On the normality of the null-fiber of the moment map for theta- and tori representations
Résumé
Let (G, V) be a representation with either G a torus or (G, V) a locally free stable θ-representation. We study the fiber at 0 of the associated moment map, which is a commuting variety in the latter case. We characterize the cases where this fiber is normal. The quotient (i.e. the symplectic reduction) turns out to be a specific orbifold when the representation is polar. In the torus case, this confirms a conjecture stated by C. Lehn, M. Lehn, R. Terpereau and the author in a former article. In the θ-case, the conjecture was already known but this approach yield another proof.
Fichier principal
normality of comuting variety_2017_05_29.pdf (335.2 Ko)
Télécharger le fichier
computations_rk1_v2.txt (29.49 Ko)
Télécharger le fichier
computations_rk1.pdf (110.94 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Format | Autre |
---|---|
Origine | Fichiers produits par l'(les) auteur(s) |
Commentaire | GAP Computations related to Proposition 4.10, Lemma 4.11 and 4.12 |
Origine | Fichiers produits par l'(les) auteur(s) |
---|