∂γi
(γ)− λk(γ)

∂M

∂γi
(γ)

]
Φk(γ) (11)

Assuming that Φk is mass-normalized such that Φ⊤
k MΦk = 1, the first term of the Taylor expansion is

λk(γ0) = Φk
⊤
KΦk. The kth random eigenvalue can be expressed using the expression of the eigenvalue

derivative at γ = γ0:

λk(γ) = Φk
⊤
KΦk +

n∑
i=1

[(
Φk

⊤
[
∂K

∂γi
(γ0)− λk

∂M

∂γi
(γ0)

]
Φk

)
(γi − γi0)

]
(12)

It is then obvious that the random eigenvalue at first order depends only on the corresponding deter-
ministic eigenvector.
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Parametric approach The basic assumption can be addressed with a parametric approach of the
eigenvalue problem. The behaviour of eigenvalues associated with a change of parameters is a problem
intensively studied in the literature [21–23]. Systems with parameters varying over a large range often
undergo frequency coalescence and/or veering. This phenomenon appears when two eigenvalue loci
approach each other closely and suddenly veer away again, each one taking on the trajectory of the
other. The eigenvectors corresponding to each of the two modes swap as the loci pass through the
veering area. Outside this area, the eigenvectors remain constant. This phenomenon is illustrated
on Figure 1. This figure presents the eigenvalue loci (a) of a simple three-degrees-of-freedom (Dof)
undamped spring-mass system (b). The parameters of this system are tuned to observe the veering
effect between the second and the third eigenvalues when the stiffness k2 is varying. Other stiffness
parameters are ki = [1, k2, 3, 0.1, 0.1, 0.1] and the three masses are m1 = m2 = m3 = 1. The windows
over each eigenvalue locus represent the corresponding eigenvector for this k2 range of values.

0.6 0.8 1.0 1.2 1.4
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1.0

1.5

2.0

2.5

3.0

3.5
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e
 (
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m3k1
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k3k4 k5

k6

(a) (b)

Figure 1: Eigenvalue loci with the corresponding eigenvector (a) of a 3 DoF system (b)

Let us consider the case of a system with a single parameter p(θ) randomly varying with a given
probability density function (pdf ). The variability of this parameter could be compared to the eigenvalue
loci of the system. Two particular cases could be highlighted. First, if most of the pdf of the parameter
is out of the veering area, a draw of k2 will mostly induce eigenvalues associated with a constant
eigenvector as illustrated on Figure 2(a). The eigenvectors obtained for the deterministic value of
the input parameter can be used to estimate the corresponding random eigenvalues. The SMR first
assumption is then validated. On the other hand, if the pdf of the parameter overlaps the veering area
(see Figure 2(b)), the eigenvector corresponding to an eigenvalue will depend on the drawn value of
the parameter and it is necessary to take into account this variability to estimate the corresponding
eigenvalues.

These two observations are reinforcing the SMR1 assumption whereby eigenvectors can be assumed
deterministic depending on the eigenmode configuration. The kth eigenvalue is then approximated by
equation (4). When eigenvectors cannot be assumed deterministic, it is necessary to take into account
their variability. A new refinement level is then proposed in the next section.
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Figure 2: Marginal density functions of the second and third eigenvalues of a three Dof system when
the pdf of the input parameter is out of the veering area (a) or cross it (b)

3. Refinement of the Stochastic Model Reduction
3.1. Improvement of SMR1: SMR2
When the eigenshapes variability increases, it is no longer possible to approximate the random eigen-
vectors as deterministic eigenvectors. In order to accurately estimate the corresponding eigenvalues it
is proposed to take into account the eigenshapes variability with a Taylor expansion about the point
γ(θ) = γ0. This improvement is referred hereafter as SMR2.

The kth random eigenvalue λk(γ(θ)) and the kth eigenvector Φk(γ(θ)) given by its Taylor series
expansion about the point E[γ(θ)] = 1 can be written as:

λk(θ) =

n∑
i=1

γi(θ)Φ
⊤
k (γ(θ))KiΦk(γ(θ)) (13)

Φk(γ(θ)) = Φk(γ0) +

n∑
i=1

∂Φk

∂γi

∣∣∣∣
γi=1

(γi(θ)− 1) (14)

The derivatives of each eigenvector remain to be determined. Many papers on analysis and calculation
of eigenderivatives of dynamic systems [24–26] are based on methods developed by Fox and Kapoor [20].
The next subsection defines the best suitable method to compute the eigenvector derivatives for the
second refinement level of the SMR approach.

3.1.1. Methods to compute eigenvector derivatives

Of particular interest for design and shape optimisation, model updating or even uncertainty analy-
sis, the eigenvalue and eigenvector sensitivity computation has been extensively studied in the last
decades. The aim of this section is to pick the most suitable existing method to compute the eigenvec-
tor derivatives for the SMR2 application. For this purpose, we have identified four types of approach
to compute the eigenvector derivatives in the literature. This classification aims to be adapted to the
SMR framework and its implicit requirements.

First, we identify modal superposition methods initiated by Fox and Kapoor works [20]. Fox and
Kapoor present two main results about eigenvector derivatives. The first result is an expression of the
eigenvector derivative depending only on the eigendata of the corresponding mode. This expression
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suffers from the required inverse of a (nd × nd) dense matrix, where nd is the number of Dof of the
system. To avoid the drawback of the matrix inversion, Fox and Kapoor proposed a second expression
based on the expansion of the eigenvector derivative on the eigenvector basis.

Several papers have followed the work initiated by Fox and Kapoor. Roger enlarges it to generalized
non-symmetric eigenvalue problems [27]. Hirai and Kashiwaki focus on the case of structural modifica-
tion with only few controlled design variables [24]. The drawback of the Fox and Kapoor’s expansion on
the eigenvector basis is that it requires all the eigenvectors of the structure to be exact and its accuracy
decreases as the eigenvector basis is truncated. To circumvent these problems, numerous formulations
have been proposed, including static corrections or iterative approaches as mentioned by Alvin [28]. Lin
estimates the eigenvector derivatives by just using the modal parameters of that mode [29]. Nevertheless,
Lin’s method remains approximate and is inaccurate when eigenvalues are too close. These methods
are then not adapted to the SMR framework.

The second class of methods is based on a direct exact method termed Nelson’s method. Nelson’s
[30] first proposed computing the eigenvector derivatives of nth-order symmetric or non-symmetric
eigensystems by requiring only the left and right eigenvectors and the associated eigenvalue under
consideration. The main advantage of this method is to require only the eigendata of the corresponding
mode and to preserve the banded characteristics of the original eigensystem. Several works are based
on the Nelson’s method. Friswell [31, 32] extends Nelson’s method to eigenvalues and eigenvectors nth
derivatives.

Ojalvo [33], Mills-Curran [34, 35] and Dailey [36] have contributed to extend Nelson’s method to
the case of repeated eigenvalues. Nevertheless, their approaches involve second order derivatives which
is inappropriate for SMR2 implementation. Chen [37] has raised that for some particular cases of
repeated eigenvalues, Ojalvo, Mills-Curran and Dailey methods can be avoided but these cases can
not be generalized to SMR’s scope. As mentioned by Lee [38], Nelson’s method could be lengthy
and complicated for finding eigenvector derivatives and clumsy for programming but it is still faster
than modal methods such as Fox and Kapoor’s. It could be implemented to compute the eigenvector
derivatives of the SMR second refinement level.

Methods of the third class are iterative methods. Yoon and Belegundu [39] propose perturbing the
input parameter vector of the system and solving the corresponding non-linear system with a Newton-
Raphson technique. An iteration process is then used to converge toward the eigenvector derivatives.
Alvin [28] uses the truncated Fox’s method to initiate an iterative algorithm based on Preconditioned
Conjugate Projected Gradient-based technique. Andrew [40] uses a simultaneous iteration technique
for computing second-order partial derivatives. Nevertheless, due to the SMR framework, iterative
methods are not favoured.

The last class corresponds to semi-analytic methods. Jankovic [41] proposes calculating the exact nth
eigenvalues and eigenvectors derivative of linear and non-linear eigenvalue problems for unrepeated eigen-
values. Olhoff and Lund [42, 43] use “exact" numerical differentiation to compute design sensitivities of
simple and multiple eigenvalues of complex structures. Mateus [44] considers the non-differentiability
of multiple eigenvalues using thin-plate shell structures of arbitrary geometry. Although these methods
provide an exact calculation (except for numerical round-off errors), they need to be implemented at
the elementary level of the finite element solver. The SMR method aims to be non intrusive, thus this
kind of method is then excluded.

Particular attention could be paid to Lee’s algebraic method to compute the eigenvector derivatives
of a damped system [45, 46]. This method does not really belong to one of the four identified classes
but appears to be a promising candidate to be implemented in SMR. This method is applied in an
intrusive manner to compute derivatives of elementary matrices in the french opensource software
code_aster [47], developed by the french company Électricité De France. The method is based on the
eigenproblem equation and the orthonormal condition written in a matrix format. The orthonormal
condition is quite different between a damped and an undamped system. The proposed expression of the
eigenvector derivatives given in the dedicated papers [45, 46] is adapted below to be implemented in the
SMR second refinement level. The implemented method is detailed in the case of multiple eigenvalues
and so it could be applied to the case of distinct eigenvalues. In particular, this method is well adapted
for dealing with close eigenvalues.
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3.1.2. Implemented method to compute eigenvector derivatives

In order to compute the eigenvector derivatives, a method proposed by Lee [45, 46] is used. In this section,
this method is briefly remembered in the specific case of undamped problem with multiple eigenvalues
λm with m multiplicity (the case of single eigenvalue will follow from this results). Especially, this
approach is based on the concept of adjacent eigenvectors which allows us to deal with discontinuities
of the eigenvectors since a parameter changed.

Let us consider the value p0 of the parameter p corresponding to the nominal eigenvalue of multiplicity
m. Associated to this eigenvalue, the eigenvectors X lead to an eigen subspace. Since a parameter p
is varying from its nominal value to a value p′, the eigenvectors X′ lead to m distinct subspaces. In
this context, since p tends to p0, X′ tends to X and the m distinct eigenvalues tend to the multiple
eigenvalue λm. Such eigenvectors X are commonly designated as adjacent eigenvectors. Notice that
these eigenvectors depends on which parameters is varying, ie. specific adjacent eigenvectors must be
taken into account for each considered parameter.

Firstly,the following eigenvalue problem where Φm is the (n×m) matrix of eigenvectors corresponding
to λm is defined:

−MΦmΛm +KΦm = 0 (15)

where
Λm = λm · Im

The orthonormal condition is given by the following equation:

Φ⊤
mMΦm = Im (16)

Adjacent eigenvectors can be expressed in terms of Φm by an orthogonal transformation such as :

X = ΦmT (17)

where T is an orthonormal transformation matrix of order m (T⊤T = Im). X also satisfies the
orthonormal condition such as Equation (16):

X⊤MX = Im (18)

Let us consider an other eigenvalue problem to find X and ∂Λm

∂p :

−MXΛm +KX = 0 (19)

This problem is built by multiplying Equation (15) by the matrix T.
Differentiating the eigenvalue problem (15) with respect to the design parameter p:

−∂M

∂p
XΛm −M

∂X

∂p
Λm −MX

∂Λm

∂p
+

∂K

∂p
X+K

∂X

∂p
= 0 (20)

This equation leads to the next equation as proposed by Lee:

(K−ΛmM)
∂X

∂p
= −

(
∂K

∂p
−Λm

∂M

∂p

)
X+MX

∂Λm

∂p
(21)

Premultiplying each side by Φ⊤
m and substituting X = ΦmT into it gives a new eigenvalue problem

such as:
DT = ET

∂Λm

∂p
(22)

where

D = Φ⊤
m

(
−λm

∂M

∂p
+

∂K

∂p

)
Φm (23)

E = −Φ⊤
mMΦm = −Im (24)
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Henceforth, Lee’s formulation [45, 46] is used: it corresponds to an algebraic equation with symmetric
coefficient matrix added side conditions.

Differentiating the orthonormal condition (Equation (18)) of the adjacent eigenvectors gives:

X⊤M
∂X

∂p
= −1

2
X⊤ ∂M

∂p
X (25)

One can then write the following single matrix equation combining equations (21) and (25):[
K− λmM MX
X⊤M 0

] [
∂X
∂p

0

]
=

[
−
(

∂K
∂p −Λm

∂M
∂p

)
X+MX∂Λm

∂p

− 1
2X

⊤ ∂M
∂p X

]
(26)

The coefficient matrix can be decomposed into upper and lower triangular forms and then a forward
and backward substitution scheme may be used to evaluate the components of ∂X

∂p .
Finally, Lee’s algorithm could be summed up:

Algorithm 1 Lee’s algorithm

1: Compute D = Φ⊤
m

(
−λm

∂M

∂p
+

∂K

∂p

)
Φm and E = −Im

2: Solve the eigenproblem DT = ET
∂Λm

∂p
and normalize so that T⊤T = Im

3: Let the columns of X = ΦmT be the new eigenvectors

4: Define A =

[
K− λmM MX
X⊤M 0

]
5: Compute F =

{
−
(

∂K
∂p −Λm

∂M
∂p

)
X+MX∂Λm

∂p

− 1
2X

⊤ ∂M
∂p X

}

6: Compute
[
∂X
∂p

0

]
= [A]−1F

The proof of the numerical stability (ie. the non-singularity of the matrix A) of this algorithm
is detailed analytically in [45] in the case of distinct eigenvalues and in [46] in the case of multiple
eigenvalues.

3.1.3. Comparison with the second order perturbation method

The first refinement level of the SMR approach could be seen as a first order perturbation method as
shown in section 2.2.3. The second order perturbation method is also widespread in the literature [8].
This section enables us to compare the second order perturbation method and the second refinement
level of the SMR approach.

Let us consider the random eigenvalue problem as defined in equation (1). The mass matrix M(γ) :
Rn 7→ Rnd×nd and the stiffness matrix K(γ) : Rn 7→ Rnd×nd are assumed to be smooth, continuous and
at least twice differentiable functions of a random vector γ ∈ Rn representing the n input parameters of
the vibrational system. According to the second order perturbation method, the kth random eigenvalue
λk(γ) could be approximated through its second order Taylor expansion about the mean point γ = γ0.
This approximation is referred as λpert.2:

λk(γ) ≈ λpert.2
k = λ(γ0) +

n∑
i=1

(
∂λk

∂γi

∣∣∣∣
γ=γ0

(γi − γi0)

)
+

n∑
i=1

n∑
j=1

(
1

2

∂2λk

∂γi∂γj

∣∣∣∣
γ=γ0

(γi − γi0)(γj − γj0)

)
(27)

The eigenvalue first derivative is presented in equation (11). This derivative involves only the sensi-
tivity of the mass and stiffness matrices at the mean value of the input random vector γ. Providing the
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eigenvalues are distinct, Plaut and Huseyin [48] have shown that the expression of the second derivative
is:

∂2λk

∂γi∂γj
(γ) = Φk(γ)

⊤
[
∂2K(γ)

∂γi∂γj
− λk(γ)

∂2M(γ)

∂γi∂γj

]
Φk(γ)−

(
Φk(γ)

⊤ ∂M(γ)

∂γi
Φk(γ)

)(
Φk(γ)

⊤Gkj(γ)Φk(γ)
)

−
(
Φk(γ)

⊤ ∂M(γ)

∂γj
Φk(γ)

)(
Φk(γ)

⊤Gki(γ)Φk(γ)
)
+2

n∑
r=1
r ̸=k

(
Φr(γ)

⊤Gki(γ)Φk(γ)
) (

Φr(γ)
⊤Gkj(γ)Φk(γ)

)
λk(γ)− λr(γ)

(28)

where
Gki(γ) =

[
∂K(γ)

∂γi
− λk(γ)

∂M(γ)

∂γi

]
(29)

This expansion could be rewritten as a second order polynomial of the input random parameters:

λpert.2
k = ak +

n∑
i=1

bkiγi +
∑

(i,j)∈[[1;n]]2

ckijγiγj (30)

With the second refinement level of the SMR approach, the kth random eigenvalue is approximated
by taking into account the variability of the kth eigenvector with a first order Taylor expansion.

λSMR2
k =

n∑
i=1

γiΦ
⊤
k (γ)KiΦk(γ) (31)

=

n∑
i=1

γi

Φk(γ0) +

n∑
j=1

∂Φk

∂γj

∣∣∣∣
γj=1

(γj − 1)

⊤

Ki

Φk(γ0) +

n∑
j=1

∂Φk

∂γj

∣∣∣∣
γj=1

(γj − 1)

 (32)

On this basis, the approximated eigenvalue λSMR2
k could be written as a polynomial of the input

random parameters:

λSMR2
k = ek +

n∑
i=1

fkijγi +
∑

(i,j)∈[[1;n]]2

gkijγiγj +
∑

(i,j,l)∈[[1;n]]3

hkijlγiγjγl (33)

As shown in section 3.1.2, the eigenvector derivatives require only the eigendata of the corresponding
mode, the mass and stiffness matrices and their sensitivities. On the other hand, the second order
perturbation method involves the first and second derivatives of the mass and stiffness matrices and all
the eigenvectors of the system need to be computed. The computation of λSMR2

k is then cheaper than
λpert.2
k . Moreover, in comparison with the λpert.2

k approximation, the eigenvalue λSMR2
k is described

with a polynomial of higher degree. The SMR2 approximation will better fit the response surface
corresponding to the exact random eigenvalue.

3.2. The SMR resolution approach
For real structures, the set of random eigenvalues will contain either eigenvalues corresponding to almost
deterministic eigenvectors and eigenvalues corresponding to random eigenvectors. The two refinement
levels of the SMR method have to be jointly used to ensure the best estimation of the whole set of
random eigenvalues. To this purpose, a simple resolution approach is summarized on Figure 3. This
approach consists in adapting the invested computational resources to each random eigenvalue. First,
all random eigenvalues are approximated with SMR1, assuming that all eigenvectors are deterministic.
This first step provides an initial estimation of all eigenvalues. The issue is then to identify when the
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SMR1 assumption is validated or it is necessary to refine the approximation. The idea, which appears
in different papers about perturbation methods [8], eigendata sensitivity [29] or eigenloci curve veering
[22, 23], is to distinguish well separated eigenvalues from close ones. In the case of well separated
eigenvalues, the eigenshape sensitivity with respect to the input parameters is small [22], the SMR1
assumption is then validated and the corresponding random eigenvalues will be accurately estimated
with SMR1. In the case of random eigenvalues not clearly identified as well separated, SMR2 is used to
estimate a better approximation of the eigenvalues. Thus, the SMR2 method is applied on a reduced
set of eigenvalues. Notice that, the first order Taylor expansion of one eigenvector using Lee’s algorithm
[45, 46] presented in section 3.1.2 is used to compute the eigenvector derivatives.

As with SMR1, the quality of the SMR2 estimation decreases when random eigenvalues are getting
closer. So the use of first order Taylor expansions could be insufficient to estimate random eigenvectors
because their randomness is not adequately taken into account. A second order Taylor expansion seems
to be inappropriate due to the second order derivation of the random eigenvectors. In order to overcome
this drawback, the random eigenvectors could be modeled by their polynomial chaos (PC) expansions.
The coefficients of the eigenvector PC expansion are rather complex to determine [14]. Therefore the
PC expansion is used only for the last random eigenvalues for which the SMR2 accuracy is questionable.

Random eigenvalue problem
λk(θ)M(θ)φk(θ) = K(θ)φk(θ)

SMR1
φk(θ) are deterministic

λk(θ) well separated END

SMR2
φk(θ) Taylor expansion

λk(θ) not “too” close END

φk(θ) Polynomial
Chaos expansion

NO

NO

YES

YES

Figure 3: SMR approach for eigenvalue problem resolution

3.3. Definition of a Proximity Factor
The efficiency of the proposed approach now depends on the ability to qualify the proximity of two
random eigenvalues. The notion of “close eigenvalue” appears in different papers about eigenvalue
curve veering [22, 23], statistical energy analysis [49], eigenvalues and eigenvectors derivatives [29] and,
a fortiori, random eigenvalue problems [8]. In a most general statistics framework, the use of specific
distance measure could be used such as the Mahalanobis distance [50, 51]. Even if both close and well
separated cases are dealt with systematically, the limit between these two configurations is not always
handled for random eigenvalue problems. Du Bois et al. [23] propose a modal coupling factor analogous
to the coupling factor of Perkins and Mote [21]. This factor is based on the stiffness and mass matrix
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sensitivities, which are deterministic and available from commercial software, but it relates the coupling
between two eigenvalues only when a single parameter is varying. An indicator could be constructed
on this basis in order to take into account the whole set of input random parameters but it would
be the object of future work. Although the correlation between eigenvalues could by considered [52],
the implicit assumptions of SMR1 lead to uncorrelated eigenvalues. Therefore the proximity indicator
between two random eigenvalues should be built without correlation terms (see Equation (34)). In
this paper, an indicator inspired by the statistical overlap factor of Manohar and Keane [49] seems to
be more suitable because of a low computational cost. The statistical overlap is defined as the ratio
between the standard deviation of the kth natural frequency and the mean modal spacing. In order to
take into account a potential difference between the standard deviation of two random eigenvalues, the
Proximity Factor (PF) of two random eigenvalues λi, λi+1 is defined as :

PF(λi) =
2(σ[λi] + σ[λi+1])

E[λi+1]− E[λi]
(34)

As the expectation and the standard deviation of every random eigenvalue are estimated through
the SMR methods, the proximity factor is obtained directly. The Proximity Factor allows us to qualify
the quality of the estimation computed with the SMR methods. When the Proximity factor is greater
than a limit value, initially assumed as PF > 1, the corresponding eigenvalues are assumed to be closely
spaced and the SMR assumptions (random eigenvectors are deterministic for SMR1 and have small
variations for SMR2) are not valid. As a result, the confidence in the SMR results must be studied
depending on the value of the Proximity Factor.

3.4. Parameters stochastic modelling
The SMR methods have been established, it now remains to construct, as objectively as possible, the
probability law of the input parameters, for example their probability density function (pdf ). Denoting
X(θ) as a random parameter, some available information has to be taken into account [53] such as :

• X(θ) has to be a positive-valued random variable (Young modulus),
• X(θ) has to be a second-order random variable, i.e. E[X2(θ)] < ∞,
• the mean value of X(θ) is given and denoted by E[X(θ)] = x > 0,
• the solution of the problem, here λ(θ) has to be a second-order random variable

When other information is available, for example experimental data, the pdf of the parameter could
be constructed through the maximum likelihood principle. Otherwise if no other information is available,
the pdf could be constructed through the maximum entropy principle [54]. For example, according to the
maximum entropy principle, a real-valued random variable X such as Supp(X) =]0,+∞[, E[X] = mx

and Var[X] = σ2
x follows a Gamma distribution.

For a given material, Young’s modulus is randomly varying, its expectation and standard deviation
are known and its support is positive. Young’s moduli can be modeled as random variables with Gamma
distribution. If Yi ⇝ Gamma(αi, βi) = Γ(αi, βi), then E[Yi] = αiβi and Var[Yi] = αiβ

2
i . Therefore αi

and βi are given by :

αi =

(
E[Yi]

σYi

)2

and βi =
σ2
Yi

E[Yi]
(35)

The scaling property of the Gamma distribution, whereby if Yi ⇝ Gamma(αi, βi) = Γ(αi, βi), then
for any c > 0, cYi ⇝ Gamma(αi, cβi), allows us to write the input random variables of the problem γi
as a function of the coefficient of variation δi =

σYi

E[Yi]
of the Young’s moduli :

γi ⇝ Gamma

(
1

δ2i
, δ2i

)
(36)
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The summation property gives the distribution of the sum of independent random variables (Yi)1≤i≤n

with Gamma(αi, β) distributions for i = 1, ..., n and same scale parameter β :
n∑

i=1

Yi ⇝ Gamma

(
n∑

i=1

αi, β

)
(37)

4. First application : A three Dof system
4.1. System modeling
In order to illustrate the SMR method, a simple three-degrees-of-freedom (Dof) undamped spring-mass
system is considered. This example is taken from [32] and [8] and presented in Figure 4. The advantage
of this example is to easily drive the system eigenvalues with only one of the input random parameters.
This allows us to characterize the quality of the SMR method when eigenvalues are well separated or
close.

m1

m2

m3k1

k2

k3k4 k5

k6

Figure 4: Three-degrees-of-freedom undamped spring-mass random system

The mass and stiffness matrices of this three DoF system are given by :

M =

m1 0 0
0 m2 0
0 0 m3

 and K =

k1 + k4 + k6 −k4 −k6
−k4 k2 + k4 + k5 −k5
−k6 −k5 k3 + k5 + k6

 (38)

It is assumed that only spring stiffnesses ki with i = {1, . . . , 6} are randomly varying and the vector of
the random stiffnesses is noted x = [k1, . . . , k6]

⊤. Each random stiffness is assumed to have a Gamma
distribution with expectation ki = 1Nm−1 for i = {1, . . . , 5}. The mean value of the k6 random
stiffness is fixed to k6 = 3Nm−1 for simulations with well separated eigenvalues, and k6 = 1.275Nm−1

in the case of close eigenvalues. The standard deviation of each random stiffness is σki
= 0.15Nm−1

for i = {1, . . . , 6}.
A Monte-Carlo simulation allows us to compute the pdf and the two first statistical moments of the

random eigenvalues. The samples of the six independent Gamma random variables ki for i = {1, . . . , 6}
are generated and the eigenvalues are computed from the eigenvalue problem (1). A simulation with
30000 samples guaranties the estimation of the two first statistical moments with an error range of
±0.1%. Results from this Monte-Carlo simulation are considered as reference to evaluate the quality of
the SMR method.

4.2. All eigenvalues are well separated
First, the case of well separated eigenvalues is considered. This assumption corresponds to ki = 1Nm−1

for i = {1, . . . , 5} and k6 = 3Nm−1. In this case, the random eigenshapes are assumed to be determin-
istic and the two first moments of the random eigenvalues are directly obtained through expressions (6)
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λ1 λ2 λ3

Expectation
relative error 3.6 · 10−3 1.9 · 10−3 1.4 · 10−3

Standard deviation
relative error 6.1 · 10−3 6.6 · 10−3 2.2 · 10−3

Table 1: Relative error of the estimation of the two first moments with SMR1

and (9). The relative error of the ith statistical moment estimated with SMR1 and denoted m̂SMR1
i is

given by :

Error
(
m̂SMR1

i [λk]
)
= ϵ

(
m̂SMR1

i [λk]
)
=

∣∣∣∣m̂SMR1
i [λk]− m̂MC

i [λk]

m̂MC
i [λk]

∣∣∣∣ (39)

The relative error of the estimations of the first two statistical moments with SMR1 for the 3 DoF
system are provided in the Table 1. It can be noticed that the error is less than 0.4% for the ex-
pectation estimation of each random eigenvalue and less than 0.7% for the standard deviation. The
reference moments from the Monte-Carlo simulation need 30000 resolutions of the eigenvalue problem
corresponding to each realization of the set of input random stiffnesses. The SMR1 method requires
only one deterministic resolution of the eigenvalue problem for the same accuracy. Note that SMR1 is
sufficient to estimate the two first statistical moments of all eigenvalues because all eigenvalues are well
separated.

4.3. Two close eigenvalues
By fixing the expectation of the 6th random stiffness to k6 = 1.275Nm−1, the first random eigenvalue
of the three-DoF system remains significantly identical to the previous case but the 2nd and 3rd ran-
dom eigenvalues are now closely spaced. Thus the SMR1 method could be applied for close random
eigenvalues and the benefits of the enhanced method SMR2 could be illustrated. The marginal density
functions of the three random eigenvalues of the system are plotted on a same graph Figure 5-b. It
should be noted that this representation is used to illustrate the proximity of two random eigenvalues.

(a) (b)

Figure 5: Superposition of all eigenvalue marginal density functions. (a) All eigenvalues are well sepa-
rated. (b) Two eigenvalues are close
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The relative error of the estimation of the two first statistical moments with SMR1 and SMR2 is
presented on Figure 6. This figure illustrates the degradation of the SMR1 results when eigenvalues are
close. The relative error on the estimation of the statistical moment of the second and third random
eigenvalues with SMR1 is nearly 10 times greater than the case of well separated eigenvalues. The
enhancement of the SMR2 method allows us to decrease the relative errors respectively to 5.9 · 10−3

and 5.1 · 10−3 for the estimation of the 2nd and 3rd eigenvalue expectations. For the standard deviation
estimation of the 2nd and 3rd eigenvalues, the relative errors with SMR2 are respectively 5.7 · 10−3 and
7.1 · 10−3.

For this test case, the first statistical moments of the random eigenvalues are also estimated with the
second order perturbation method. The estimation of the expectation with the second order perturba-
tion method is better than the estimation with SMR2. Nevertheless, as the expectation is estimated
with an error less than 1% with the two methods, we can be satisfied of the SMR2 estimation. Concern-
ing the estimation of the standard deviation, the second order perturbation method is by far the less
accurate method. While the standard deviation is estimated with an error less than 1% with SMR2,
the error with second order perturbation method is up to 5%. This is due to the shape of the exact
eigenvalue response surface which is better fitted by the SMR2 approximation than the second order
perturbation as illustrated on Figure 7. This figure presents the exact response surface of the second
and third eigenvalues when the first five stiffness parameters k1, . . . , k5 are fixed to their mean value
ki = 1Nm−1 and k6 varies between 0 and 2Nm−1. The exact response surface, named Ref for reference,
is compared to the approximated response surface obtained with SMR1, SMR2 and the second order
perturbation method. This agrees with the conclusion of section 3.1.3. In order to approximate the
random eigenvalue, the second order perturbation method is equivalent to a second order polynomial
function of the input random parameters. On the other hand, with SMR2, the random eigenvalues are
approximated with higher order polynomial functions and due to the shape of the exact eigenvalue loci,
the SMR2 approximation are a better fit. Figure 7 is equivalent to a slice of the eigenvalues response
hyper-surfaces obtained with the exact resolution and the three approximated methods. The eigenval-
ues response hyper-surfaces are dependent on six parameters. Representing it on a plane figure is quite
unwieldy, that is why development is limited to the case of a single varying parameter. Nevertheless,
the conclusion still stands for more than one variable.
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Figure 6: Relative error on the estimation of the two first statistical moments
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(Ref ), SMR1, SMR2 and second order perturbation method

4.4. Proximity Factor characterization
4.4.1. Indicator of the SMR methods quality

In order to illustrate the quality of the method (with only one deterministic calculation) for the case of
close or well separated random eigenvalues, the proposed methods have been applied to the three-DoF
system for different eigenvalue configurations. The input random parameters keep the same characteris-
tics (expectation and standard deviation) as defined in section 4.1 except for the k6 expectation which
is varying between 1.275Nm−1 and 3Nm−1. This allows us to bring the second and third random
eigenvalues closer. Figure 8 represents the relative error of the estimation of the expectation and the
standard deviation of the 2nd and 3rd random eigenvalues of the three-DoF system. It illustrates the
decrease of the quality of the SMR1 and SMR2 methods when the Proximity Factor is increasing.

It can be noticed that, when the Proximity Factor is increasing, the quality of the first moments
estimation decreases. For Proximity Factors less than 1 the relative error of the SMR1 method is less
than 0.7% for the expectation estimation and less than 3% for the standard deviation. The same quality
is obtained for higher Proximity Factor with the SMR2 method, then for a given quality, the limit value
of the Proximity Factor should be adapted to the employed method.

We can then conclude that the Proximity Factor is a good quality indicator for the SMR1 and SMR2
methods.

4.4.2. Error on the Proximity Factor estimation

The Proximity Factor qualifies the quality of the SMR methods, nevertheless, the error of the first
moments estimation leads to a certain approximation of the Proximity Factor itself. Two eigenvalues
are considered close depending on their expectation and their standard deviation. It is now proposed
to study the estimation of the Proximity Factor with SMR1 and SMR2 when the expectation and the
standard deviation of the corresponding random eigenvalues are varying.

Figure 9 shows the Proximity Factor of the 2nd and 3rd random eigenvalues estimated with the SMR1
and SMR2 methods when the two random eigenvalues are getting closer. In order to characterize the
Proximity Factor, a set of 120 configurations have been simulated. For each simulation, the random
input stiffness k6(θ) is defined as a Gamma random variable with expectation E[k6] which assumes 10
values between 1.275, and 4 and coefficient of variation δ[k6] = σ[k6]/E[k6] assumes 12 values between
0.05 and 0.3. The reference values of PF are obtained through Monte-Carlo simulations with 30000
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Figure 8: Error on the estimation of the first moments when PF increase

samples and are extrapolated to obtain the blue surface (PFexact
2 ) in Figure 9. It can be observed that

for PF < 1, corresponding to the red plane of equation z = 1, the estimation of PF with SMR1 and
SMR2 are close to reference values. In order to quantify the error of the estimation of PF, Figure 10
presents the relative error between the reference Proximity Factor and its estimations obtained with
SMR1 and SMR2. The limit criterion PF = 1 is represented by the line with equation y = x. To
illustrate the trend of the relative error of PF, a cubic interpolation is used to map the field of study,
which explains the lack of information in the upper left area.

As might be expected, over the limit value PF = 1, the estimation of PF is less accurate. Nevertheless,
the purpose is to identify the validity domain of the SMR1 and SMR2 methods, i.e. to identify with a
certain precision the limit value of PF above which the method used to compute the random eigenvectors
has to be refined. It can be noticed that the error of the estimation of the limit value PF = 1 with
SMR1 is less than 10% while the error is around 1% with SMR2. It could therefore be considered that
PF estimated with SMR1 allows us to identify when SMR2 needs to be used. The PF estimated with
SMR2 is more reliable and could allow us to identify a higher limit value of PF above which the SMR2
method needs to be refined, for example by considering the eigenvector Polynomial Chaos expansion
[14].

4.4.3. Discussion

It should be kept in mind that, by definition, the PF estimation is more sensitive to the random
eigenvalue proximity than the estimation of the two first moments themselves. Nevertheless, it is not
critical because the main purpose is to choose the best suitable method to estimate the first moments.
Considering the SMR1 results, the PF limit value PF = 1 is estimated with an error close to 8% but
the corresponding expectation and standard deviation are estimated with relative errors respectively
less than 0.8% and 3%. Even if the PF is not estimated with a good precision, the error of the first
moments estimated with SMR1 is acceptable. The same argument can be made for the PF estimation
with SMR2.

To ensure a better estimation of PF, the limit value criterion could be decreased. In Figure 10, this is
equivalent to a decrease in slope of the given red line. Nevertheless, the number of random eigenvalues
considered to be close would increase and same for the global computational cost, increased by refining
the method more often.
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Figure 9: Estimation of the Proximity Factor when λ2 and λ3 are getting closer

Figure 10: Relative error of the Proximity Factor respectively computed with SMR1 and SMR2
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The PF limit value criterion is then a key point of the SMR method. Decreasing the limit value
of PF allows us to increase the quality of the solution by refining the method used to compute the
random eigenvector for a larger number of random eigenvalues but it implies a bigger investment in
computational cost. As a partial conclusion, even if it is based on statistical moments estimations, the
Proximity Factor is able to identify a validity domain of the two SMR methods. Its capability is based
on the choice of the limit value which depends on the required quality or the available computation
resources.

5. Application to a frame
In this section, an application of the SMR approach is proposed on a structure consisting of several
sub-structures with Young modulus and mass randomly varying. This example could be extended to
a bolted assembly including piezoelectric devices. Before applying SMR approach on an industrial test-
case (See section 6), this example will be an opportunity to apply it on a simple structure solved using
finite element analysis and containing only a few degrees of freedom.

5.1. System modeling
The studied structure, presented in Figure 11, is a frame composed of three substructures with two
random Young’s moduli denoted Y1(θ) and Y2(θ) and one deterministic, denoted Y3. The three sub-
structures are beams with the same geometrical properties : length 250mm, width 10mm and thickness
1mm. The three beams are assumed to have the same density ρ = 2800 kgm−3. The Young’s moduli
expected values are Y1 = 75GPa, Y2 = 75GPa and Y3 = 20GPa. The frame is modeled by finite
element with 30 beams elements and 3 DoF at each node. The base of the frame is assumed to be
clamped, the DoF of the corresponding nodes are then set and the complete system has 87 Dof.

The two input random parameters of the structure, Y1(θ) and Y2(θ), are modeled as independent
random variables with Gamma distribution. Their expectation and standard deviation are respectively
E[Y1] = E[Y2] = 75GPa and σ[Y1] = σ[Y2] = 5GPa (corresponding to a coefficient of variation δ =
σ[Yi]/E[Yi] = 1/15) and correspond to small variations of the Young’s moduli.

Figure 11: Definition of the three beams frame

A Monte-Carlo simulation with 30000 samples allows us to compute the pdf of each random variable
of interest. It constitutes the reference framework to compare the results from the SMR method.

5.2. Numerical results
5.2.1. Preliminary observations : illustration of the SMR founding assumption

The Monte-Carlo simulation allows us to estimate the first five random eigenfrequencies through 30000
draws of the two input Young’s moduli. Figure 12 shows the marginal density functions of the first five
random eigenvalues and corresponding eigenvectors of the frame. It can be noticed that the 1st, 2nd
and 5th eigenshapes do not vary significantly while the 3rd and 4th eigenshapes have high variations.
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This illustrates the SMR1 assumption that, under certain conditions, the random eigenvectors of the
structure could be considered as deterministic. The behavior of the 3rd and 4th random eigenmodes
should be related to the relative "location" of the random eigenvalues. An overlap could be observed
representing their marginal pdf on the same axis.

5.2.2. First five random eigenvalues of the frame

Figure 13 shows the marginal pdf obtained with SMR1 and SMR2 in comparison with the marginal pdf
from the Monte-Carlo simulation. For the three well separated eigenfrequencies, the SMR1 and SMR2
methods properly fit the reference marginal pdf. In the case of two close eigenfrequencies, as illustrated
by the 3rd and 4th eigenfrequencies, the SMR1 method does not accurately estimate the marginal pdf
whereas the SMR2 method is still fitting the reference results.

The relative errors of the first two statistical moments are presented on Figures 14 and 15. It can
be noticed that for the three random eigenfrequencies which are well separated, the relative error of
the estimation of the two first moments with the SMR1 method is less than 0.5%. The SMR2 method
obviously gives better results but it is not necessary to invest in more complex computations while
SMR1 results are sufficient. Table below the error diagrams 14 and 15 presents the approximation of
the proximity factor computed from the first moments estimations of the SMR1 and SMR2 methods
compared to the reference proximity factor from Monte-Carlo simulation. The proximity factor between
the first and second random eigenfrequencies corresponds to the cell between these two eigenfrequencies
and so on. The cell color is purple if the proximity factor is under the limit value PF = 1 and is orange
when it is over this limit. It can be noticed that PFSMR1 correctly identifies the two close random
eigenfrequencies for which the method has to be refined.

5.2.3. First twenty-five random eigenvalues of the frame

The frame application allows us to test the SMR methods on higher eigenfrequencies. The estimations
of the first two statistical moments of the 25 first random eigenfrequencies are presented on Figures 16
and 17. It can be noticed that the relative error of the expectation is less than 1.5% for SMR1 and
1.1% for SMR2 and the relative error of the standard deviation is less than 20% for SMR1 and 14%
for SMR2. Globally, the relative error increases with the frequency. Some random eigenvalues deserve
detailed examination :

• The 6th and 19th random eigenfrequencies present an error of the estimation of their first two
statistical moments with SMR1 whereas SMR2 gives much better results. The error of the
expectation ω6 estimated with SMR1 is about 0.3% while the error obtained with SMR2 is 0.03%,
which is equivalent to a gain of 95% in accuracy. For ω19, the gain in accuracy is about 75% on the
standard deviation estimation between SMR1 (error is 16%) and SMR2 (error is 4%). Regarding
their PF, it can be noticed that they are higher than 0.5. Figure 18 illustrates the number of
random eigenvalues considered to be close depending on the limit value of PF. For a limit value
PF = 1, there are 13 random eigenvalues identified to be close where SMR1 is not sufficient to
estimate their first moments. For a limit value PF=0.5, there are 16 close random eigenvalues,
including ω6 and ω19. This illustrates the importance of the choice of the PF limit value criterion.

• For the 10th − 11th eigenfrequencies, Figures 16 and 17 show a difference between the indication
of the proximity factor computed with SMR1 and the two others. This is because the three
values are close to the limit value but two are less than the limit while the third is slightly over.
The proximity factor computed with SMR1 indicates one needs to refine the method to get a
more accurate result while the reference proximity factor would have validated a less accurate
estimation of the random eigenvalue. This particular case could be an advantage as well as a
disadvantage depending on the designer’s point of view. The estimation accuracy is increased
because the method used for this random eigenvalue will be refined. Nevertheless, it implies an
additional computational cost for a low gain of accuracy. The criterion to choose if the method
needs to be refined is an "all-or-nothing" criterion while the proximity of two random eigenvalues
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(a) (b)

Figure 12: Marginal density of the first 5 random frequencies (a) and the corresponding eigenshapes (b)
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Figure 13: Marginal density functions of the first five eigenfrequencies estimated with SMR1 and SMR2
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Figure 14: Relative error of the expectation estimated with SMR1, SMR2 and the second order pertur-
bation method
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Figure 15: Relative error of the standard deviation estimated with SMR1, SMR2 and the second order
perturbation method

is a concept more "fuzzy". Particular attention should be paid to PF values close to the limit
value depending on the designer’s objectives.

• For the case of the 23rd − 24th eigenvalues, the two first moments estimations are not accurate
either with SMR1 or with SMR2. This can be explained by the closeness of this couple of random
eigenvalues. Indeed, the value of the corresponding proximity factor is far above the limit value
PF=1. The assumptions of the SMR1 and SMR2 methods are no longer valid and the variability
of the random eigenvectors is not well modeled. For this couple of random eigenvalues it appears
appropriate to estimate their corresponding random eigenvectors through a Polynomial Chaos
expansion for example [14].

6. Application to an industrial structure : The Ariane 5 payload
adapter

This section presents the application of the SMR approach on an industrial structure corresponding
to the Ariane 5 payload adapter. This is the occasion to apply the SMR approach coupled with a
commercial finite element software. Ariane 5 is a heavy-lift launcher able to carry up to two loads to
geostationary transfer orbit. Payloads are located under the fairing and positioned one under the other.
Each payload is clamped on a frame named Payload Adapter System (PAS) which ensures an interface
with the launcher. Figure 19 presents the Ariane 5 launcher and one kind of PAS. Different kinds of
PAS are available depending on the mission profile. For the purpose of this work, we have chosen to
study the PAS 1666MVS [55].

6.1. System modeling
The PAS 1666MVS consists of a conical structure with an upper interface compatible with the spacecraft
and a bottom bolted interface compatible with the launcher. The lower cone of the PAS 1666MVS, as
shown on Figure 20-a, is made of composite material. For the purpose of the SMR application case,
it is assumed that the material is carbon epoxy composite with an isotropic homogenized Young’s

25

http://doi.org/10.1016/j.crme.2017.09.006
https://hal.archives-ouvertes.fr/hal-01612787


Martin Ghienne, Claude Blanzé and Luc Laurent. Stochastic Model Reduction for robust dynamical
characterization of structures with random parameters. Comptes Rendus Mécanique, October 2017,

345 (12), pp.844-867. doi: 10.1016/j.crme.2017.09.006, hal: hal-01612787

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22 ω23 ω24 ω25

0.000

0.005

0.010

0.015

0.020

R
e
la

ti
v
e
 e

rr
o
r

SMR1 expectation

SMR2 expectation

Pert2 expectation

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20 ω21 ω22 ω23 ω24 ω25

Eigenfrequencies

PFMC

PFSMR2

PFSMR1

Figure 16: Relative error of the estimation of the expectation for the first 25 random eigenfrequencies

modulus of expected value Y Composite = 350 000MPa. The Poisson’s ratio is 0.28 and the density is
1590 kgm−3. The upper cone is a monolithic aluminium part with a Young’s modulus of expected value
Y Alu = 70 000MPa, a Poisson’s ratio of 0.3 and a density of 2800 kgm−3. An intermediate aluminium
ring is included as a structure element of the lower composite cone. The bolted interface of the lower
composite cone is made with another aluminium ring.

In a first approach, we assume that the Young’s modulus of the two different materials are in-
dependent random variables with Gamma distribution. Their expectation and coefficient of varia-
tion are respectively E[YComposite] = Y Composite = 350 000MPa, E[YAlu] = Y Alu = 70 000MPa,
δ[YComposite] = δ[YAlu] = 0.20.

The PAS is axisymetric, all the eigenmodes of the structure are then double eigenmodes. The frame-
work of this paper is limited to the case of simple eigenmodes more or less close to each other. The
SMR approach could be adapted to the case of multiple eigenmodes but it is beyond the scope of this
paper. To dissymetrize the PAS test case, we propose to apply asymetrical boundary conditions: PAS
1666MVS is clamped with the launcher through 72 regularly spaced bolted joints and some angular
portions of the bolted interface have been chosen unclamped. This is equivalent to a bound fault due
to a link failure or an improper assembly. The requirement on the clamped solution enables us to
obtain at least ten simple modes. A preliminary study has raised that the PAS with a single unclamped
portion of π/6rad has seven well identified simples modes. To obtain at least ten simples modes, the
selected configuration has three free portions. Two small portions of π/6rad spaced with π/2rad and a
large portion of π/3rad at π/6rad from one of the small portions as defined on Figure 20.b. With this
configuration, the first deterministic multiple mode is the twelfth mode.

The finite element analysis of the PAS was achieved with the commercial software MSC Nastran.
Shell elements have been used and to avoid extreme computational time and the model is limited to
20 000 degrees of freedom. A Monte Carlo simulation with 10 000 samples allows us to compute the pdf
of the first ten random eigenvalues of the PAS. It constitutes the reference framework to compare the
results from the SMR method. This simulation has been performed on a quad-core computer Intel®
Xeon® CPU E5507 - 2.27GHz and 16Gb DDR3-1066. It takes about 16 h.
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Figure 17: Relative error of the estimation of the standard deviation for the first 25 random eigenfre-
quencies

6.2. Numerical results

The first ten random eigenvalues of the PAS are computed with SMR1, SMR2 and the second order
perturbation method. Figures 21 and 22 show the relative errors of the two first statistical moments.
The table below the error diagrams presents the proximity factor computed with SMR1, SMR2 and the
reference from the Monte-Carlo simulation.

Using only the SMR first refinement level, the expectation and the standard deviation of the first
ten random eigenvalues of the PAS are estimated respectively with a maximum error of 3.0% and
12%. With the same computer as the Monte-Carlo simulation, this estimation is performed within a
minute. The SMR second refinement level allows us to reduce the expectation and standard deviation
maximum errors respectively to 1.6% and 9.2%. The computation of the first ten random eigenvalues
with SMR2 takes less than 18min. It can be noticed that the second order perturbation method is
again less accurate than SMR2 to estimate the standard deviation. Although the estimation of the
expectation obtained with SMR2 is not always better than the estimation obtained with the second
order perturbation method, the relative error on the expectation estimation remains very satisfying
(lower than 1.6 % in any case), which does not contradict the use of SMR2. This can be explain by the
variability of the input parameters (δ = 0.20). Indeed, the validity domain of the perturbation method
is known to be bounded by coefficient of variation less than 20%.

The SMR approach recommends using the SMR second refinement level only when it is necessary. For
this test case, the proximity factor suggests refining the method for almost all the random eigenvalues.
Nevertheless, for the eigenfrequencies ω3, ω4 and ω8 this refinement seems to be unnecessary. The
proximity factor raises then some false-positive which does not ensure an optimized computational time.
Inspired by the work of Perkins and Mote [21] and Du Bois [23] works, a way to overcome this issue
could be to improved the proximity factor by taking into account the curvature of the reference response
surface to identify when the response surface is sufficiently “plane” to be approximated with SMR1.
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Figure 18: Impact of the limit value of PF on the number of eigenvalues to be refined

7. Conclusion
A non-intrusive approach to estimate the first two statistical moments of the random eigenvalues of
a structure is presented. Referred to as SMR for Stochastic Model Reduction approach, it requires
only a single deterministic finite element computation. This approach is based on the assumption
that, in the vicinity of a given natural eigenfrequency, the dynamical behavior of a system is mainly
characterized by the modal property of the considered eigenfrequency if all other eigenfrequencies are
well separated. This leads one to assume the eigenvectors of the problem to be deterministic in the
first approximation. This assumption is no longer valid when eigenvalues become closely spaced. In
this case, the system becomes more coupled. So it is proposed to refine the method by considering the
eigenvectors’ randomness through their first order Taylor expansion. To decide when the method should
be refined, an indicator referred to as Proximity Factor, based on the first two statistical moments, is
proposed. Computationally free, the efficiency of this indicator relies on the choice of its limit value
criterion.

A first case of a three-degrees-of-freedom system is used to validate the approach and to characterize
the behavior of the Proximity Factor. This example highlights the criticality of the choice of the limit
value of this indicator over which the method needs to be refined. In a second application case, a
frame with random Young’s moduli allows us to apply the SMR approach to a wide range of random
eigenfrequencies. We illustrate the SMR basis assumption by plotting the random eigenshapes of
the frame. The ability of the Proximity Factor to identify when the method needs to be refined is
demonstrated and the criticality of its limit value criterion is discussed. Finally, the approach is applied
on an industrial structure modeled with a commercial software: the Ariane 5 payload adapter. This
illustrates the SMR efficiency in comparison with Monte-Carlo simulation. The first two statistical
moments of the PAS first ten random eigenfrequencies are accurately estimated with a computational
time reduction from 16 h to 18min (i.e. a time reduction of 98 %).

We conclude that the SMR method is an efficient method due to its ratio accuracy/computational-
time. The Proximity Factor is a key parameter of the method, allowing one to refine only when it
is necessary. Particular attention should be paid to the choice of the Proximity Factor limit value
depending on the tradeoff accuracy/computational-time imposed by the designer.

Future works will focus on the improvement of the Proximity Factor. Indeed, the proposed Proximity
Factor may give rise to a false-positive which may increase the global computation time of the approach
without any significant accuracy improvement. It could then be improved, for example, by taking
into account non statistical quantities such as the curvature of the eigenvalues response surfaces or by
considering the correlation between two eigenvalues [52]. For this second approach, the computation of
the complete covariance matrix has to be considered, which can not be obtained currently with SMR1.
In addition, comparison with classical distances used in statistics such as the Mahalanobis distance [50,
51] will be achieved to study the performance of the Proximity Factor. As the computational gain of the
SMR method is even greater for large degree-of-freedom systems, the method could then be applied to
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Figure 19: Ariane 5 launcher and one of its payload adapter systems [55]

Figure 20: Definition of the Ariane 5 Payload Adapter PAS 1666MVS. (a) Section of the PAS 1666MVS.
(b) Definition of the clamped boundary conditions of the lower cone.
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more complex examples from industrial structures. Of particular interest is the case of bolted assembly
where the stiffness of each bolted joint would be considered as a random variable. Bolted joints involve
nonlinear phenomena as friction or contact. Future works will also focus on the application of the SMR
approach to these kinds of nonlinear problems.
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A. Calculation of the eigenvalue derivatives
In this section, the method for computing the eigenvalue derivatives introduced by [20] is briefly remem-
bered.

λk(p) and Φk(p) are the kth eigenvalue and eigenvector of the general undamped eigenvalue problem

Hk(p)Φk(p) = 0 (40)

where Hk(p) = K(p)− λk(p)M(p). M(p) and K(p) designate respectively the mass and the stiffness
matrices. All quantities of this problem depend on parameters pi which are regrouped in the p vector.

By premultiplying the previous equation by Φk(p)
⊤, the following equation could be considered:

Φk(p)
⊤Hk(p)Φk(p) = 0 (41)

Differentiating the equation (41) with respect to a parameters pi leads to the following equation:

∂Φk(p)
⊤

∂pi
Hk(p)Φk(p)︸ ︷︷ ︸

E1(p)

+Φk(p)
⊤ ∂Hk(p)

∂pi
Φk(p) +Φk(p)

⊤Hk(p)
∂Φk(p)

∂pi︸ ︷︷ ︸
E2(p)

= 0 (42)

Due to Equation (40) and the symetric property of matrix Hk(p), terms E1(p) and E2(p) vanish. So
Equation (42) becomes:

Φk(p)
⊤ ∂Hk(p)

∂pi
Φk(p) = 0 (43)

In addition, the calculation of ∂Hk(p)

∂pi
using the derivatives of M(p) and K(p) with respect to pi leads

to

∂Hk(p)

∂pi
=

∂K(p)

∂pi
− λk(p)

∂M(p)

∂pi
− ∂λk(p)

∂pi
M(p) (44)

If the eigenvectors are assumed to be M-orthogonal (Φk(p)
⊤MΦk(p) = 1), the use of Equations (42)

and (44) leads to the derivatives with respect to pi of the kth eigenvalue:

∂λk(p)

∂pi
= Φk(p)

⊤
[
∂K(p)

∂pi
− λk(p)

∂M(p)

∂pi

]
Φk(p) (45)
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