THE INFINITE ATLAS PROCESS: CONVERGENCE TO EQUILIBRIUM - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2019

THE INFINITE ATLAS PROCESS: CONVERGENCE TO EQUILIBRIUM

Résumé

The semi-infinite Atlas process is a one-dimensional system of Brownian particles, where only the leftmost particle gets a unit drift to the right. Its particle spacing process has infinitely many stationary measures, with one distinguished translation invariant reversible measure. We show that the latter is attractive for a large class of initial configurations of slowly growing (or bounded) particle densities. Key to our proof is a new estimate on the rate of convergence to equilibrium for the particle spacing in a triangular array of finite, large size systems.
Fichier principal
Vignette du fichier
djo-a12.pdf (233.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01584723 , version 1 (09-09-2017)

Identifiants

Citer

Amir Dembo, Milton Jara, Stefano Olla. THE INFINITE ATLAS PROCESS: CONVERGENCE TO EQUILIBRIUM. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2019, 55 (2), pp.607-619. ⟨10.1214/17-AIHP875⟩. ⟨hal-01584723⟩
177 Consultations
121 Téléchargements

Altmetric

Partager

More