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Introduction

We consider the weighted Radon transforms RW , defined by the formulas:

RW f (s, θ) = xθ=s W (x, θ)f (x) dx, (s, θ) ∈ R × S d-1 , x ∈ R d , d ≥ 2, (1.1)
where W = W (x, θ) is the weight, f = f (x) is a test function on R d . We assume that W is real valued, bounded and strictly positive, i.e.:

W = W ≥ c > 0, W ∈ L ∞ (R d × S d-1 ), (1.2) 
where W denotes the complex conjugate of W , c is a constant. If W ≡ 1, then RW is reduced to the classical Radon transform R along hyperplanes in R d . This transform is invertible by the classical Radon inversion formulas; see [START_REF] Radon | Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten[END_REF].

If W is strictly positive, W ∈ C ∞ (R d × S d-1 ) and f ∈ C ∞ 0 (R d ), then in [START_REF] Beylkin | The inversion problem and applications of the generalized Radon transform[END_REF] the inversion of RW is reduced to solving a Fredholm type linear integral equation. Besides, in [START_REF] Boman | Support theorems for real-analytic Radon transforms[END_REF] it was proved that RW is injective (for example, in L 2 0 (R d )) if W is real-analytic and strictly positive. In addition, an example of RW in R 2 with infinitely smooth strictly positive W and with non-trivial kernel KerRW in C ∞ 0 (R 2 ) was constructed in [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF]. Here C ∞ 0 , L 2 0 denote the spaces of functions from C ∞ , L 2 with compact support, respectively.

In connection with the most recent progress in inversion methods for weighted Radon transforms RW , see [START_REF] Goncharov | Iterative inversion of weighted Radon transforms in 3D[END_REF].

We recall also that inversion methods for RW in R 3 admit applications in the framework of emission tomographies (see [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF]).

In the present work we construct an example of RW in R d , d ≥ 3, with non-trivial kernel KerRW in C ∞ 0 (R d ). The related W satisfies (1.2). In addition, our weight W is infinitely smooth almost everywhere on R d × S d-1 .

In our construction we proceed from results of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF] and [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF].

In Section 2, in particular, we recall the result of [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF].

In Section 3 we recall the result of [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF].

In Section 4 we obtain the main result of the present work.

2 Relations between the Radon and the ray transforms

We consider also the weighted ray transforms Pw in R d , defined by the formulas:

Pwf (x, θ) = R w(x + tθ, θ)f (x + tθ) dt, (x, θ) ∈ T S d-1 , (2.1) T S d-1 = {(x, θ) ∈ R d × S d-1 : xθ = 0}, d ≥ 2, (2.2) where w = w(x, θ) is the weight, f = f (x) is a test-function on R d .
We assume that w is real valued, bounded and strictly positive, i.e.:

w = w ≥ c > 0, w ∈ L ∞ (R d × S d-1
).

(2.3)

We recall that T S d-1 can be interpreted as the set of all oriented rays in R d . In particular, if

γ = (x, θ) ∈ T S d-1 , then γ = {y ∈ R d : y = x + tθ, t ∈ R}, (2.4) 
where θ gives the orientation of γ.

We recall that for d = 2, transforms Pw and RW are equivalent up to the following change of variables:

RW f (s, θ) = Pwf (sθ, θ ⊥ ), s ∈ R, θ ∈ S 1 , (2.5) W (x, θ) = w(x, θ ⊥ ), x ∈ R 2 , θ ∈ S 1 , θ ⊥ = (-sin φ, cos φ) for θ = (cos φ, sin φ), φ ∈ [0, 2π), (2.6)
where f is a test-function on R 2 . For d = 3, the transforms RW and Pw are related by the following formulas (see [START_REF] Goncharov | An analog of Chang inversion formula for weighted Radon transforms in multidimensions[END_REF]):

RW f (s, θ) = R Pwf (sθ + τ [θ, α(θ)], α(θ)) dτ, (s, θ) ∈ R × S 2 , (2.7) W (x, θ) = w(x, α(θ)), x ∈ R 3 , θ ∈ S 2 , (2.8) α(θ) =    [η, θ] |[η, θ]| , if θ = ±η,
any vector e ∈ S 2 , such that e ⊥ θ, if θ = ±η,

(2.9)

where η is some fixed vector from S 2 , [•, •] denotes the standard vector product in R 3 , ⊥ denotes the orthogonality of vectors. Actually, formula (2.7) gives an expression for RW f on R × S 2 in terms of Pwf restricted to the rays γ = γ(x, θ), such that θ ⊥ η, where W and w are related by (2.8).

Below we present analogs of (2.7)-(2.8) for d > 3. Let

Σ(s, θ) = {x ∈ R d : xθ = s}, s ∈ R, θ ∈ S d-1 , (2.10) Ξ(v1, . . . , v k ) = Span{v1, . . . , v k }, vi ∈ R d , i = 1, k, 1 ≤ k ≤ d, (2.11) Θ(v1, v2) = {θ ∈ S d-1 : θ ⊥ v1, θ ⊥ v2} ≃ S d-3 , v1, v2 ∈ R d , v1 ⊥ v2, (2.12) 
(e1, e2, e3, . . . , e d ) -be some fixed orthonormal, positively oriented basis in R d .

(2.13) If (e1, . . . , e d ) is not specified otherwise, it is assumed that (e1, . . . , e d ) is the standard basis in R d . For d ≥ 3, the transforms RW and Pw are related by the following formulas:

RW f (s, θ) = R d-2 Pwf (sθ + d-2 i=1 τiβi(θ), α(θ)) dτ1 . . . dτ d-2 , (s, θ) ∈ R × S d-1 , (2.14) W (x, θ) = w(x, α(θ)), x ∈ R d , θ ∈ S d-1 , (2.15)
where α(θ), βi(θ), i = 1, d -2, are defined as follows:

α(θ) =        direction of one-dimensional intersection Σ(s, θ) ∩ Ξ(e1, e2)
, where the orientation of α(θ) is chosen such that det(α(θ), θ, e3, . . . , e d ) > 0, if θ ∈ Θ(e1, e2),

any vector e ∈ S d-1 ∩ Ξ(e1, e2), if θ ∈ Θ(e1, e2), (2.16) 
(α(θ), β1(θ), . . . , β d-2 (θ)) is an orthonormal basis on Σ(s, θ), (2.17) and Σ(s, θ), Θ(e1, e2) are given by (2.10), (2.12), respectively. Here, due to the condition θ ∈ Θ(e1, e2):

dim(Σ(s, θ) ∩ Ξ(e1, e2)) = 1.
(2.18) Formula (2.18) is proved in Section 5. Note that formulas (2.14)-(2.18) are also valid for d = 3. In this case these formulas are reduced to (2.7)-(2.9), where e3 = -η.

Note that, formula (2.14) gives an expression for RW f on R × S d-1 in terms of Pwf restricted to the rays γ = (x, α), such that α ∈ S d-1 ∩ Ξ(e1, e2). Remark 1. In (2.16) one can also write:

α(θ) = (-1) d-1 ⋆ (θ ∧ e3 ∧ • • • ∧ e d ), if θ ∈ Θ(e1, e2), (2.19)
where ⋆-denotes the Hodge star, ∧ -is the exterior product in Λ * R d (exterior algebra on R d ); see, for example, Chapters 2.1.c, 4.1.c of [START_REF] Morita | Geometry of differential forms[END_REF].

Note that the value of the integral in the right hand-side of (2.14) does not depend on the particular choice of (β1(θ), . . . , β d-2 (θ)) of (2.17).

Note also that, due to (2.8), (2.9), (2.15), (2.16), the weight W is defined everywhere on R d ×S d-1 , d ≥ 3. In addition, this W has the same smoothness as w in x on R d and in θ on S d-1 \Θ(e1, e2), where Θ(e1, e2) is defined in (2.12) and has zero Lebesgue measure on S d-1 .

Boman's example

For d = 2, in [START_REF] Boman | An example of non-uniqueness for a generalized Radon transform[END_REF] there were constructed a weight W and a function f , such that:

RW f ≡ 0 on R × S 1 , (3.1) 1/2 ≤ W ≤ 1, W ∈ C ∞ (R 2 × S 1 ), (3.2) f ∈ C ∞ 0 (R 2 ), f ≡ 0, supp f ⊂ B 2 = {x ∈ R 2 : |x| ≤ 1}. (3.3)
In addition, as a corollary of (2.5), (2.6), (3.1)-(3.3), we have that

Pw 0 f0 ≡ 0 on T S 1 , (3.4) 1/2 ≤ w0 ≤ 1, w0 ∈ C ∞ (R 2 × S 1 ), (3.5) f0 ∈ C ∞ 0 (R 2 ), f0 ≡ 0, supp f ⊂ B 2 = {x ∈ R 2 : |x| ≤ 1}, (3.6) 
where

w0(x, θ) = W (x, -θ ⊥ ), x ∈ R 2 , θ ∈ S 1 , (3.7) f0 ≡ f. (3.8)

Main results

Let

B d = {x ∈ R d : |x| < 1}, (4.1) 
B d = {x ∈ R d : |x| ≤ 1}, (4.2) 
(e1, . . . , e d ) -be the canonical basis in R d . (

Theorem 1. There are W and f , such that

RW f ≡ 0 on R × S d-1 , (4.4) W satisfies (1.2), f ∈ C ∞ 0 (R d ), f ≡ 0, (4.5)
where RW is defined by (1.1), d ≥ 3. In addition,

1/2 ≤ W ≤ 1, W is C ∞ -smooth on R d × (S d-1 \Θ(e1, e2)), (4.6) 
where Θ(e1, e2) is defined by (2.12). Moreover, weight W and function f are given by formulas (2.15), (4.8)-(4.10) in terms of the J. Boman's weight w0 and function f0 of (3.7), (3.8).

Remark 2. According to (2.15), (2.16), W (x, θ) for θ ∈ Θ(e1, e2) can be specified as follows: 5 Proof of formula (2.18)

W (x, θ) = W (
Note that dim(Ξ(e1, e2)) + dim(Σ(s, θ)) = d + 1 > d, (5.1) 
which implies that the intersection Σ(s, θ) ∩ Ξ(e1, e2) is one of the following:

1. The intersection is the one dimensional line l = l(s, θ):

l(s, θ) = {x ∈ R d : x = x0(s, θ) + α(θ)t, t ∈ R}, α(θ) ∈ S 2 , (5.2)
where x0(s, θ) is an arbitrary point of Σ(s, θ) ∩ Ξ(e1, e2), the orientation of α(θ) is chosen such that: det(α(θ), θ, e3, . . . , e d ) > 0.

(5.3) Condition (5.3) fixes uniquely the direction of α(θ) of (5.2). Formulas (2.10), (2.11), (2.12) imply that (5.3) can hold if and only if θ ∈ Θ(e1, e2).

2. The intersection is the two-dimensional plane Ξ(e1, e2). Formulas (2.10), (2.11) imply that it is the case if and only if s = 0, θ ⊥ e1, θ ⊥ e2.

(5.4)

3. The intersection is an empty set. Formulas (2.10), (2.11) imply that it is the case if and only if s = 0, θ ⊥ e1, θ ⊥ e2.

(5.5) Note that cases 2 and 3 occur if and only if θ ⊥ e1, θ ⊥ e2, i.e., θ ∈ Θ(e1, e2).

(5.6)

This completes the proof of formula (2.18).
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  x1, . . . , x d , θ) def = w0(x1, x2, e1), θ ∈ Θ(e1, e2), x ∈ R d . (4.7) Proof of Theorem 1. We define w(x, α) = w(x1, . . . , x d , α) def = w0(x1, x2, α1, α2), (4.8)f (x) = f (x1, . . . , x d ) def = ψ(x3, . . . , x d )f0(x1, x2), (4.9) for x = (x1, . . . , x d ) ∈ R d , α = (α1, α2, 0, . . . , 0) ∈ S d-1 ∩ Ξ(e1, e2) ≃ S 1 , where ψ ∈ C ∞ 0 (R d-2 ), supp ψ = B d-2 and ψ(x) > 0 for x ∈ B d-2 . (4.10) From (2.1), (3.4), (4.8)-(4.10) it follows that: Pwf (x, α) = R w(x1 + tα1, x2 + tα2, x3, . . . , x d , α)f (x1 + tα1, x2 + tα2, x3, . . . , x d ) dt = ψ(x3, . . . , x d ) R w0(x1 + tα1, x2 + tα2, α1, α2)f0(x1 + tα1, x2 + tα2) dt = ψ(x3, . . . , x d )Pw 0 f0(x1, x2, α1, α2) = 0 for any α = (α1, α2, 0, . . . , 0) ∈ Ξ(e1, e2) ∩ S d-1