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THE INFINITE ATLAS PROCESS:

CONVERGENCE TO EQUILIBRIUM

AMIR DEMBO⋆, MILTON JARA†, AND STEFANO OLLA‡

Abstract. The semi-infinite Atlas process is a one-dimensional system of
Brownian particles, where only the leftmost particle gets a unit drift to the
right. Its particle spacing process has infinitely many stationary measures,
with one distinguished translation invariant reversible measure. We show that
the latter is attractive for a large class of initial configurations of slowly growing
(or bounded) particle densities. Key to our proof is a new estimate on the rate
of convergence to equilibrium for the particle spacing in a triangular array of
finite, large size systems.

1. Introduction

Systems of competing Brownian particles interacting through their rank depen-
dent drift and diffusion coefficient vectors have received much recent attention
(for example, in stochastic portfolio theory, where they appear under the name
first-order market model, see [9] and the references therein). For a fixed number
of particles m ∈ N, such system corresponds to the unique weak solution of

dYi(t) =
∑

j≥1

γj 1{Yi(t)=Y(j)(t)} dt+
∑

j≥1

σj 1{Yi(t)=Y(j)(t)}dWi(t) , (1.1)

for i = 1, . . . , m, where γ = (γ1, . . . , γm) and σ = (σ1, . . . , σm) are some con-
stant drift and diffusion coefficient vectors and (Wi(t), t ≥ 0), i ≥ 1 are inde-
pendent standard Brownian motions. Here Y(1)(t) ≤ Y(2)(t) ≤ . . . ≤ Y(m)(t)
are the ranked particles at time t and the R

m−1
+ -valued spacings process Z(t) =

(Z1(t), Z2(t), . . . , Zm−1(t)), t ≥ 0, is given by

Zk(t) := Xk+1(t)−Xk(t) := Y(k+1)(t)− Y(k)(t) , k ≥ 1 . (1.2)
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The variables Xk(·) and Zk(·) correspond to the k-th ranked particle and k-
th spacing, respectively, with X1 = mini Yi denoting the leftmost particle. In
particular, existence and uniqueness of such weak solution to (1.1) has been shown
already in [3]. The corresponding ranked process X(t) solves the system

dXj(t) = γjdt+ σjdBj(t) + dLj−1(t)− dLj(t) , j = 1, . . . , m (1.3)

for independent standard Brownian motions (Bj(t), t ≥ 0), where Lj(t) denotes
the local time at zero of the non-negative semi-martingale Zj(·), during [0, t],
with L0 ≡ 0 and Lm ≡ 0. The spacing process Z(t) is thus a reflected Brownian
motions (rbm) in a polyhedral domain. That is, the solution in R

m−1
+ of

dZj = (γj+1 − γj)dt+ σj+1dBj+1 − σjdBj + 2dLj − dLj+1 − dLj−1 . (1.4)

The general theory of such rbm (due to [11, 25], c.f. the survey [26]), charac-
terizes those (γ, σ) for which the stationary distribution of Z(t) is a product of
exponential random variables. Further utilizing this theory, [18] deduces verious
stochastic comparison results, whereas [13] and the references therein, estimate
the rate tm, m ≫ 1 of convergence in distribution of the spacing process Z(t).
In particular, the Atlas model of m particles, denoted by atlasm(γ) (or atlasm
when γ = 1), corresponds to σj ≡ 1 and γj = γ1j=1. For atlasm(γ) it is shown in
[15, Corollary 10] that the spacing process Z(t) has the unique invariant measure

µ(m,2γ)
⋆ :=

m−1⊗

k=1

Exp
(
2γ(1− k/m)) , m ∈ N , (1.5)

out of which [15, Theorem 1] deduces that

µ(∞,2γ)
⋆ :=

∞⊗

k=1

Exp(2γ), (1.6)

is an invariant measure for the spacings process of atlas∞(γ) (see also [16] for
invariant measures of spacings when the particles follow linear Brownian motions
which are repelled by their nearest neighbors through a potential). By time-space
scaling we hereafter set γ = 1 wlog and recall in passing that to rigorously con-
struct the atlas∞ we call y = (yi)i≥1 ∈ R

∞ rankable if there exists a bijective
mapping to the ranked terms y(1) ≤ y(2) ≤ y(3) ≤ . . . of y. The solution of
(1.1) starting at a fixed y ∈ R

∞ is then well defined if a.s. the resulting pro-
cess Y = (Y1(t), Y2(t), . . .) is rankable at all t (under some measurable ranking
permutation). The atlas∞ process is unique in law and well defined, when

P
(∑

i≥1

e−αYi(0)
2

<∞
)
= 1 , for any α > 0 (1.7)

(see [23, Prop. 3.1]), and [14, Theorem 2] further constructs a strong solution of
(1.1) in this setting (more generally, whenever σ2

0 = 0, j 7→ σ2
j+1 is concave and
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eventually, both σ2
j = 1 and γj = 0). We focus here on atlas∞, where wlog

all atlasm, m ∈ N∪{∞}, evolutions considered, start at a ranked configuration
Y (0) = X(0) having leftmost particle at zero (i.e. X1(0) = 0), and which satisfies
(1.7). For example, this applies when Z(0) is drawn from the product measure

µ(∞,λ,a)
⋆ :=

∞⊗

k=1

Exp(λ+ ka) , λ > 0, a ≥ 0 . (1.8)

The natural conjecture made in [15] that µ
(∞,2)
⋆ is the only invariant measure for

spacing of atlas∞, has been refuted by [21] showing that {µ(∞,2,a)
⋆ , a ≥ 0}, forms

an infinite family of such invariant measures (similar invariant spacings measures
appeared earlier, in the non-interacting discrete model studied by [17, 22]).

As for the behavior of the leading particle of atlas∞, [5] verifies [15, Conj.

3], that starting with spacing at the translation invariant equilibrium law µ
(∞,2)
⋆

results with

t−1/4X1(t)
d→ N (0, c) , when t→ ∞ , some c ∈ (0,∞) . (1.9)

Similar asymptotic fluctuations at equilibrium were established in [8, 10] for a
tagged particle in the doubly-infinite Harris system (the non-interacting model
with γj ≡ 0, σj ≡ 1), for the symmetric exclusion process associated with the srw
on Z (starting with [2]), and for a discrete version of the Atlas model (see [12]).

In contrast, initial spacing of law µ
(∞,2,a)
⋆ for a > 0, induces a negative ballistic

motion of the leading particle. Specifically, [24] and [21] show respectively, that
{X1(t) + at} is then a tight collection, of zero-mean variables.

Little is known about the challenging out of equilibrium behavior of atlas∞.
From [15, Theorem 1] we learn that at critical spacing density λ = 2 the unit drift
to the leftmost particle compensates the spreading of bulk particles to the left,
thereby keeping the gaps at equilibrium. Such interplay between spacing density

and drift is re-affirmed by [4], which shows that initial spacing law µ
(∞,λ)
⋆ induces

the a.s. convergence t−1/2X1(t) → κ with sign(κ) = sign(2 − λ). From [19, The-
orem 4.7] it follows that if atlas∞ starts at spacing law ν0 which stochastically

dominates µ
(∞,2)
⋆ (e.g. when ν0 = µ

(∞,λ)
⋆ any λ ≤ 2), then the finite dimensional

distributions (fdd) of Z(t) converge to those of µ
(∞,2)
⋆ as t → ∞. However,

nothing else is known about the domain of attraction of µ
(∞,2)
⋆ (or about those of

{µ(∞,2,a)
⋆ , a > 0}). For example, what happens when ν0 = µ

(∞,λ)
⋆ with λ > 2?

Our main result, stated next, answers this question by drastically increasing

the established domain of attraction of µ
(∞,2)
⋆ spacing for atlas∞.



4 A. DEMBO, M. JARA, AND S. OLLA

Theorem 1.1. Suppose the atlas∞ process starts at Z(0) = (zj)j≥1 such that
for eventually non-decreasing θ(m) with infm{θ(m−1)/θ(m)} > 0 and β ∈ [1, 2),

lim sup
m→∞

1

mβθ(m)

m∑

j=1

zj <∞ , (1.10)

lim sup
m→∞

1

mβθ(m)

m∑

j=1

(log zj)− <∞ , (1.11)

lim inf
m→∞

1

mβ′θ(m)

m∑

j=1

zj = ∞ , β ′ := β2/(1 + β), (1.12)

further assuming in case β = 1 that θ(m) ≥ logm. Then, the fdd of Z(t) for

the atlas∞ converge as t→ ∞ to those of µ
(∞,2)
⋆ .

For example, if λj ∈ [c−1, c] and λjzj are i.i.d. of finite mean such that
E(log z1)− < ∞, then taking θ(m) ≡ 1 and β > 1 small enough for β ′ < 1,
it follows by the slln that (1.10)–(1.12) hold a.s. Namely, when ν0 is any such

product measure, Z(t) converges in fdd to µ
(∞,2)
⋆ . For independent zj ∼ Exp(λj)

this applies even when λj ↑ ∞ slow enough so
∑m

j=1 λ
−1
j /(

√
m logm) diverges

(and hence (1.12) holds a.s.), or when λj ↓ 0 slow enough to have m−β
∑m

j=1 λ
−1
j

bounded (for some β < 2, so (1.10) holds).

Remark 1.2. As matter of comparison, note that if zj decays to zero slower than
j−1/2 log j, then {zj} satisfies the hypothesis of Theorem 1.1 (for β = 1), while
for measures of the form (1.8), generically zj decays like j−1.

The key to proving Theorem 1.1 is a novel control of the atlasm particle
spacing distance from equilibrium at time t, in terms of the relative entropy
distance of its initial law from equilibrium.

Proposition 1.3. Start the atlasm system at initial spacing law ν
(m)
0 of finite

entropy H
(
ν
(m)
0 |µ(m,2)

⋆

)
and finite second moment

∫
‖z‖2dν(m)

0 . Then, for any

t > 0 the spacing law ν
(m)
t is absolutely continuous with respect to the marginal

of µ
(∞,2)
⋆ and the Radon-Nikodym derivative gt satisfies

∫ {m−1∑

j=1

[
(∂zj−1

− ∂zj )
√
gt
]2}m−1∏

j=1

2e−2zjdzj ≤
1

2t
H(ν

(m)
0 |µ(m,2)

⋆ ) +
1

m
. (1.13)

Combining Proposition 1.3 with Lyapunov functions for finite atlas systems
(constructed for example in [7, 13]), yields the following information on conver-
gence of the atlasm particle spacing fdd at times tm → ∞ fast enough.
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Corollary 1.4. Starting the atlasm system at initial spacing law ν
(m)
0 of finite

second moment, for any fixed k ≥ 1, the joint density of (Z1(tm), . . . , Zk(tm))

with respect to the corresponding marginal of µ
(∞,2)
⋆ , converges to one, provided

tm is large enough so both t−1
m H

(
ν
(m)
0 |µ(m,2)

⋆

)
→ 0, and t−1

m

∑k
j=1 Zj(0) → 0 (in

ν
(m)
0 -probability), as m→ ∞.

Remark 1.5. For concreteness we focused on the atlas∞ process, but a similar
proof applies for systems of competing Brownian particles where σ2

j ≡ 1, γ1 > 0
and j 7→ γj is non-increasing and eventually zero. We further expect this to extend
to some of the two-sided infinite systems considered in [20, Sec. 3], and that such

an approach may help in proving the attractivity of µ
(∞,2,a)
⋆ in the atlas∞ system.

In Section 2 we prove Proposition 1.3 and Corollary 1.4, whereas in Section 3,
we deduce Theorem 1.1 from Corollary 1.4 by a suitable coupling of the atlasm
system and the left-most k particles of atlas∞ up to time tm.

2. Entropy control for atlasm: Proposition 1.3 and Corollary 1.4

Recall (1.3), which for atlasm is

Xj(t) = Xj(0) + 1{j=1}t +Bj(t) + Lj−1(t)− Lj(t) j = 1, . . . , m , (2.1)

where Lj(t) denotes the local time on {s ∈ [0, t] : Zj(s) = 0} for 1 ≤ j < m, with
L0(t) = Lm(t) ≡ 0. Let Xm := {x : x1 ≤ x2 . . . ≤ xm} ⊂ R

m. The generator of
the Xm-valued Markov process X(t) is then

(L̂mg)(x) :=
1

2

m∑

j=1

∂2xj
+ ∂x1 (2.2)

defined on the core of smooth bounded functions g(·) on Xm satisfying the Neu-
mann boundary conditions

(
∂xj

− ∂xj+1

)
g
∣∣
xj=xj+1

= 0, j = 1, . . . , m− 1 .

Specializing (1.4) the corresponding Rm−1
+ -valued spacings Zj(t) = Xj+1(t)−Xj(t)

are then such that for 1 ≤ j ≤ m− 1,

Zj(t) = Zj(0)− 1{j=1}t+Bj+1(t)− Bj(t) + 2Lj(t)− Lj+1(j)− Lj−1(t) . (2.3)

Let ∆(m) denote the discrete Laplacian with Dirichlet boundary conditions at 0
and m. Hence, using hereafter the convention of ∂z0 = ∂zm ≡ 0,

∆(m)∂zj := ∂zj−1
− 2∂zj + ∂zj+1

, j = 1, . . . , m− 1 . (2.4)

Following this convention, in combination with the rule

∂xj
= ∂zj−1

− ∂zj , j = 1, . . . , m ,



6 A. DEMBO, M. JARA, AND S. OLLA

the generator of the R
m−1
+ -valued Markov process Z(t) is thus

Lm =
1

2

m∑

j=1

(
∂zj−1

− ∂zj
)2 − ∂z1 = −1

2

m−1∑

j=1

∂zj (∆
(m)∂zj )− ∂z1 (2.5)

defined on the core Cm of local, smooth functions h(z) such that

(∆(m)∂zj )h
∣∣
zj=0

= 0, j = 1, . . . , m− 1 . (2.6)

Recall that µ
(m,2)
⋆ (·) is the (unique) stationary law of Z(t) for atlasm. In fact,

for the density on R
m−1
+ of µ

(m,2)
⋆ (·),

pm(z) :=
m−1∏

j=1

αje
−αjzj , αj := 2(1− j/m) , (2.7)

a direct calculation shows that

1

2

m−1∑

j=1

αj∆
(m)∂zj = −∂z1 . (2.8)

Combining the lhs of (2.5) with (2.8) yields the symmetric form of the generator

Lm = − 1

2pm

m−1∑

j=1

∂zj
(
pm∆

(m)∂zj
)

(2.9)

Using (2.9) and integration by parts, we have for bounded, smooth g, h satisfying
(2.6)
∫
g(−Lmh)dµ

(m,2)
⋆ =

∫
h(−Lmg)dµ

(m,2)
⋆

=
1

2

∫ { m∑

j=1

[(∂zj−1
− ∂zj )g][(∂zj−1

− ∂zj )h]
}
dµ(m,2)

⋆ := Dm(g, h) .

(2.10)

We see that dµ
(m,2)
⋆ = pm(z)dz is reversible for this dynamic, and the correspond-

ing Dirichlet form Dm(h) := Dm(h, h), extends from Cm, now only as

Dm(h) =
1

2

∫ { m∑

j=1

[(
∂zj−1

− ∂zj
)
h
]2 }

pm(z)dz , (2.11)

to the Sobolev spaceW 1,2(µ
(2,m)
⋆ ) of functions on R

m−1
+ with L2(µ

(2,m)
⋆ )-derivatives.
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We also consider the Markov dynamics on R
m−1
+ for the spacing process of

an atlasm whose m-th particle Xm(s) = Xm(0) is frozen. Under the same
convention as before, the generator for this, right-anchored dynamics, is

L̃m =
1

2

m−1∑

j=1

(
∂zj−1

− ∂zj
)2 − ∂z1 (2.12)

for the core C̃m of local, smooth functions h(z) such that

(∆̃(m)∂zj )h
∣∣
zj=0

= 0, j = 1, . . . , m− 1 , (2.13)

where ∆̃(m) is the discrete Laplacian with mixed boundary conditions. Specifi-
cally,

∆̃(m)∂zj = ∂zj−1
− 2∂zj + ∂zj+1

, 1 ≤ j ≤ m− 2 , ∆̃(m)∂zm−1 = ∂zm−2 − ∂zm−1

(2.14)

For the remainder of this section we identify µ
(∞,2)
⋆ with its marginal on z =

(z1, . . . , zm−1), whose density on R
m−1
+ is

qm(z) :=
m−1∏

j=1

2e−2zj . (2.15)

Analogously to (2.9) we find that

L̃m = − 1

2qm

m−1∑

j=1

∂zj
(
qm∆̃

(m)∂zj
)
. (2.16)

This (marginal of) µ
(∞,2)
⋆ is thus reversible (stationary and ergodic) for the right-

anchored dynamics, and similarly to (2.10)–(2.11) for bounded, smooth h satis-
fying (2.13), the associated Dirichlet form is given (on W 1,2(qmdz)) by

D̃m(h) =
1

2

∫ {m−1∑

j=1

[
(∂zj−1

− ∂zj )h
]2}

qm(z)dz . (2.17)

Indeed, this reversible measure corresponds to starting the right-anchored dy-
namics with X1(0) = 0 and a Gamma(2, m− 1) law for the frozen Xm, with the
remainder m−2 initial particle positions chosen independently and uniformly on
[0, Xm].

Proof of Proposition 1.3. Fixing m ≥ 2, we start the finite particle dynamics of

generator L̃m of (2.9), with initial law ν
(m)
0 on R

m−1
+ whose density

f0 :=
dν

(m)
0

dµ
(m,2)
⋆

, (2.18)
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has the finite entropy

H(ν
(m)
0 |µ(m,2)

⋆ ) =

∫
[f0 log f0](z)pm(z)dz =: Hm(f0) . (2.19)

Recall [1] that a Wasserstein solution of the Fokker-Planck equation

∂tft = Lmft , (2.20)

starting at f0, is a continuous (in the topology of weak convergence) collection

of probability measures t 7→ ftµ
(2,m)
⋆ such that for any s, the derivatives (∂zj−1

−
∂zj )

√
fs exist a.e. in R

m−1
+ , with
∫ t

0

Dm(
√
fs)ds <∞ ∀t <∞ (2.21)

and moreover for any fixed compactly supported smooth function ζ(t, z) on R+×
R

m−1
+ ,

∫ ∞

0

{
Dm(ft, ζ(t, ·))−

∫
∂tζ(t, z)ft(z)pm(z)dz

}
dt = 0 . (2.22)

By [1, Theorem 6.6], the law ν
(m)
t that corresponds to a starting measure ν

(m)
0 of

finite entropy and finite second moment, is a Wasserstein solution ν
(m)
t = ftµ

(m,2)
⋆

of (2.20).1 From [1, Theorem 6.6] we further have that then
√
ft ∈ W 1,2(µ

(2,m)
⋆ )

and

Dm

(√
ft

)
<∞ ∀t > 0 , (2.23)

with t 7→ Dm

(√
ft
)
non-increasing and

Hm(ft)−Hm(f0) = −4

∫ t

0

Dm

(√
fs

)
ds . (2.24)

Consequently, for any t ≥ 0,

4tDm

(√
ft

)
≤ 4

∫ t

0

Dm

(√
fs

)
ds = Hm(f0)−Hm(ft) ≤ Hm(f0) . (2.25)

Next, comparing (2.7) with (2.15), notice that qm = pmhm for the strictly positive

hm(z) :=

m−1∏

j=1

2

αj
e−

2j
m

zj ,

such that

(∂zj−1
− ∂zj )

√
hm =

( 1
m

− 1{j=m}

)√
hm . (2.26)

1Though we could not find a reference for it, we expect ft to be also a strong solution of
(2.20) which satisfies the boundary conditions of (2.6).
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Hence, for ft = hmgt, using that
∑m

j=1

(
∂zj−1

− ∂zj
)
= 0 and

∫
gtqmdz = 1, we

arrive at

2Dm(
√
ft) =

∫ { m∑

j=1

[ (
∂zj−1

− ∂zj
)√

gt +
( 1
m

− 1{j=m}

)√
gt

]2}
qm(z)dz

=2D̃m(
√
gt)−

1

m
+

∫ [√
gt − ∂zm−1

√
gt
]2
qm(z)dz . (2.27)

Combining (2.25) and (2.27) we see that for any t > 0,

2D̃m(
√
gt) ≤

1

2t
Hm(f0) +

1

m
, (2.28)

where gt is precisely the density of ν
(m)
t with respect to the marginal of µ

(∞,2)
⋆ . In

view of the definitions (2.17) and (2.19), the preceding bound matches our claim
(1.13). �

With D̃k+1(
√
g) invariant to mass-shifts g(z) 7→ exp(2

∑k
j=1 θj)g(z−θ), having

D̃k+1(
√
gm) → 0 does not imply (uniform) tightness of the collection of proba-

bility measures {gmqk+1dz}m∈N. Instead, when proving Corollary 1.4, we rely for
tightness on the following direct consequence of [13, Sec. 3].

Lemma 2.1. For atlask+1, some c1 = c1(k) finite and D(t) :=
∑k

j=1Zj(t),

lim
x→∞

sup
t≥c1D(0)

{P(D(t) ≥ x) } = 0 , (2.29)

where the supremum is also over all initial configurations.

Proof. Building on the construction in [7, Sec. 3] of Lyapunov functions for rbm
in polyhedral domains, while proving [13, Thm. 3] the authors show that for the
atlask+1 (and more generally, for the spacing associated with (1.1), whenever
j 7→ γj is non-increasing and j 7→ σ2

j forms an arithmetic progression), one has

E[V (Z(t))] ≤ e−t[V (Z(0))] + c2 , ∀t ≥ 0 , (2.30)

where V (z) = e〈v,z〉 for some strictly positive v and c2 < ∞ (see [13, inequality
(51)]). Noting that 〈v,Z(t)〉/D(t) ∈ [c−1

1 , c1] (with c1 := maxj{vj ∨ v−1
j }), we get

upon combining (2.30) with Markov’s inequality that for any initial configuration
Z(0),

P(D(t) ≥ x) ≤ P(〈v,Z(t)〉 ≥ x/c1) ≤ e−x/c1 [e−tec1D(0) + c2] . (2.31)

For t ≥ c1D(0) the rhs of (2.31) is at most e−x/c1(1 + c2), yielding (2.29). �
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Proof of Corollary 1.4. Fix probability densities h0 6= h1 wrt the law qmdz on
R

m−1
+ , such that

√
h0,

√
h1 ∈ W 1,2(qmdz). Both properties then apply for hλ :=

λh1 + (1− λ)h0, any λ ∈ (0, 1), and it is not hard to verify that

d2D̃m(
√
hλ)

d2λ
=

∫ {m−1∑

j=1

[√
α0(∂zj−1

−∂zj )
√
h1−

√
α1(∂zj−1

−∂zj )
√
h0
]2}

α0α1qmdz ,

where the non-negative α0 := h0/hλ, α1 := h1/hλ are uniformly bounded (per λ).

Consequently, the map h 7→ D̃m(
√
h) is convex on the set of probability densities

h with respect to the product law qmdz on R
m−1
+ .

The marginal density on (z1, . . . , zk) (wrt the k-th marginal of µ
(∞,2)
⋆ ), is given

for ν
(m)
t (dz) = gtqmdz and 1 ≤ k < m, by

gt,k(z1, . . . , zk) :=

∫
gt(z)

m−1∏

j=k+1

2e−2zjdzj . (2.32)

Thus, by the convexity of D̃m(
√·) and the formula (2.17), we have that

D̃m(
√
gt) =

∫
D̃m(

√
gt)

m−1∏

j=k+1

2e−2zjdzj ≥ D̃m(
√
gt,k) ≥ D̃k+1(

√
gt,k) . (2.33)

In particular, fixing k ≥ 1 and choosing tm → ∞ as in the statement of the
corollary, we deduce from (1.13) and (2.33) that

lim
m→∞

D̃k+1

(√
gtm,k

)
= 0 . (2.34)

For r ≥ 2 and the Markov generator L̃r of (2.12) consider the functional on the
collection of probability measures ν on R

r−1
+ defined by

Ĩr(ν) := sup
h≫0

{∫
h−1(−L̃rh) dν

}
, (2.35)

where the supremum is taken over all bounded away from zero, twice continu-
ously differentiable functions having the boundary conditions (2.13) at m = r.

With h−1(−L̃rh) then continuous and bounded, clearly Ĩr(·) is l.s.c. in the weak
topology on probability measures in R

r−1
+ . Further, recall from [6, Thm. 5] that

Ĩr(ν) = ∞ unless ν = gqrdz for a probability density g such that
√
g ∈ W 1,2(qrdz),

or equivalently D̃r(
√
g) < ∞, in which case Ĩr(ν) = D̃r(

√
g). Hence, (2.34)

amounts to Ĩk+1(ν
(m,k)
tm ) → 0 for the joint law ν

(m,k)
tm of (Z1(tm), . . . , Zk(tm)) and

any weak limit point of these laws must have a density g wrt qk+1dz such that

D̃k+1(
√
g) = 0. From (2.17) it is thus necessarily that throughout Rk

+,

∂z1
√
g = 0,

(
∂zj−1

− ∂zj
)√

g = 0, j = 2, . . . , k ,
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so as claimed, the only possible limit point is g ≡ 1. By Prohorov’s theorem, it

remains to verify that {ν(m,k)
tm } are uniformly tight, namely, to provide a uniform

in m tail-decay for
∑k

j=1 Zj(tm) in the corresponding atlasm system. To this

end, recall [19, Cor. 3.10(ii)] that under the same driving Brownian motions
{Bj(s)} and initial configuration, the first k spacings increase when all particles
to the right ofXk+1(0) are removed. Consequently, it suffices to provide a uniform
in m tail decay for the diameter D(tm) of an atlask+1 system of initial spacing

distribution ν
(m,k)
0 . Fixing ǫ > 0 we have from (2.29) the existence of finite c1 =

c1(k) and x = x(ǫ) such that for a given initial configuration, if t ≥ c1D(0) then

P(D(t) ≥ x) ≤ ǫ. By our assumption that t−1
m ρm → 0 in ν

(m,k)
0 -probability, for the

(random) initial diameter ρm := Xk+1(0)−X1(0), we have that P(c1ρm ≥ tm) ≤ ǫ
for all m ≥ m0(ǫ), in which case

P(D(tm) ≥ x) ≤ P(D(tm) ≥ x, tm ≥ c1ρm) + P(c1ρm ≥ tm) ≤ 2ǫ .

With ǫ > 0 arbitrarily small and x = x(ǫ) independent of m, we have thus
established the required uniform tightness. �

Remark 2.2. The proof of Proposition 1.3 is easily adapted to deal with the

right-anchored dynamic (of the generator L̃m given in (2.12)). It yields for the

latter dynamic the bound of (1.13), now with (2t)−1H(ν
(m)
0 | ⊗m−1

k=1 Exp(2)) in the
rhs. The proof of Lemma 2.1 also adapts to right-anchored dynamics, hence the
conclusion of Corollary 1.4 applies for sequences of right-anchored dynamics when
the latter expression decays to zero at t = tm → ∞ such that t−1

m

∑k
j=1Zj(0) → 0.

3. Coupling to atlas∞: Proof of Theorem 1.1

Let G(a) = (2π)−1/2
∫∞

a
e−x2/2dx and consider the atlas∞ process Y (t) =

{Yi(t)}, denoting by X(t) = {Xj(t)} the corresponding ranked configuration. We
first provide three elementary bounds for this process that are key to the proof
of Theorem 1.1.

Lemma 3.1. For any initial condition X(0), ℓ ≥ 1 and t,Γ > 0,

P

(
sup
s∈[0,t]

{X1(s)} ≥ Γ
)
≤ 2G

(ℓΓ− t−∑ℓ
j=1Xj(0)√
ℓt

)
. (3.1)

Proof. Starting wlog at Y (0) = X(0), we have that for any s ≥ 0,

X1(s) ≤
1

ℓ

ℓ∑

i=1

Yi(s) ≤
s

ℓ
+

1

ℓ

ℓ∑

j=1

Xj(0) +
1√
ℓ
W̃ (s) ,
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where W̃ (s) := ℓ−1/2
∑ℓ

i=1Wi(s) is a standard Brownian motion. Thus, by the
reflection principle,

P

(
sup
s∈[0,t]

{X1(s)} ≥ Γ
)
≤ P

(
sup
s∈[0,t]

{ 1√
ℓ
W̃ (s)} ≥ Γ− t

ℓ
− 1

ℓ

ℓ∑

j=1

Xj(0)
)

= 2P
(
W̃ (t) ≥

√
ℓΓ− t√

ℓ
− 1√

ℓ

ℓ∑

j=1

Xj(0)
)
,

which upon Brownian scaling yields the stated bound of (3.1). �

Lemma 3.2. For X1(0) ≥ 0, Γ and k ≥ 2 such that Γ(k) := (Γ−Xk(0))/3 > 0,
any ℓ ≥ 1 and t > 0, we have that

P

(
sup
s∈[0,t]

{Xk(s)} ≥ Γ
)
≤ 2G

(ℓΓ(k) − t−∑ℓ
j=1Xj(0)√

ℓt

)
+ 4kG

(Γ(k)

√
t

)
. (3.2)

Proof. Recall [19, Cor. 3.12(ii)] that keeping the same driving Brownian motions
{Bj(s)} and initial configuration X(0), the spacing vector Z(t) is pointwise de-
creasing in γ. Further, by [19, Cor. 3.10(ii)], the first k − 1 spacings increase
when all particles to the right of Xk(0) are removed. Consequently, that value of
Xk(t)−X1(t) at the drift γ = 1 of atlas∞ is bounded by its value for a k-particle
Harris system (of γ = 0), starting at same positions as the original atlas∞ pro-
cess left-most k particles. In the latter case, letting Vk(s) := maxkj=1{Bj(s)}
and the identically distributed V ′

k(s) := maxkj=1{−Bj(s)}, our assumption that
X1(0) ≥ 0 results with

Xk(s)−X1(s) ≤ Xk(0) + Vk(s) + V ′
k(s) .

Thus, with Γ(k) = (Γ − Xk(0))/3 and {B̃(s)} denoting a standard Brownian
motion, we get by the union bound that

P

(
sup
s∈[0,t]

{Xk(s)} ≥ Γ
)
≤ P

(
sup
s∈[0,t]

{X1(s) + Vk(s) + V ′
k(s)} ≥ Γ−Xk(0)

)

≤ P

(
sup
s∈[0,t]

{X1(s)} ≥ Γ(k)
)
+ 2kP

(
sup
s∈[0,t]

{B̃(s)} ≥ Γ(k)
)
.

Consequently, by (3.1) and the reflection principle,

P

(
sup
s∈[0,t]

{Xk(s)} ≥ Γ
)
≤ 2G

(ℓΓ(k) − t−∑ℓ
j=1Xj(0)√

ℓt

)
+ 4kG

(Γ(k)

√
t

)
,

as claimed. �
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Lemma 3.3. For any m ≥ 0, t,Γ > 0 and initial configuration Y (0) = X(0),

P

(
inf

s∈[0,t]
inf
i>m

{Yi(s)} ≤ Γ
)
≤ 2

∑

i>m

G
(Xi(0)− Γ√

t

)
. (3.3)

Proof. Removing the drift in the atlas model decreases all coordinates of Y (s)
and correspondingly increases the lhs of (3.3). Thus,

P

(
inf
i>m

inf
s∈[0,t]

{Yi(s)} ≤ Γ
)
≤

∑

i>m

P

(
inf

s∈[0,t]
{Wi(s)} ≤ Γ−Xi(0)

)

= 2
∑

i>m

P

(
W (1) ≤ Γ−Xi(0)√

t

)
= 2

∑

i>m

(Xi(0)− Γ√
t

)
,

as claimed. �

Proof of Theorem 1.1. Given initial spacing configuration z that satisfies (1.10)
and (1.11), consider the following two sequences of initial distributions for the
finite increment vectors Zm(0) := (Z1(0), . . . , Zm−1(0)) of the atlasm process,

m ≥ 2. Starting at the measure ν
(m,−)
0 (·) = µ

(m,2)
⋆ (·|Zm(0) ≤ zm) for the given

zm = (z1, . . . , zm−1) yields for same driving Brownian motions an atlasm spacing
process Z−

m(s) which is dominated at all times s ≥ 0 by the corresponding process

that started at spacing zm, whereas ν
(m,+)
0 (·) = µ

(m,2)
⋆ (·|Zm(0) ≥ zm) similarly

yields a spacing process Z+
m(s) that dominates the spacing for the original process

which started at zm. The corresponding relative entropies are then

H+
m := H(ν

(m,+)
0 |µ(m,2)

⋆ ) = − logµ(m,2)
⋆ ({

m−1∏

j=1

[zj ,∞)}) =
m−1∑

j=1

αjzj ≤ 2

m−1∑

j=1

zj

(3.4)

H−
m := H(ν

(m,−)
0 |µ(m,2)

⋆ ) = − logµ(m,2)
⋆ ({

m−1∏

j=1

[0, zj]}) =
m−1∑

j=1

− log(1− e−αjzj )

≤
m−1∑

j=1

[
1 + (logαjzj)−

]
≤ 2m logm+

m−1∑

j=1

(log zj)− , (3.5)

since − log(1 − e−u) ≤ 1 + (log u)− for all u ≥ 0, while αj ≥ 2/m (see (2.7)),
hence log(e/αj) ≤ 2 logm. By (1.10) and (3.4),

lim sup
m→∞

H(ν
(m,+)
0 |µ(m,2)

⋆ )

mβθ(m)
<∞ .
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With θ(m) ≥ logm in case β = 1, we similarly deduce from (1.11) and (3.5) that

lim sup
m→∞

H(ν
(m,−)
0 |µ(m,2)

⋆ )

mβθ(m)
<∞ .

Fixing k ≥ 2, the uniform over m ≥ 2k first moment bound,

ν
(m,−)
0

[ k∑

j=1

Zj(0)
]
≤ ν

(m,+)
0

[ k∑

j=1

Zj(0)
]
=

k∑

j=1

(zj + α−1
j ) ≤

k∑

j=1

(zj + 1) ,

yields by Markov’s inequality that t−1
m

∑k
j=1 Zj(0) → 0 in ν

(m,±)
0 -probability, for

any tm → ∞. Further, the second moment of ν
(m,−)
0 is finite (being at most ‖z‖2),

as is the second moment of ν
(m,+)
0 (being at most the product of eH

+
m and the finite

second moment of µ
(m,2)
⋆ ). For ψ(m) ↑ ∞, with infm{ψ(m− 1)/ψ(m)} > 0, let

tm := 2mβθ(m)ψ(m) . (3.6)

Setting mn = mn(s) := inf{m ≥ 2 : tm ≥ sn}, our constraints on θ(·) and ψ(·)
yields for tm of (3.6) and any sn ↑ ∞,

inf
n≥1

{ sn
tmn

}
≥ inf

m≥2

{tm−1

tm

}
> 0 .

Thus, by the preceding, upon applying Corollary 1.4 to the atlasm model ini-

tialized at ν
(m,±)
0 we have that the joint law of the first k coordinates of Z±

mn
(sn),

converges as n → ∞ to the corresponding marginal of µ
(∞,2)
⋆ . The same limit in

distribution then applies for the spacing (Z1(sn), . . . , Zk(sn)) of atlasmn
started

at zmn
(which is sandwiched between the corresponding marginals of Z−

mn
(sn)

and Z+
mn

(sn)). Assuming further that supm{ψ(m)/m} ≤ 1, we claim that for
X1(0) = 0 and the given initial spacing Z(0) = z, the rhs of (3.2) is summable
over m, at t = tm of (3.6) and

Γm := 36mβ′

θ(m)ψ(m)β/(1+β) , ℓm := [mβ/(1+β)ψ(m)1/(1+β ] . (3.7)

Indeed, since θ(·) is eventually non-decreasing, we have then that

1

12
Γmℓm ≥ tm ≥ ℓ1+β

m θ(ℓm) , ∀m ≥ m⋆ (3.8)

Further, with k fixed and Γm ↑ ∞, necessarily Xk(0) ≤ Γm/8 for all m ≥ m⋆

large enough, in which case from (3.8), the rhs of (3.2) is bounded above for
such m, tm, Γm and ℓm, by

2G
(√

ℓβmθ(ℓm)
)
+ 4kG

(
3

√
ℓβ−1
m θ(ℓm)

)
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and recalling that θ(ℓm) ≥ 1
2
logm when β = 1, it is easy to verify that the

preceding bound is summable in m. Next, utilizing (1.12), we can further make
sure that ψ(m) ↑ ∞ slowly enough so that for any fixed κ <∞,

Xm(0) ≥ (κ+ 1)Γm , ∀m ≥ mκ (3.9)

so that for m ≥ mκ the rhs of (3.3) is bounded above, at t = tm and Γ = Γm, by

2

∞∑

j=1

G
(
κΓm+j/

√
tm

)
. (3.10)

Note that β ′ ≥ 1/2 and δ := β/(1 + β)− 1/2 ≥ 0 is strictly positive when β > 1.
Thus, β ′−β/2 = δβ ≥ 0 and setting κ′ := (18κ)2, we deduce from (3.6) and (3.7)
that

κ
Γm√
tm

Γm+j

Γm

≥ mβδθ(m)1/2
√
2κ′(1 + j/m) .

Increasing mκ if needed, we have that m2βδθ(m) ≥ logm for all m ≥ mκ, in which
case for bm := m−1 logm, the expression (3.10) is further bounded by

2

∞∑

j=1

G
(√

2κ′(1 + j/m) logm
)
≤ 2m−κ′

∞∑

j=1

e−κ′jbm ≤ 2

κ′bm
m−κ′

(recall the elementary bound G(x) ≤ e−x2/2 for x ≥ 0). Thus, for any κ′ > 2,
such choices of tm and Γm guarantee that the rhs of (3.3) is also summable over
m. Combining Lemma 3.2, Lemma 3.3 and the Borel-Cantelli lemma we deduce
that almost surely, the events

Am :=
{

sup
s∈[0,tm]

{Xk(s)} < Γm ≤ inf
s∈[0,tm],i>m

{Yi(s)}
}
,

occur for all m large enough. Note that Am implies that throughout [0, tm] the k
left-most particles of the atlas∞ process are from among the initially left-mostm
particles. From this it follows that under Amn

the spacing (Z1(sn), . . . , Zk−1(sn))
for the atlasmn

coincide with those for the atlas∞, when using the same initial
configuration z and driving Brownian motions {Wi(s)}. Having proved already
the convergence in distribution when n → ∞, of the first k − 1 spacing for
atlasmn

at time sn and that the events Am occur for all m large enough, we

conclude that the fdd of spacing for atlas∞ converge to those of µ
(∞,2)
⋆ , along

any (non-random) sequence sn ↑ ∞, as claimed. �
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