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Abstract

We consider the weighted Radon transforms RW along hyperplanes in R
d, d ≥ 3, with strictly positive

weights W = W (x, θ), x ∈ R
d, θ ∈ S

d−1. We construct an example of such a transform with non-trivial
kernel in the space of infinitely smooth compactly supported functions. In addition, the related weight W
is infinitely smooth almost everywhere and is bounded. Our construction is based on the famous example
of non-uniqueness of J. Boman (1993) for the weighted Radon transforms in R

2 and on a recent result of F.
Goncharov and R. Novikov (2016).
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1 Introduction

We consider the weighted Radon transforms RW , defined by the formulas:

RW f(s, θ) =

∫

xθ=s

W (x, θ)f(x) dx, (s, θ) ∈ R× S
d−1, x ∈ R

d, d ≥ 2, (1.1)

where W =W (x, θ) is the weight, f = f(x) is a test function on R
d.

We assume that W is real valued, bounded and strictly positive, i.e.:

W =W ≥ c > 0, W ∈ L∞(Rd × S
d−1), (1.2)

where W denotes the complex conjugate of W , c is a constant.
If W ≡ 1, then RW is reduced to the classical Radon transform R along hyperplanes in R

d. This
transform is invertible by the classical Radon inversion formulas; see [Rad17].

If W is strictly positive, W ∈ C∞(Rd × S
d−1) and f ∈ C∞

0 (Rd), then in [Bey84] the inversion of RW

is reduced to solving a Fredholm type linear integral equation. Besides, in [BQ87] it was proved that RW

is injective (for example, in L2

0(R
d)) if W is real-analytic and strictly positive. In addition, an example of

RW in R
2 with infinitely smooth strictly positive W and with non-trivial kernel KerRW in C∞

0 (R2) was
constructed in [Bom93]. Here C∞

0 , L2

0 denote the spaces of functions from C∞, L2 with compact support,
respectively.

In connection with the most recent progress in inversion methods for weighted Radon transforms RW ,
see [Gon17].

We recall also that inversion methods for RW in R
3 admit applications in the framework of emission

tomographies (see [GN16]).
In the present work we construct an example of RW in R

d, d ≥ 3, with non-trivial kernel KerRW in
C∞

0 (Rd). The related W satisfies (1.2). In addition, our weight W is infinitely smooth almost everywhere
on R

d × S
d−1.

In our construction we proceed from results of [Bom93] and [GN16].
In Section 2, in particular, we recall the result of [GN16].
In Section 3 we recall the result of [Bom93].
In Section 4 we obtain the main result of the present work.
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2 Relations between the Radon and the ray transforms

We consider also the weighted ray transforms Pw in R
d, defined by the formulas:

Pwf(x, θ) =

∫

R

w(x+ tθ, θ)f(x+ tθ) dt, (x, θ) ∈ TSd−1, (2.1)

TSd−1 = {(x, θ) ∈ R
d × S

d−1 : xθ = 0}, d ≥ 2, (2.2)

where w = w(x, θ) is the weight, f = f(x) is a test-function on R
d.

We assume that w is real valued, bounded and strictly positive, i.e.:

w = w ≥ c > 0, w ∈ L∞(Rd × S
d−1). (2.3)

We recall that TSd−1 can be interpreted as the set of all oriented rays in R
d. In particular, if γ = (x, θ) ∈

TSd−1, then

γ = {y ∈ R
d : y = x+ tθ, t ∈ R}, (2.4)

where θ gives the orientation of γ.
We recall that for d = 2, transforms Pw and RW are equivalent up to the following change of variables:

RW f(s, θ) = Pwf(sθ, θ
⊥), s ∈ R, θ ∈ S

1, (2.5)

W (x, θ) = w(x, θ⊥), x ∈ R
2, θ ∈ S

1,

θ⊥ = (− sinφ, cos φ) for θ = (cosφ, sinφ), φ ∈ [0, 2π),
(2.6)

where f is a test-function on R
2.

For d = 3, the transforms RW and Pw are related by the following formulas (see [GN16]):

RW f(s, θ) =

∫

R

Pwf(sθ + τ [θ, α(θ)], α(θ)) dτ, (s, θ) ∈ R× S
2, (2.7)

W (x, θ) = w(x,α(θ)), x ∈ R
3, θ ∈ S

2, (2.8)

α(θ) =







[η, θ]

|[η, θ]|
, if θ 6= ±η,

any vector e ∈ S
2, such that e ⊥ θ, if θ = ±η,

(2.9)

where η is some fixed vector from S
2, [·, ·] denotes the standard vector product in R

3, ⊥ denotes the
orthogonality of vectors. Actually, formula (2.7) gives an expression for RW f on R × S

2 in terms of Pwf
restricted to the rays γ = γ(x, θ), such that θ ⊥ η, where W and w are related by (2.8).

Below we present analogs of (2.7)-(2.8) for d > 3.
Let

Σ(s, θ) = {x ∈ R
d : xθ = s}, s ∈ R, θ ∈ S

d−1, (2.10)

Ξ(v1, . . . , vk) = Span{v1, . . . , vk}, vi ∈ R
d, i = 1, k, 1 ≤ k ≤ d, (2.11)

Θ(v1, v2) = {θ ∈ S
d−1 : θ ⊥ v1, θ ⊥ v2} ≃ S

d−3, v1, v2 ∈ R
d, v1 ⊥ v2, (2.12)

(e1, e2, e3, . . . , ed) - be some fixed orthonormal, positively oriented basis in R
d. (2.13)

If (e1, . . . , ed) is not specified otherwise, it is assumed that (e1, . . . , ed) is the standard basis in R
d.

For d ≥ 3, the transforms RW and Pw are related by the following formulas:

RW f(s, θ) =

∫

Rd−2

Pwf(sθ +

d−2
∑

i=1

τiβi(θ), α(θ)) dτ1 . . . dτd−2, (s, θ) ∈ R× S
d−1, (2.14)

W (x, θ) = w(x, α(θ)), x ∈ R
d, θ ∈ S

d−1, (2.15)

where α(θ), βi(θ), i = 1, d− 2, are defined as follows:

α(θ) =















direction of one-dimensional intersection Σ(s, θ) ∩ Ξ(e1, e2), where

the orientation of α(θ) is chosen such that det(α(θ), θ, e3, . . . , ed) > 0, if θ 6∈ Θ(e1, e2),

any vector e ∈ S
d−1 ∩ Ξ(e1, e2), if θ ∈ Θ(e1, e2),

(2.16)

(α(θ), β1(θ), . . . , βd−2(θ)) is an orthonormal basis on Σ(s, θ), (2.17)

and Σ(s, θ), Θ(e1, e2) are given by (2.10), (2.12), respectively. Here, due to the condition θ 6∈ Θ(e1, e2):

dim(Σ(s, θ) ∩ Ξ(e1, e2)) = 1. (2.18)
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Formula (2.18) is proved in Section 5.
Note that formulas (2.14)-(2.18) are also valid for d = 3. In this case these formulas are reduced to

(2.7)-(2.9), where e3 = −η.
Note that, formula (2.14) gives an expression for RW f on R × S

d−1 in terms of Pwf restricted to the
rays γ = (x, α), such that α ∈ S

d−1 ∩ Ξ(e1, e2).
Remark 1. In (2.16) one can also write:

α(θ) = (−1)d−1 ⋆ (θ ∧ e3 ∧ · · · ∧ ed), if θ 6∈ Θ(e1, e2), (2.19)

where ⋆-denotes the Hodge star, ∧ - is the exterior product in Λ∗
R

d (exterior algebra on R
d); see, for

example, Chapters 2.1.c, 4.1.c of [Mor01].
Note that the value of the integral in the right hand-side of (2.14) does not depend on the particular

choice of (β1(θ), . . . , βd−2(θ)) of (2.17).
Note also that, due to (2.8), (2.9), (2.15), (2.16), the weightW is defined everywhere on R

d×S
d−1, d ≥ 3.

In addition, this W has the same smoothness as w in x on R
d and in θ on S

d−1\Θ(e1, e2), where Θ(e1, e2)
is defined in (2.12) and has zero Lebesgue measure on S

d−1.

3 Boman’s example

For d = 2, in [Bom93] there were constructed a weight W and a function f , such that:

RW f ≡ 0 on R× S
1, (3.1)

1/2 ≤W ≤ 1,W ∈ C∞(R2 × S
1), (3.2)

f ∈ C∞
0 (R2), f 6≡ 0, supp f ⊂ B2 = {x ∈ R

2 : |x| ≤ 1}. (3.3)

In addition, as a corollary of (2.5), (2.6), (3.1)-(3.3), we have that

Pw0
f0 ≡ 0 on TS1, (3.4)

1/2 ≤ w0 ≤ 1, w0 ∈ C∞(R2 × S
1), (3.5)

f0 ∈ C∞
0 (R2), f0 6≡ 0, supp f ⊂ B2 = {x ∈ R

2 : |x| ≤ 1}, (3.6)

where

w0(x, θ) =W (x,−θ⊥), x ∈ R
2, θ ∈ S

1, (3.7)

f0 ≡ f. (3.8)

4 Main results

Let

Bd = {x ∈ R
d : |x| < 1}, (4.1)

Bd = {x ∈ R
d : |x| ≤ 1}, (4.2)

(e1, . . . , ed) - be the canonical basis in R
d. (4.3)

Theorem 1. There are W and f , such that

RW f ≡ 0 on R× S
d−1, (4.4)

W satisfies (1.2), f ∈ C∞
0 (Rd), f 6≡ 0, (4.5)

where RW is defined by (1.1), d ≥ 3. In addition,

1/2 ≤W ≤ 1, W is C∞
-smooth on R

d × (Sd−1\Θ(e1, e2)), (4.6)

where Θ(e1, e2) is defined by (2.12). Moreover, weight W and function f are given by formulas (2.15),
(4.8)-(4.10) in terms of the J. Boman’s weight w0 and function f0 of (3.7), (3.8).

Remark 2. According to (2.15), (2.16), W (x, θ) for θ ∈ Θ(e1, e2) can be specified as follows:

W (x, θ) =W (x1, . . . , xd, θ)
def
= w0(x1, x2, e1), θ ∈ Θ(e1, e2), x ∈ R

d. (4.7)

Proof of Theorem 1. We define

w(x, α) = w(x1, . . . , xd, α)
def
= w0(x1, x2, α1, α2), (4.8)

f(x) = f(x1, . . . , xd)
def
= ψ(x3, . . . , xd)f0(x1, x2), (4.9)

for x = (x1, . . . , xd) ∈ R
d, α = (α1, α2, 0, . . . , 0) ∈ S

d−1 ∩ Ξ(e1, e2) ≃ S
1,
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where

ψ ∈ C∞
0 (Rd−2), suppψ = Bd−2 and ψ(x) > 0 for x ∈ Bd−2. (4.10)

From (2.1), (3.4), (4.8)-(4.10) it follows that:

Pwf(x, α) =

∫

R

w(x1 + tα1, x2 + tα2, x3, . . . , xd, α)f(x1 + tα1, x2 + tα2, x3, . . . , xd) dt

= ψ(x3, . . . , xd)

∫

R

w0(x1 + tα1, x2 + tα2, α1, α2)f0(x1 + tα1, x2 + tα2) dt

= ψ(x3, . . . , xd)Pw0
f0(x1, x2, α1, α2) = 0 for any α = (α1, α2, 0, . . . , 0) ∈ Ξ(e1, e2) ∩ S

d−1 ≃ S
1.

(4.11)

Properties (4.4)-(4.6) follow from (2.15)-(2.17), (2.19), (3.2), (3.3), (4.7), (4.8).
Theorem 1 is proved.

5 Proof of formula (2.18)

Note that
dim(Ξ(e1, e2)) + dim(Σ(s, θ)) = d+ 1 > d, (5.1)

which implies that the intersection Σ(s, θ) ∩ Ξ(e1, e2) is one of the following:

1. The intersection is the one dimensional line l = l(s, θ):

l(s, θ) = {x ∈ R
d : x = x0(s, θ) + α(θ)t, t ∈ R}, α(θ) ∈ S

2, (5.2)

where x0(s, θ) is an arbitrary point of Σ(s, θ) ∩ Ξ(e1, e2), the orientation of α(θ) is chosen such that:

det(α(θ), θ, e3, . . . , ed) > 0. (5.3)

Condition (5.3) fixes uniquely the direction of α(θ) of (5.2).

Formulas (2.10), (2.11), (2.12) imply that (5.3) can hold if and only if θ 6∈ Θ(e1, e2).

2. The intersection is the two-dimensional plane Ξ(e1, e2). Formulas (2.10), (2.11) imply that it is the
case if and only if

s = 0, θ ⊥ e1, θ ⊥ e2. (5.4)

3. The intersection is an empty set. Formulas (2.10), (2.11) imply that it is the case if and only if

s 6= 0, θ ⊥ e1, θ ⊥ e2. (5.5)

Note that

cases 2 and 3 occur if and only if θ ⊥ e1, θ ⊥ e2, i.e., θ ∈ Θ(e1, e2). (5.6)

This completes the proof of formula (2.18).
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faltigkeiten. Ber. Saechs Akad. Wiss. Leipzig, Math-Phys, 69:262–267, 1917.

5


