An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions

Résumé

We consider the weighted Radon transforms $R_W$ along hyperplanes in $R^d , \, d ≥ 3$, with strictly positive weights $W = W (x, \theta), \, x \in R^d, \, \theta \in S^{d−1}$. We construct an example of such a transform with non-trivial kernel in the space of infinitely smooth compactly supported functions. In addition, the related weight $W$ is infinitely smooth almost everywhere and is bounded. Our construction is based on the famous example of non-uniqueness of J. Boman (1993) for the weighted Radon transforms in $R^2$ and on a recent result of F. Goncharov and R. Novikov (2016).
Fichier principal
Vignette du fichier
simple_new_cexmp3D.pdf (94.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01583755 , version 1 (07-09-2017)
hal-01583755 , version 2 (14-09-2017)

Identifiants

Citer

F G Goncharov, R G Novikov. An example of non-uniqueness for the weighted Radon transforms along hyperplanes in multidimensions. 2017. ⟨hal-01583755v1⟩
278 Consultations
122 Téléchargements

Altmetric

Partager

More