An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions - Archive ouverte HAL
Article Dans Une Revue Inverse Problems Année : 2018

An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions

Résumé

We consider the weighted Radon transforms $R_W$ along hyperplanes in $R^d , \, d ≥ 3$, with strictly positive weights $W = W (x, \theta), \, x \in R^d, \, \theta \in S^{d−1}$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions. In addition, the related weight $W$ is infinitely smooth almost everywhere and is bounded. Our construction is based on the famous example of non-uniqueness of J. Boman (1993) for the weighted Radon transforms in $R^2$ and on a recent result of F. Goncharov and R. Novikov (2016).
Fichier principal
Vignette du fichier
simple_new_cexmp3D.pdf (95.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01583755 , version 1 (07-09-2017)
hal-01583755 , version 2 (14-09-2017)

Identifiants

Citer

F G Goncharov, Roman Novikov. An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions. Inverse Problems, 2018, 34 (5), pp.054001. ⟨10.1088/1361-6420/aab24d⟩. ⟨hal-01583755v2⟩
276 Consultations
122 Téléchargements

Altmetric

Partager

More