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ON THE NORMALITY OF THE NULL-FIBER OF THE

MOMENT MAP FOR θ- AND TORI REPRESENTATIONS

MICHAEL BULOIS

Abstract. Let (G,V ) be a representation with either G a torus or (G, V ) a

locally free stable θ-representation. We study the fiber at 0 of the associated

moment map, which is a commuting variety in the latter case. We charac-

terize the cases where this fiber is normal. The quotient (i.e. the symplectic

reduction) turns out to be a specific orbifold when the representation is polar.

In the torus case, this confirms a conjecture stated by C. Lehn, M. Lehn, R.

Terpereau and the author in a former article. In the θ-case, the conjecture was

already known but this approach yield another proof.
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Introduction

Let k be an algebraically closed field of characteristic zero. Let (G, V ) be a

representation of a connected reductive algebraic group G on a finite dimensional

k-vector space V . Let g be the Lie algebra of G. We define the moment map

µ :

{

V ⊕ V ∗ → g∗

(x, ϕ) 7→ (g 7→ ϕ(g · x))

Among the fibers of the moment map, the most special one is µ−1(0). When the

representation (G, V ) is the adjoint action of G on g, µ−1(0) can be identified wih

the commuting scheme of g. According to a long-standing conjecture, this scheme

should be normal. One of the aim of this work is to study the normality of the

scheme µ−1(0) in some nice cases. For instance, if (G, V ) is visible and locally free,

we already know that µ−1(0) is a complete intersection and the normality question

reduces to singular locus questions thanks to Serre’s criterion (see e.g. Corollary 1.7

and Remark 1.8). Using this, Panyushev [Pan] has shown that µ−1(0) is reduced
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and normal in the case of the representation associated to a symmetric Lie algebra

of maximal rank.

There are some natural generalizations of adjoint representations and symmetric

Lie algebras: the so-called θ-representations ( or θ-groups) of Vinberg [Vin] and,

more generally, the polar representations of Dadok and Kac [DK]. Recall that a

θ-representation is a representation (G, V ) isomorphic to some (H0, h1) where H

is a connected reductive group acting on its Lie algebra h, with h equipped with

a Zm-grading
⊕

i∈Zm
hi and where H0 is the connected subgroup of H whose Lie

algebra is h0. It turns out that the geometry of µ−1(0) can be a bit more involved

in this setting of θ-representations than for the classical adjoint representation.

For instance, it is possible to find examples of such representations where µ−1(0)

is non-irreducible [Pan, Bu11], non-reduced or irreducible non-normal [BLLT]. In

this paper, we classify the locally free stable θ-representations for which µ−1(0) is

normal. It turns out (Theorem 4.6) that this normality property holds in all the

classical cases and we find only 5 non-normal examples of exceptional cases, each of

rank 1. We take the opportunity to generalize some properties of decompositions

classes to the θ-cases in Section 4. The θ-case is partly based on the study of

some specific tori representations. This is one motivation for studying µ−1(0) for a

general representation of a torus in Section 2. The fiber turns out to be normal as

soon as it is irreducible and we give a combinatorial criterion for this in terms of

the weights of the representation (Theorem 2.2).

The variety µ−1(0) is also involved in the symplectic reduction (V ⊕ V ∗)///G :=

µ−1(0)//G where X//G denotes the categorical quotient of an affine G-variety X .

If µ−1(0) is normal, then the symplectic reduction is also normal. Following a

theorem of Joseph [Jos] in the Lie algebra case, and a conjecture stated in [BLLT]

in the complex case (see conjecture 1.3 here), the variety (V ⊕ V ∗)///G should be

isomorphic to a specific orbifold whenever (G, V ) is visible and polar. The results

of the present paper yield a proof of this conjecture when G is a torus (Corollary

3.10), and allows to recover it when (G, V ) is a stable locally free θ-representation

(Remark 4.13). In the torus case, we also get that that the visibility assumption

is necessary (Proposition 3.9) but that the scheme (V ⊕ V ∗)///G is nevertheless

reduced (Theorem 2.2) and normal (Proposition 3.4) in general.

One should note that, as the torus case suggests, we put light on representations

which are far from being irreducible. Part of the results concerning tori (e.g., the

normality of the symplectic reduction) were written independantly in the recent

preprint [HSS]. The general philosophy of [HSS] is to focus on “large” representa-

tions (ex: 2-large) whereas the polar representations are “small”.

Acknowledgements. Section 4 of this paper was essentially included in early

versions of [BLLT]. I want to thank my co-authors to allow me to reuse this

material here.

This work has benefited from the support of the project GeoLie (ANR-15-CE40-

0012) and of the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon
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within the program "Investissements d’Avenir" (ANR-11-IDEX-0007) operated by

the French National Research Agency (ANR).

1. Generalities

In this section, we introduce some classical material to study null fibers of mo-

ment maps. Even if some results are stated in a greater generalities, most of this

section is heavily inspired by [Pan]. Popov’s article [Po] is also a source of inspira-

tion.

We work over an algebraically closed field k of characteristic zero. We use the

language of scheme even if these schemes will always be separated of finite type

over k and will often be reduced, i.e. varieties. We do not require that the varieties

are irreducible. When speaking about the irreducible components of a scheme, we

always mean the irreducible components of the corresponding reduced variety and

we do not consider embedded components.

If A is a subset of a vector space, 〈A〉 stands for the subspace generated by A.

Definition 1.1. An element x ∈ V is said to be

• semisimple if G.x is closed,

• nilpotent if 0 ∈ G.x.

Equivalently, x is nilpotent if and only if π(x) = π(0) where π : V → V//G is the

categorical quotient map.

Definition 1.2. The representation (G, V ), is said to be

• locally free, if dimG.x = dimG for some x ∈ V .

• visible, if there are finitely many nilpotent G-orbits.

• stable, if there is an open subset of V , consisting of semisimple elements

• polar, if there exists v ∈ V such that dim cv = dimV//G where cv :=

{x ∈ V | g · x ⊂ g · v}. We then say that cv is a Cartan subspace of V .

Examples of visible and stable representations are given by the adjoint action

of G on g, or a θ-representation arising from a Z2-grading (so-called symmetric

Lie algebras). In general, θ-representations are always visible but not necessarily

stable [Vin]. Polar representations, as introduced in [DK], can be neither stable

nor visible. Examples of locally free representations are given by symmetric Lie

algebras of maximal rank. It is worth noting that no adjoint representation (G, g)

is locally free.

When k = C and (G, V ) is polar, we write c and c∨ for dual Cartan subspaces

of V and V ∗, following [BLLT, (3.4), (3.6)], together with dual decompositions

V = c ⊕ (g · c) ⊕ U and V ∗ = c∨ ⊕ (g · c∨) ⊕ U∨. Write W for the Weyl group

NG(c)/CG(c). The following was Conjecture A in [BLLT].

Conjecture 1.3. Assume that (G, V ) is visible and polar, then we have an iso-

morphism of Poisson varieties (V ⊕ V ∗)///G ∼= (c⊕ c∨)/W .

Remark 1.4. Assume k = C. From [BLLT, Proposition 3.3&3.5], we have a injective

natural morphism c × c∨/W → µ−1(0)//G of Poisson varieties. Since c ⊕ c∨/W is

normal, Conjecture 1.3 is equivalent to:
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(1) The morphism c× c∨/W → µ−1(0)//G is dominant (i.e. it is bijective.)

(2) µ−1(0)//G is normal

When studying the null fiber of the moment map, it is enlightening to study the

modality of (G, V ). The modality of a G-subvariety X ⊆ V is defined as

mod(G,X) := max
Y⊆X

(

min
x∈Y

(codimY G.x)

)

where the maximum is taken over all irreducible subvarieties Y ⊆ X .

In the remaining of the section we will consider a finite cover of V , V =
⋃

i Ji

such that

• Each Ji is G-stable, irreducible and locally closed in V of constant orbit

dimension (that is ∃mi ∈ N, ∀x ∈ Ji, dimG · x = mi),

• Ji = Jj ⇒ i = j.

Exemples of such cover includes sheets of (G, V ) or decomposition classes in the case

of the adjoint action. Note that if the cover is disjoint V =
⊔

i Ji, then the second

condition follows from the first one. Since the Ji are of constant orbit dimension,

we have mod(G, Ji) = dim Ji−mi. Moreover, from finiteness and locally closeness,

each irreducible subvariety Y ⊂ V intersects at least one Ji as a dense open subset

of Y and we have minx∈Y codimY G.x = mod(G, Ji). Hence

(1) mod(G, V ) = max
i

mod(G, Ji).

Given a subvariety X ⊆ V , we write

(2) (µ−1(0))X := {(x, ϕ) ∈ µ−1(0)|x ∈ X} = {(x, ϕ) ∈ X × V ∗ |ϕ ∈ (g.x)⊥}

seen as a subvariety of µ−1(0). This allows for instance to decompose µ−1(0), as a

finite union:

(3) µ−1(0) =
⋃

i

(µ−1(0))Ji
.

Lemma 1.5. (i) Each (µ−1(0))Ji
is an irreducible and locally closed subvari-

ety of µ−1(0) of dimension dimV +mod(G, Ji).

(ii) Each irreducible component of µ−1(0) is of the form (µ−1(0))Ji
for some i.

(iii) There is a bijection between the set of irreducible components of µ−1(0)

of maximal dimension dimV +mod(G, V ) and the set of Ji with maximal

modality mod(G, Ji) = mod(G, V ).

Proof. (i) From (2), (µ−1(0))Ji
is a subbundle in Ji × V ∗ of codimension mi. In

particular, it is an irreducible subvariety of µ−1(0) of dimension

(4) dimV + dim Ji −mi = dimV +mod(G, Ji).

(ii) is clear from (i) and (3).

(iii) By considering projection on the first variable, (µ−1(0))Ji
= (µ−1(0))Jj

can

happen only if Ji = Jj , that is only if i = j. The bijection is then clear from (i)

and (ii). �



MOMENT MAPS FOR TORI AND θ 5

Another classical result is the following characterization of the smooth locus of

µ−1(0). If y belongs to a G-module Y (e.g. Y = V or Y = V ⊕ V ∗), we let

gy := {g ∈ g| g.y = 0} be the centralizer of y in g.

Proposition 1.6. The following assertions are equivalent for an element (x, ϕ) ∈

µ−1(0) ⊂ V ⊕ V ∗

(i) (x, ϕ) is a smooth point of the scheme µ−1(0)

(ii) (x, ϕ) belongs to a unique irreducible component (µ−1(0))Ji
for some Ji,

and dim gx,ϕ = mod(G, Ji) + dim g− dimV

Proof. The tangent space of µ−1(0) at z = (x, ϕ) is Ker dzµ. The dual map of dzµ

has the following expression

(dzµ)
∗ :

{

g → (V ⊕ V ∗)∗

g 7→ [(y, ψ) 7→ ψ(g.x) + ϕ(g.y)]

In particular, Ker(dz(µ))
∗ = {g ∈ g| g ·x = 0 = g ·ϕ} = gx,ϕ. Hence dimKer dzµ =

2dimV − dim g+ dim gx,ϕ.

Recall that smooth points on a scheme belong to a unique irreducible component.

Let (x, ϕ) belong to a unique irreducible component (µ−1(0))Ji
for some Ji. Since

dim(µ−1(0))Ji
= dimV +mod(G, Ji) (Lemma 1.5), we get that (x, ϕ) is a smooth

point of µ−1(0) if and only if dimV − dim g + dim gx,ϕ = mod(G, Ji), hence the

equivalence. �

Corollary 1.7. Assume that mod(G, V ) = dimV − dimG. Then

(i) (G, V ) is locally free.

(ii) µ−1(0) is a complete intersection of dimension 2 dimV − dimG.

(iii) The smooth points of the scheme µ−1(0) are the points (x, ϕ) satisfying

gx,ϕ = {0}.

(iv) µ−1(0) is irreducible if and only if mod(G, Ji) < mod(G, V ), for any i such

that Ji 6= V . If it is the case, the scheme µ−1(0) is also reduced

(v) µ−1(0) is reduced and normal if and only if it is irreducible and the following

holds

(5) ∀i,
[

mod(G, Ji) = mod(G, V )− 1 ⇒
(

∃(x, ϕ) ∈ (µ−1(0))Ji
s.t. gx,ϕ = {0}

)]

Proof. (i) Let i0 be the index such that Ji0 = V . Thenmi0 is the maximum orbit di-

mension in V and we get mod(G, V ) > mod(G, Ji0 ) = dimV −mi0 > dimV −dimG.

From the hypothesis, we have equalities so mi0 = dimG.

(ii) The irreducible components of maximal dimension of µ−1(0) have codimension

2 dimV − (dimV + mod(G, V )) = dimG in V ⊕ V ∗. Since µ−1(0) is defined in

V ⊕ V ∗ by dim g equation, (ii) follows.

(iii) From (ii), µ−1(0) is equidimensional and its irreducible components have di-

mension 2 dimV − dimG. From proof of Proposition 1.6, we see that the tangent

space of µ−1(0) at (x, ϕ) has dimension 2 dimV − dim g + dim gx,ϕ. The result

follows.

(iv) We have already seen in (i) that mod(G, Ji0) = mod(G, V ) for i0 such that

Ji0 = V . The characterization of the irreducibility of µ−1(0) then follows from
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equidimensionality and Lemma 1.5 (iii). For x ∈ Ji0 , we have gx = {0}. So

(µ−1(0))Ji0
is in the smooth locus of µ−1(0) by (iii). Hence µ−1(0) is reduced as

soon as it is irreducible.

(v) Recall now that a variety is normal if and only if it satisfies Serre’s condition

(S2) and its singular locus has codimension at least 2. The former is provided

by (ii). Under the irreducibility assumption, the latter is equivalent to (5). In-

deed, the singular locus of µ−1(0) is a closed subset of
⋃

i6=i0
(µ−1(0))Ji

. But, it

follows from Lemma 1.5(i) that an irreducible component of a closed subset of
⋃

i6=i0
(µ−1(0))Ji

of codimension 1 in µ−1(0) contains at least one (µ−1(0))Ji
with

mod(G, Ji) = mod(G, V )− 1. �

Remark 1.8. In the notation of the proof of (i), we have, for a general representation

(G, V ): mod(G, V ) > dim V − mi0 . The limit case mod(G, V ) = dimV − mi0

corresponds to condition (F0) of [Pan], see (2.2) and Corollary 2.5 in loc. cit. Then

Proposition 3.1 in loc. cit. asserts that this condition hold when (G, V ) is visible.

In particular, hypothesis of the above corollary are satisfied when (G, V ) is locally

free and visible.

Similarily, condition (F1) in loc. cit. is equivalent to the condition appearing in

Corollary 1.7 (iv). Related statements to corollary 1.7 can be found in Theorems

2.4, 3.1 and 3.2 in loc. cit.

2. Null-fiber of the moment map - torus case

In this section V is an n-dimensional representation of an r-dimensional torus

G = T ∼= (k×)r. The weight space X∗(T ) is isomorphic to Zr . We let WQ :=

X∗(T ) ⊗Z Q. It is a Q-vector space of dimension r. Recall that the irreducible

representations of T are one-dimensional. So we can decompose V =
⊕n

i=1 Vi, with

T acting on Vi ∼= k with weight si =
(

sji

)

j∈[[1,r]]
∈ X∗(T ). That is, the action of

an element t = (tj)j∈[[1,r]] ∈ T on an element v = (vi)i∈[[1,n]] ∈ V is given by

t · v =









r
∏

j=1

t
(sj

i
)

j



 vi





i

.

We introduce the n × r matrix S := (sji )i,j . Given I ⊂ [[1, n]] or i ∈ [[1, n]], we

also define the #I × r-matrix SI := (sji )(i,j)∈I×[[1,r]] and the (n − 1) × r-matrix

Sı̂ := S[[1,n]]\{i}.

In the sequel we need a partition of V by suitable strata. These are indexed by

subsets I ⊂ [[1, n]] and are given by

JI := {(vi)i ∈ V | vi 6= 0 ⇔ i ∈ I}.

Remark 2.1. Each JI is a locally closed irreducible T -stable subvariety whose clo-

sure is VI := {(vi)i ∈ V | ∀i /∈ I, vi = 0}.

Moreover, there is a T -equivariant action of (C×)n on V given by (λi)i · (vi)i =

(λivi)i. The orbits of this action are precisely the strata JI . Hence many geometric

properties of the action of T on a point v ∈ V (dimension of orbit, nilpotency,

semisimplicity, . . . ) are preserved along the stratum JI containing v. It will then
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be convenient to make the computations only at vI := (δi∈I)i where δ is the Kro-

necker symbol.

It is now clear that V =
⊔

I JI is a cover satisfying the assumptions of Section 1.

For v ∈ V , writing Xv :=









v1
. . .

vn









, we have

(6) t · v = 〈(sji vi)i∈[[1,n]]| j ∈ [[1, r]]〉 = Im(XvS) = Xv Im(S).

where Im(S) (resp. Im(XvS)) denote the image space of the linear maps kr → kn

associated to S (resp. XvS) in the canonical basis. It follows from (6) that, for

v ∈ JI , we have

(7) dimT.v = rkSI .

In particular, the modality of JI is given by

(8) mod(T, JI) = #I − rkSI = dimKer(tSI).

where Ker(tSI) is the kernel of the linear map k#I → kr associated to tSI . Via the

natural identifications k#I ∼= VI ⊂ V ∼= kn, Ker(tSI) is identified with Ker(tS)∩VI .

Assume that I1 ⊂ I2 are two subsets of [[1, n]], then Ker(tS) ∩ VI1 ⊂ Ker(tS) ∩ VI2 .

So

(9) I1 ⊂ I2 ⇒ mod(T, JI1) 6 mod(T, JI2),

From (1), we get

(10) mod(T, V ) = mod(T, J[[1,n]]) = dim V − rkS.

We can apply (2) to X = JI to define (µ−1(0))JI
. This yields a partition of

µ−1(0) into a disjoint union of irreducible locally closed (Lemma 1.5) subsets

µ−1(0) =
⊔

I

(µ−1(0))JI

Theorem 2.2. Assume that (T, V ) is a reprentation with T a torus.

Then, under above notation:

(i) µ−1(0) is a reduced complete intersection of dimension 2 dimV − rkS.

(ii) The irreducible components of µ−1(0) are the subsets of the form (µ−1(0))JI

with rkS − rkSI = n−#I.

(iii) µ−1(0) is irreducible if and only if, for any i ∈ [[1, n]], we have rk(Sı̂) = rkS.

(iv) µ−1(0) is normal if and only if it is irreducible.

Proof. By Lemma 1.5, the irreducible components of µ−1(0) of maximal dimension

dimV + mod(T, V ) = 2 dimV − rkS (10) are the (µ−1(0))JI
with #I − rkSI =

n− rkS (8). This last condition is the one expressed in (ii).

Then, from (9), µ−1(0) has a single irreducible component of maximal dimension

if and only if mod(T, JI) < mod(T, J[[1,n]]) for any I of the form [[1, n]] \ {i}. If

I = [[1, n]] \ {i}, it follows from (8), that

mod(T, JI) =

{

mod(T, J[[1,n]])− 1 if rkSı̂ = rkS

mod(T, J[[1,n]]) if rkSı̂ = rkS − 1
.
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In the next paragraph, we show that µ−1(0) is a complete intersection, hence

equidimensional. Together with the above arguments, this implies that (ii) and (iii)

holds.

Consider the kernel of the representation (T, V ), K := {t ∈ T | ∀i, si(t) = 1}.

Its Lie algebra is k := {t ∈ t ∼= kr|St = 0} = Ker(S). Applying (7) to a general

element v ∈ V , we get dim(T/K) · v = dimT · v = rkS = dim t − dim k. So the

representation (T/K, V ) is not only faithul but locally free. Note that T/K is also

a torus and that µ−1(0) is the same for (T, V ) and (T/K, V ). Therefore, there is

no loss of generality in assuming that (T, V ) is locally free in order to prove (i)

and (iv). Under this assumption, important features are rkS = dimT (7) and

mod(T, V ) = dim V − dimT (10). In particular, we can apply Corollary 1.7 and

get that µ−1(0) is a complete intersection.

Assuming that (T, V ) is locally free, we claim that

(11) ∀I ⊂ [[1, n]], ∃(x, ϕ) ∈ (µ−1(0))JI
, t(x,ϕ) = {0}.

Under this claim, (ii) and Corollary 1.7 (iii) imply that each irreducible component

of µ−1(0) has smooth points. Hence µ−1(0) is reduced and this ends the proof

of (i). The claim also implies that condition (5) is automatically satisfied so (iv)

follows from Corollary 1.7 (v).

Proof of claim (11) Let I ⊂ [[1, n]]. The decomposition V =
⊕

i Vi induces to

a decomposition V ∗ =
⊕

V ∗
i

∼= kn. We set x = vI = (δi∈I)i ∈ Ji ⊂ V and

ϕ := (δi/∈I)i ∈ V ∗ with respect to these decompositions. Since t · x ⊂ VI , we have

ϕ ∈ (t ·x)⊥ so (x, ϕ) ∈ (µ−1(0))JI
. Also, let t ∈ T stabilizing (x, ϕ). Then si(t) = 1

for any i ∈ I and 1/(si(t)) = 1 for any i /∈ I. Hence t is in the kernel of the

representation. By local freeness, we get tx,ϕ = {0}. �

3. Symplectic reduction for tori representations

We keep the notation and setting of the previous section. The aim of this sec-

tion is to study the symplectic reduction (V ⊕ V ∗)///T := µ−1(0)//T . We prove

Conjecture 1.3 in the context of representations of tori (Corollary 3.10). More-

over, we show that that the conjecture is essentially false for non-visible action

(Proposition 3.9), but that the symplectic reduction remains normal in this case

(Proposition 3.4).

In this section, many properties depend on considerations on the convex hull of

some of the weights si ∈ X∗(T ). If ∅ 6= A ⊂ X∗(T ) ⊂ WQ = X∗(T ) ⊗Z Q, we

denote by CH(A), the convex hull of A in WQ. We also denote by
◦

CH(A) the

interior (for the classical topology) of CH(A) in 〈A〉. Alternatively,
◦

CH(A) is the

set of convex combination
∑

a∈A αaa with each αa positive. It is an elementary

result on convex hull that 0 /∈ CH(A) (resp. 0 /∈
◦

CH(A)) if and only if ∃φ ∈ W ∗
Q

s. t. ∀ a ∈ A, φ(a) > 0 (resp. φ(a) > 0 and φ(A) 6= {0}). Note that such φ can be

multiplied by a sufficiently large integer so that we can always assume ϕ ∈ X∗(T ).

In our context of weights on a group, this translates as follows.
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Lemma 3.1. Under above notation, 0 /∈ CH(A) (resp. 0 /∈
◦

CH(A)) if and only if

there exists a one-parameter subgroup C× ρ
→֒ T such that ∀a ∈ A, ∃ba ∈ N∗ (resp.

ba ∈ N with at least one a ∈ A s.t. ba 6= 0), ∀t ∈ C×, a(ρ(t)) = tba .

Proposition 3.2. Let ∅ 6= I ⊆ [[1, n]] and v ∈ JI .

(1) v ∈ V is nilpotent if and only if 0 /∈ CH({si|i ∈ I}).

(2) v ∈ V is semisimple if and only if 0 ∈
◦

CH({si|i ∈ I}).

Proof. First, recall that the elements of JI all share the same orbit dimension. In

particular, an element y ∈ T.v \T.v lies in JI′ for some I ′ ( I. Then, from Hilbert-

Mumford criterion, v = (vi)i ∈ V \ {0} is nilpotent (resp. is not semi-simple) if and

only if there exists a one-parameter subgroup C× ρ
→֒ T such that ρ(t).vi = tbivi

with bi positive for each i ∈ I (resp. non-negative for each i ∈ I and at least one bi

non-zero) . Since tbi = si(ρ(t)), the result then follows from Lemma 3.1. �

Given (T, V ) and associated weights (si)i∈[[1,n]], we split [[1, n]] into

(12) Id := {i ∈ [[1, n]]| rkSı̂ = rkS}, If := I \ Id = {i ∈ [[1, n]]| rkSı̂ = rkS− 1}.

Corollary 3.3. The representation (T, V ) is stable if and only if 0 ∈
◦

CH({si|i ∈

[[1, n]]}).

In this case If = ∅ and µ−1(0) is irreducible and normal

Proof. A generic element of V lies in J[[1,n]] so the first assertion follows from Propo-

sition 3.2. If we can write 0 as a convex combination of the (si)i∈[[1,n]] with non-zero

coefficients, If is empty so the second statement follows from Theorem 2.2. �

Proposition 3.4. There is an isomophism (V ⊕ V ∗)///T ∼= (VId ⊕ V ∗
Id
)///T .

In particular, (V ⊕ V ∗)///T is normal.

Proof. We denote by µId the moment map VId ⊕ V ∗
Id

→ t∗. Recall that µ−1(0) and

µ−1
Id

(0) are reduced by Theorem 2.2. Hence so are (V ⊕ V ∗)///T = µ−1(0)//T and

(VId ⊕ V ∗
Id
)///T = µ−1

Id
(0)//T . Note that V ∗

Id
can be identified with the subrepre-

sentation of V ∗ generated by the isotypical components associated to the weights

{−si|i ∈ Id}. This allows us to consider µ−1
Id

(0) as a T -stable closed subscheme of

µ−1(0). Therefore, we have a closed immersion µ−1
Id

(0)//T → µ−1(0)//T . To show

that this is an isomorphism, there remains to prove that this map is a surjective.

For this, we are going to show that the only closed orbits in µ−1(0) lie in µ−1
Id

(0).

Let (x, y) ∈ µ−1(0) and assume that x /∈ VId . From the assumption on x, we

know that there exists i such that xi 6= 0 and rkSı̂ < rkS. Then there exists an

element t ∈ 〈sj | j 6= i〉⊥ ⊂ t such that si(t) = 1. So t · x = xi and V{i} ⊂ t · x.

Since y ∈ (t · x)⊥, we get yi = 0. Then a one-parameter subgroup C× ρ
→֒ T given

by sj(ρ(t)) = tδi,j acts on (x, y) via t · y = y and limt→0 t · x = x′ with x′j = xj if

j 6= i and x′i = 0. Hence (x′, y) ∈ T.(x, y)\T.(x, y). A similar argument shows that

T.(x, y) is also non-closed as soon as y /∈ V ∗
Id

.

Let us now show that (VId ⊕V
∗
Id
)///T is normal. For each i ∈ If , si is not a linear

combination of the other sj (j 6= i). Hence {si | i ∈ If} induces a basis of 〈si | i ∈
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[[1, n]]〉/〈si | i ∈ Id〉 and rkSId = rkS −#If . Assuming that rkSId\{i} = rkSId − 1

for some i ∈ Id, we would then have rkSı̂ 6 rkSId − 1 + #(If ) = rkS − 1, which

contradicts the assumption i ∈ Id. So rkSId\{i} = rkSId for any i ∈ Id and (T, VId)

satisfies hypothesis of Theorem 2.2 (iii-iv). Hence µ−1
Id

(0) is irreducible and normal,

so the same holds for its quotient by T . �

We have the following useful characterization of a visible action:

Proposition 3.5. The representation (T, V ) with weight (si)i∈[[1,n]] is visible if and

only if there is a partition [[1, n]] =
⊔l

j=0 Ij satisfying

(i) 〈si| i ∈ [[1, n]]〉 =
⊕l

j=0〈si| i ∈ Ij〉

(ii) dim〈si| i ∈ Ij〉 =

{

#Ij if j = 0

#Ij − 1 if j > 1

(iii) ∀j > 1, 0 ∈
◦

CH({si|i ∈ Ij}).

Note that the subset I0 in the proposition has to coincide with If defined in (12)

and that Id =
⊔

j>1 Ij .

Proof. “if” part: Assume that such a partition exists. Let x ∈ V be nilpotent and

let Ĩ be such that x ∈ JĨ . Define Ĩj := Ĩ ∩ Ij . Assume that j is a positive index

such that Ĩj 6= ∅. Since x is nilpotent and Ĩj ⊂ Ĩ, it follows from Proposition 3.2

that 0 /∈ CH({si|i ∈ Ĩj}). By (iii), Ĩj is a proper subset of Ij .

On the other hand, (iii) also implies that there is a convex combination
∑

i∈Ij
αisi =

0 with each αi > 0. By (ii), this combination is the unique linear relation (up to

scalar multiplication) between the (si)i∈Ij . In particular, the family (si)i∈Ĩj
is lin-

early independant. The same hold if j = 0 by (ii). By (i), we get that (si)i∈Ĩ is

linearly independent.

Then, by (7), dimT.x = rkSĨ = #Ĩ = dim JĨ . Hence T.x is open in JĨ . Since

this holds for any x ∈ JĨ , we get T.x = JĨ . Since there are finitely many possible

index set Ĩ, the representation (T, V ) is visible.

“only if” part: We will argue by induction on dimV . Assume dimV = 1. If

s1 6= 0, we set l = 0 and I0 := {s1}. If s1 = 0, we set l := 1, I0 := ∅ and I1 := {s1}.

Assume now that the result holds true for any visible representation of T of

dimension n− 1 and consider a visible representation (T, V ) of dimension n. Since

V ′ := V[[1,n−1]] is a subrepresentation of V , it is also visible. By the inductive

hypothesis, there exists a partition [[1, n− 1]] =
⊔l′

j=0 I
′
j satisfying (i), (ii) and (iii).

If sn /∈ 〈si| i ∈ [[1, n− 1]]〉, we can set I0 := I ′0 ∪ {n} and Ij := I ′j for any j > 1.

From now on, we assume that sn ∈ 〈si| i ∈ [[1, n− 1]]〉. As a first step, we claim

that there is a subset Ĩ ⊂ [[1, n− 1]] and some non-zero rational coefficients (βi)i∈Ĩ

such that

• sn :=
∑

i∈Ĩ βisi

• Ĩ ∩ I ′j 6= I ′j for any j > 1

• βi > 0 for i ∈
⊔

j>1 I
′
j ∩ Ĩ.

Indeed, start with a combination with rational coefficients sn :=
∑

i∈[[1,n−1]] β
′
isi.

Fix j > 1. From (iii) and (ii), there is a combination with positive coefficients
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0 =
∑

i∈I′

j
αisi. Let λj := maxi∈I′

j
{−β′

i/αi}. Set βi := β′
i + λjαi for i ∈ I ′j . So

βi > 0 for any i ∈ I ′j and βi = 0 for at least one i ∈ I ′j . Then set Ĩ := {i|βi 6= 0}

and the claim is shown.

From the property Ĩ ∩ I ′j 6= I ′j and (i), (ii), (iii)„ we get that (si)i∈Ĩ is linearly

independant as in the proof of the “if part”. So, up to scalar multiplication, the

only relation between {si|i ∈ Ĩ ∪ {n}} is given by the above coefficients βi (i ∈ Ĩ).

Assuming that βi > 0 for some i ∈ Ĩ (e.g. if Ĩ∩
⊔

j>1 I
′
j 6= ∅), we get 0 /∈ CH({si|i ∈

Ĩ∪{n}}) so orbits in JĨ∪{n} are nilpotent by Proposition 3.2. From (7), these orbits

are of dimension rkSĨ∪{n} = #Ĩ = dim JĨ∪{n} − 1. This contradicts the visibility

of (T, V ). As a result, Ĩ ⊂ I0 and βi < 0 for each i ∈ I0. Setting l := l′ + 1,

Il := Ĩ ∪ {n}, I0 := I ′0 \ Ĩ and Ij := I ′j for j ∈ [[1, l′]] then yield (i), (ii) and (iii) for

the representation (T, V ). �

Remark 3.6. We can re-interpret Proposition 3.5 as follows. The visible tori actions

are essentially made of two part: a part of rank 0 provided by I0 and several stable

blocks of rank 1, each looking very much like [BLLT, Example 8.6]. There are other

appearence of stable blocks of rank 1 in Lemma 4.9.

Corollary 3.7. Any visible representation of a torus is polar.

Proof. Let (T, V ) be a visible representation and adopt notation of Proposition 3.5.

For w := (w1, . . . , wl) ∈ Cl, we consider x(w) as the element (xi)i∈[[1,n]] given by

xi := 0 if i ∈ I0 and xi := wj if i ∈ Ij (j > 1). From (6), we get t · x(w) =

Xx(w)Im(S). From Proposition 3.5 (i), Im(S) =
⊕

j Im(SIj ). Since Xx(w) acts by

wjId on Im(SIj ), we get that t · x(w) is included in t · x(1, . . . , 1). The subspace

c := {x(w)|w ∈ Cl} is our candidate for being a Cartan subspace of (T, V ) and

there remains to show that l = dimV//T , [DK].

Since (T, V ) is visible, a general fiber of the quotient map V → V//T is the

closure of a general orbit in V . Hence, by (7), dimV//T = dimV − rkS. This is

equal to l by Proposition 3.5. �

Let us now take a closer look at (V ⊕ V ∗)///T , that is at closed orbits of µ−1(0).

A first observation is the following.

Lemma 3.8. If (x, y) ∈ µ−1(0) is such that x ∈ V and y ∈ V ∗ are semisimple,

then (x, y) is semisimple in V ⊕ V ∗.

Proof. Consider the set of weigths for the action of T on V⊕V ∗. Denote by Ax (resp.

Ay, Ax,y) the set of weights corresponding to the support of x (resp. y, (x, y)). By

Proposition 3.2, 0 ∈
◦

CH(Ax) and 0 ∈
◦

CH(Ay). So 0 ∈
◦

CH(Ax ∪Ay) =
◦

CH(Ax,y).

The result follows. �

Proposition 3.9. The representation (T, V ) is visible if and only if closed orbits

of µ−1(0) are those of the form T.(x, y) with T.x and T.y closed.

Proof. • Assume that (T, V ) is visible. With similar arguments to those of Propo-

sition 3.4, we are going to show that, whenever x ∈ V is not semisimple, (x, y) ∈
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µ−1(0) cannot be semisimple. A symmetric argument on y ∈ V ∗ and Lemma 3.8

then allow to conclude for the “only if” part.

Let x ∈ JĨ for some Ĩ ⊂ [[1, n]]. The representation (T, VĨ) is also visible, so we

can apply Proposition 3.5 (with Ĩ instead of [[1, n]]) and get a partition Ĩ =
⊔l

j=0 Ĩj .

Apply also Proposition 3.5 to V , so that we get a partition [[1, n]] =
⊔

j Ij .

Assuming that x is not semisimple amounts to assume that Ĩ0 6= ∅ (Proposition

3.2). If Ĩ0 ∩ I0 6= ∅, Proposition 3.4 states that any element of µ−1(0) of the form

(x, y) is not semisimple. From now on, we assume that there exists j > 1 such that

Ĩ0 ∩ Ij 6= ∅. From property (ii) of Proposition 3.5 on Ĩ0 and Ij , we also know that

Ij \ Ĩ0 6= ∅. Fix i0 ∈ Ĩ0 ∩ Ij and i1 ∈ Ij \ Ĩ0. The relation between the (si)i∈Ij can

be written as
∑

i∈Ij
αisi = 0 with the αi positive integers. Then we can define a

one parameter subgroup ρ: C× →֒ T , via

si(ρ(t)) =











tαi1 if i = i0

t−αi0 if i′ = i1

1 else

Then V{i0} = Lie(ρ(C×)) ·x ⊂ t ·x and, whenever (x, y) ∈ µ−1(0), we have yi0 = 0.

Since ρ(t) acts on yi1 by multiplication by tαi0 , we get that limt→0(ρ(t) · (x, y))

exists and that its first component lies in JĨ\{i0}. In particular, T.(x, y) is not

closed.

• Assume now that (T, V ) is not visible. We want to find (x, y) semisimple

such that x is not semisimple. Let I ⊂ [[1, n]] be such that JI contains infinitely

many nilpotent orbits. Then 0 /∈ CH({si|i ∈ I) (Proposition 3.2) and rkSI <

dim JI = #I (7). Thus there exists non-trivial linear relations
∑

i∈I αisi = 0 with

integer coefficients and for any such relation the αi are not all of the same sign.

We can therefore write a relation of the form
∑

i∈I′ βisi =
∑

i∈I′′ βisi with each βi

positive, I ′, I ′′ 6= ∅ and I ′ ⊔ I ′′ ⊂ I. Let x = (xi)i ∈ JI′ and, analogously in V ∗, let

y = (yi)i ∈ JI′′ ⊂ V ∗
I′′ ⊂ V ∗. From this, we get that x is non-zero nilpotent, that

y ∈ V ∗
I′′ ⊂ (VI′)⊥ ⊂ (t · x)⊥ and that

T.(x, y) ⊂

{

(x′, y′) ∈ VI′ × V ∗
I′′

∣

∣

∣

∣

∣

∏

i∈I′

(x′i)
βi

∏

i∈I′′

(y′i)
βi =

∏

i∈I′

(xi)
βi

∏

i∈I′′

(yi)
βi

}

.

This last subset is a T -invariant closed subset of V which does not intersect {0}×V ∗.

Let (x′, y′) be in the closed orbit of T.(x, y). Since x′ ⊂ JĨ with Ĩ ⊂ I ′, x′ is non-zero

nilpotent hence not semisimple. �

Proposition 3.9 shows that the visibility assumption in Conjecture 1.3 is neces-

sary, since the statement fails set-theoretically in any non-visible case..

When k = C, we can state the following:

Corollary 3.10. Conjecture 1.3 holds true for representations of tori

Proof. Note that the polar assumption is redundant by Corollary 3.7. According

to Proposition 3.9, the generic elements of the irreducible (Proposition 3.4) variety

V ⊕ V ∗///T are closed orbits of the form T.(x, y) with x regular (i.e. with T.x

closed of maximal dimension among closed orbits). We may assume that x ∈ c.
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Then y ∈ (t · x)⊥ = (t · c)⊥ = c∨ ⊕ U∨ and, since T.y is closed, we get y ∈ c∨

[DK, Corollary 2.5]. Hence (1) of Remark 1.4 holds Statement (2) follows from

Proposition 3.4. �

4. Null-fiber of the moment map - θ case

A standard reference for the theory of θ-representations is [Vin]. These repre-

sentations are visible and polar but they are not always stable. A classification of

the irreducible θ-representations with their main features can be found in [Kac, §3].

Let us first introduce some notation. Let h =
⊕

i∈Zm
hi be a reductive Lie

algebra equipped with a Zm-grading, that is [hi, hj ] ⊂ hi+j . LetH be any connected

algebraic group having h as its Lie algebra. We consider the adjoint representation

of G := H0 on V := h1 where H0 is the connected subgroup of H with Lie algebra

h0. Fix ω an m-th root of 1. We denote by θ the automorphism of h given by

θ(x) = ωix for x ∈ hi. If a is a θ-stable subspace of h, we can decompose a =
⊕

ai

with ai := a ∩ hi. We then denote the dual direct sum by a∗ =
⊕

a∨i . We will

identify a∨i and (ai)
∗.

We need to understand µ−1(0). From [Vin, §1.2 and §2.2], the θ-representation

(H0, h1) is isomorphic to (
∏

k(H
(k))0,

∏

(h(k))1) for some graded Lie algebras h(k) =
⊕

(h(k))i which are either simple or abelian. The ((H(k))0, (h
(k))1) with h simple

are called the simple components of (H0, h1). Then µ−1(0) is the direct prod-

uct of the µ−1
k (0) where µk is the moment map associated to the representation

((H(k))0, (h
(k))1). In the abelian case, µ−1(0) = h1 ⊕ h∗1. From now on, we will

assume that h is simple.

The Killing form L(·, ·) is a non-degenerate symmetric bilinear form on h × h

which is invariant under H and θ. Via L, V ∗ ∼= h∨1 identifies to h−1. If x ∈ h and

a ⊂ h, we denote the centraliser of x in a by ax = {y ∈ a | [x, y] = 0}. Assume

that ϕ ∈ V ∗ corresponds to y ∈ h−1 via L. Then the condition ϕ ∈ (g · x)⊥ is

read 0 = L([g, x], y) = L(h0, [x, y]), that is [x, y] = 0 since [x, y] ∈ h0 and L is

non-degenerate on h0 ⊕ h0. Thus µ−1(0) is isomorphic to the commuting scheme:

(13) µ−1(0) ∼= {(x, y) ∈ h1 × h−1| [x, y] = 0}.

We now want to define a suitable locally closed cover of h1 satisfying the condi-

tions stated in Section 1

Definition 4.1. We say that a Levi subalgebra l of h arises from h1 if there exists

a semisimple element s ∈ h1 such that l = hs.

In other words, (zl)reg ∩ h1 6= ∅ where zl is the center of l and (zl)reg denotes

the set of elements of zl whose H-orbit is of maximal dimension. Such a Levi l is

clearly θ-stable. Hence l =
⊕

li gives rise to a Zm-graded reductive Lie algebra.

We denote by L0 the connected subgroup of H with Lie algebra l0.

Recall from [Vin] that any x ∈ h1 has a Jordan decomposition xs + xn with

xs, xn ∈ h1, the semisimple and nilpotent part of x, respectively.
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Definition 4.2. Given l a Levi subalgebra of h arising from h1, and O a nilpotent

L0-orbit in l1, we define the decomposition class associated to (l,O) as

J(l,O) := H0 · {(zl)reg ∩ h1 +O}

Alternatively, x ∈ J(l,O) if and only if x is H0-conjugate to an element x′ ∈ l1

such that l = hx
′

s and O = L0 · x′n. Hence decomposition classes are equivalence

classes, so they form a partition of h1. Next, we adapt some results of [Br] (see also

[TY, §39]).

Proposition 4.3. Let J(l,O) be a decomposition class.

(i) If x ∈ J(l,O), then J(l,O) = H0 · {y ∈ h1| hy = hx}

(ii) J(l,O) is an irreducible locally closed subset of h1.

(iii) If x ∈ J(l,O) then dimH0.x = dim h1 − dim l1 + dimO.

(iv) mod(H0, J(l,O)) = dim(zl)1.

Proof. There is no loss of generality in assuming that x satisfies hxs = l and O =

L0 · xn.

(i) From [TY, 35.3.3, 39.1.2, 39.1.1], we have {y ∈ h1| hy = hx} = {y ∈ l1| hys =

l, (l′)yn = (l′)xn} where l′ := [l, l]. Since L0 acts trivially on (zl)reg, this yields

J(l,O) ⊂ H0 · {y ∈ h1|hy = hx}. Note that the condition hys = l implies that

y, ys, yn ∈ l1. In order to prove the converse inclusion, it is therefore enough to

show that U := {n ∈ l′1| (l
′)n = (l′)xn} ⊂ O. Let n ∈ U . Then ln0 = lxn

0 so

dimL0 · n = dimL0 · xn = dimO. The subset U is a dense open subset of (l′1)
xn

by [TY, 35.3.3], hence U is irreducible. From [TY, 35.3.4], U is included in the

nilpotent cone of l′1 which consists of fintely many L0-orbits. Let O′ be the L0-

nilpotent orbit whose intersection with U is dense in U . Then U ⊂ O′. Since all the

elements of U share the same L0-orbit dimension and xn ∈ O∩U , we can eventually

conclude that O = O′ and U ⊂ O.

(ii) It is clear from the definition that J(l,O) is irreducible. Set m = dim hx for

some x ∈ J(l,O). By (i), it does not depend on the choice of x. The map ϕ : y 7→ hy ,

from {y ∈ h| dim hy = m} to the Grassmannian of m-dimensional subspaces in h,

is a morphism of varieties [TY, 19.7.6, 29.3.1]. By (i), J(l,O) = h1 ∩ϕ−1(H0 · (hx))

with hx seen as an element of the Grassmannian. As orbits are locally closed sets,

so are their inverse images by morphisms of varieties. Hence J(l,O) is locally closed

in {y ∈ h| dim hy = m} and the result follows.

(iii) Consider adx as an endomorphism of h. Then l is its generalized eigenspace

associated to 0. Let us denote by q the sum of the other generalized eigenspaces. We

have h = l⊕ q and h ·x = [l⊕ q, x] = (adx)(l)⊕ (ad x)(q) = (adxn)(l)⊕ q. Intersect

with h1 yields h0 · x = l0 · xn ⊕ q1. In particular, codimh1
H0 · x = codiml1 L0 · xn.

(iv) From the computations in (iii), we also get that h · x has trivial intersec-

tion with zl. Since h0 · x + (zl)1 is the tangeant space of J(l,O) at x, we get

dim J(l,O) = dimH0 ·x+dim(zl)1. Since the elements of J(l,O) all share the same

orbit dimension, we have mod(H0, J(l,O)) = dim J(l,O) − dimH0 · x. The result

follows. �
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From Proposition 4.3, the decomposition classes satisfy the requirements of the

covers used in Section 1. However, note that two different data (li,Oi), i = 1, 2 can

give rise to the same decomposition class. In the sequel, we fix a Cartan subspace

c ⊂ h1, that is a maximal subspace of commuting semisimple elements. The number

dim c is called the rank of (H0, h1).

Definition 4.4. We say that a property P is hereditary if, whenever P holds on

a θ-representation (H0, h1), it holds on the restricted θ-representation ((Hs
0 )

◦, ht1)

for any semisimple element t ∈ h1. Here, (Hs
0 )

◦ is the connected subgroup of H0

whose Lie algebra is gs0.

Next, we recall a few classical facts.

Lemma 4.5. Let (H0, h1) be a θ-representation with Cartan subspace c ⊂ h1.

(i) For an element in general position s ∈ c, we have hs = hc and (z(hs))1 = c.

(ii) (H0, h1) is locally free if and only if dim h1 = dim h0 + dim c.

(iii) (H0, h1) is stable if and only if there exists s ∈ c such that hs1 = z(hs)1 = c.

(iv) Stability and local freeness are both hereditary properties.

Proof. (i) follows from [Vin, §3.2].

Since θ-representations are visible, it follows from Remark 1.8 that mod(H0, h1) =

dim h1−m0 where m0 is the maximal orbit dimension in h1. By (i), Proposition 4.3

(iv) and (1), the maximal modality of a decomposition class is mod(H0, h1) = dim c.

Assertion (ii) follows.

From Proposition 4.3 (iii), an element x = xs+xn can have maximal orbit dimension

in h1 only if L0 · xn is of maximal dimension in l1 with l = hxs . This is possible

with xn = 0 only if l′1 = {0} where l′ = [l, l]. Since l1 contains a Cartan subspace,

this implies that l1 is a Cartan subspace. On the other hand, assume that there

exists s ∈ c such that hs1 = z(hs)1 = c. Then J(hs, {0}) is a decomposition class of

dimension dimH0 · s + mod(H0, J(h
s, {0})) = dim h1 − dim hs1 + 0 + dim z(hs)1 =

dim h1 by Proposition 4.3. Hence J(hs, {0}) is the open class in h1. Since it is made

of semisimple elements, the representation is stable.

(iv) follows from [BLLT, Lemma 6.3]. �

Recall from [BLLT, Proposition 4.3] that µ−1(0) can be irreducible only if

(H0, h1) is stable.

Theorem 4.6. Assume that (H0, h1) is a stable and locally free θ-representation

with h simple, then

i) µ−1(0) is an irreducible and reduced complete intersection

ii) µ−1(0) is normal if and only if (H0, h1) does not belong to Table 1

Corollary 4.7. Under the hypothesis of the previous theorem and if h is of classical

type, then µ−1(0) is normal

From [Pan, Theorem 3.2] (or, alternatively, Remark 1.8 and Corollary 1.7), (i)

holds. The remaining of the section is devoted to the proof of Theorem 4.6 (ii).
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Type Kac diagram m n w

E
(1)
6

1 1 0 1 1

1

1

9

xα2+α4

+xα3+α4

+xα5+α4

〈xα4
〉

E
(1)
7

1 1 1 0 1 1 1

1
14 idem idem

E
(1)
8

1 1 0 1 1 1 1 1

1
24 idem idem

1 1 0 1 0 1 1 1

1
20

xα4+α5+α6

+xα6+α7

〈xα6
〉

1 0 1 0 1 0 1 1

0
15

xα2+α3+α4

+xα2+α4+α5

+xα5+α6+α7

+xα7+α8

〈xα2
, xα7

〉

Table 1. Exceptional non-normal

Type Kac diagram

G
(1)
2

c

0
�

�c

1

c

1

F
(1)
4

c

1

c

0

�
�c

1

c

1

c

1

E
(2)
6

c

1

c

1

-
- c

0

c

1

c

1

Table 2. Ex-

ceptional nor-

mal

For this, we first rephrase condition (5) in Lemma 4.8. Then we list all the θ-

representations of rank one in Proposition 4.10. In Lemma 4.11, we check which of

them satisfies condition (P). Finally, we check that the non-normal cases of rank

one do not yield any non-normal example of greater rank in Lemma 4.12.

Recall that all Cartan subspaces of h1 are conjugate. From Lemma 4.5 (i) (iii)

and Proposition 4.3 (iv), the decomposition class J(hc, {0}) is the only one with

maximal modality mod(H0, h1) = dim c. Moreover, the decomposition classes with

mod(H0, J(l,O)) = dim c − 1 are the ones such that dim(zl)1 = dim c − 1 and O

arbitrary. The condition on l means that (L0, l
′
1) is a θ-representation of rank one,

where l′ is the derived subalgebra of l.

Recall that, for x ∈ h1 with l = hxs , we have h
x,y
0 ⊂ hx ⊂ l and that l0 = l′0 by

Lemma 4.5 (iv). Hence, using Corollary 1.7 (v), we have:

Lemma 4.8. Under hypothesis of Theorem 4.6, µ−1(0) is normal if and only if

(P) ∀n ∈ l′1 nilpotent, ∃n′ ∈ (l′)n−1 such that (l′)
(n,n′)
0 = {0}.

for any Levi subalgebra l ⊂ h arising from h1 such that (L0, l
′
1) is of rank one:

In other words, µ−1(0) is normal if and only if the same holds for the semisimple

part of any Levi subalgebra arising from h1 whose associated θ-representation is

of rank one. The main difference with the symmetric Lie algebra case studied in

[Pan] is that we have many θ-representations of rank one. We now aim to classify

them. For this, we recall a few features of the so-called Kac diagrams. The reader

is referred to [Kac, §3] or [Vin, §8] for a detailed treatment.

• A Kac diagram is an affine (possibly twisted) Dynkin diagramX
(ℓ)
n equipped

with an integer label for each node. Up to isomorphisms of representations,

it is enough to consider labels in {0, 1, 2}. If we focus on representations of

positive rank, one can restricts to labels in {0, 1}.

• If Xn(ℓ) with a labelling (v0, . . . , vn) form a Kac diagram, then it gives rise

to a Zm-grading on a reductive Lie algebra h, where m = ℓ
∑

vi.
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• The Lie algebra h0 is a reductive algebra whose semisimple part is the Lie

algebra corresponding to the subdiagram of 0-labelled nodes. The rank of

h0 is that of the finite Dynkin diagram giving rise to X
(ℓ)
n .

For instance, for each affine Dynkin diagram X
(ℓ)
n appearing in the classification

of Kac [Kac, §3, Table 1], we can label each node of X
(ℓ)
n with 1. We denote such

a Kac diagram by X
(ℓ)
n (

¯
1). They give rise to the only θ-representations of positive

rank (H0, h1) where H0 is a torus.

Lemma 4.9. Let (H0, h1) be a θ-representation corresponding to a Kac diagram

of the form X
(ℓ)
n (

¯
1). Then (H0, h1) is stable locally free of rank 1, and µ−1(0) is a

normal variety.

Proof. In this case, h0 is just the Cartan subalgebra of h (associated with the

Dynkin diagram without the extended node αn+1) and h1 is the sum of root spaces

hαi
, i ∈ [[1, n+1]]. Local freeness is clear since α1, . . . αn is a basis of h∗0. By Lemma

4.5 (ii), the rank of (H0, h1) is one. Since αn+1 is the opposite of the highest root,

there is a single relation linking the αi: αn+1 =
∑

i∈[[1,n]] aiαi with ai < 0. By

Corollary 3.3, (H0, h1) is stable and µ−1(0) is normal. �

Proposition 4.10. Let (H0, h1) be a stable and locally free θ-representation of

rank 1 obtained from a simple Lie algebra h. Then (H0, h1) corresponds to a Kac

diagram of the form X
(ℓ)
n (

¯
1) or which appears in Table 1 or Table 2

Proof. When the Lie algebra h is exceptional we use the software [GAP] and its

package [SLA]. We proceed as follows1.

Given h of exceptional type (respectively of type D4), the first step consists

in listing the Kac-diagrams relative to h (resp. with underlying Dynkin diagram

D
(3)
4 ) with labels in {0, 1}. Then we select the corresponding gradings for which

dim h1 = dim h0 + 1. There are few of them. For each selected grading, we choose

a random element x ∈ h1 and compute its semisimple part s. Since the rank of

(H0, h1) is at least 1, the element s should be non-zero (otherwise choose another x).

Then, (H0, h1) is stable locally free of rank 1 if and only if dim hs1 = 1 (Lemma 4.5).

In addition to the X
(ℓ)
n (

¯
1), the only other Kac diagrams arising in this way are

those of Tables 1 and 2.

Assume now that h ⊂ gl(V ) is classical. Our goal is to show that the only stable

and locally free θ-representatons of rank 1 are those arising from the X
(ℓ)
n (

¯
1).

The strategy is similar to the exceptional case, except that we rather rely on the

description of classical θ-representations of Vinberg [Vin, §7]. We refer to this paper

and we use the notation therein. In particular, there are four subcases to consider:

First case: θ is an inner automorphism of h = sl(V ) (type A);

Second case: h is of type B or D;

Third case: h is of type C;

Fourth case: θ outer and h of type A.

1The detail of the GAP-computations used in Propositions 4.10 and Lemmas 4.11 and 4.12

can be found in the auxilary file “computations_rk1.txt”
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In the first three cases (respectively in the fourth case) θ (respectively θ2) is an

automorphism of order m0 given by g 7→ aga−1 for some a ∈ GL(V) satisfying

am0 ∈ {±Id}. For θ of order 1 or 2, the only locally free case of rank 1 is A
(1)
1 (

¯
1) so

we may assume that m0 > 1. Then V =
⊕

λ∈S V (λ) where V (λ) = {x ∈ V |a.x =

λx} and S = {λ|λm0 = +1} or S = {λ|λm0 = −1}. That is S = {λ0ω
j
0|j ∈ Zm0

}

for λ0 = 1 or exp( 2iπ
2m0

) and ω0 := exp(2iπm0

). For j ∈ Zm0
, we set λj := λ0ω

j
0 and

kj := dimV (λj). The elements x ∈ hk satisfy x.V (λj) ⊂ V (λj+k) for any j ∈ Zm0
.

We first look at the first case. From [Vin], the rank of (H0, h1) is minj∈Zm0
kj .

Since h0 ∼= sl(V ) ∩
∏

j∈Zm0

gl(Vj)) and h1 ∼=
∏

j∈Zm0

Hom(Vj , Vj+1), we have

dim h1 − dim h0 =





∑

j∈Zm0

kjkj+1



−





∑

j∈Zm0

k2j − 1



 = 1−
1

2

∑

j∈Zm0

(kj − kj+1)
2 .

From Lemma 4.5 (ii), we want that this number is 1. The only possibility is that

kj = kj′ for any j, j′ ∈ Zm0
and the condition on the rank forces this common value

to be 1. In this particular case, H0 is a torus so this must coincide with a grading

given by a Kac diagram of the form A
(1)
n (

¯
1) (inner automorphism).

From now on we focus on the last three cases. In each of these cases, a non-

degenerate bilinear form comes into play. This form induces a duality between

V (λ) and V (λ) and we have kj = kj̄ where j̄ denotes the element of Zm0
satisfying

λj̄ = λj . Depending on whether each elements 1 and −1 belong to S or not, the

corresponding θ-representations may have different behavior. For ν ∈ {±1}, we

set ην :=

{

1 if ν ∈ S

−1 if ν /∈ S
. Set also ǫ1 :=

{

1 in the 2nd and 4th case

−1 in the 3rd case
and

ǫ−1 :=

{

1 in the 2nd case

−1 in the 3rd and 4th case
. We then have a uniform formula

dim h1 − dim h0 =
1

2





∑

j

kjkj+1 −
∑

j

k2j + (ǫ1η1k0 + ǫ−1η−1km′)





=
1

4



−
∑

j

(kj − kj+1)
2 + 2ǫ1η1k0 + 2ǫ−1η−1km′





In a nutshell, h0 is a product of the gl(Vj) ∼= gl(Vj̄) for λj /∈ {±1} and possible

copies of so(Vj) or sp(Vj) for λj ∈ {±1}. A similar combinatoric holds for h1. In

the fourth case, the assumption m0 > 1 ensures that kIdV lies in a k-th part of the

grading in gl(V ) satisfying k /∈ {0, 1}.

We choosem′ ∈ Zm0
such thatRe(λm′) is minimal. By convention, the argument

of a complex number is taken in [0, 2π[. Choosing jmin ∈ Zm0
such that kj is

minimal and Im(λj) > 0, we define

I =
{

j
∣

∣

∣arg(λj) < arg(λjmin
) or arg(λm′) 6 arg(λj) < arg(λjmin

)
}

,

I =
{

j
∣

∣

∣arg(λjmin
) 6 arg(λj) < arg(λm′ ) or arg(λjmin

) 6 arg(λj)
}

.
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Using the equality n2 = n(n− 1) + n, we can write

dim h1 − dim h0 =
1

4



−
∑

j∈I

(kj − kj+1)(kj − kj+1 − 1)−
∑

j∈J

(kj+1 − kj)(kj+1 − kj − 1)

+
∑

j∈I

(kj+1 − kj) +
∑

j∈J

(kj − kj+1) + 2ǫ1η1k0 + 2ǫ−1η−1km′





The first two terms are non-positive and the rest of the expression is equal to

(kjmin
−k0)+(kjmin

−km′)+(kjmin
−km′)+(kjmin

−k0)+2ǫ1η1k0+2ǫ−1η−1km′ =

2 [(ǫ1η1 − 1)k0 + kjmin
]+2 [(ǫ−1η−1 − 1)km′ + kjmin

]. Each of the terms in brackets

is either equal to kjmin
if ǫνην = 1, or is not greater than −kjmin

if ǫνην = −1. In

particular, dim h1 −dim h0 can be positive only if ǫνην = 1 for ν ∈ {±1}. Hence, it

is of type I in the terminology of [Vin, §7.2], and its rank is kjmin
. Then, it follows

from our formulas and Lemma 4.5 that the only locally free cases of rank 1 are the

following ones






kjmin
= 1,

∀j ∈ I, kj − kj+1 ∈ {0, 1},

∀j ∈ J, kj+1 − kj ∈ {0, 1}






and











±1 ∈ S in the 2nd case

±1 /∈ S in the 3rd case

1 ∈ S,−1 /∈ S in the 4th case

.

In the last three cases, the action is not stable in general. Given subspaces

U(λ) ⊂ V (λ) of dimension 1, we can construct a non-zero semisimple element

C ∈ h1 such that C(U(λ)) = U(ω0λ). Then V ′ := Ker(C) decomposes as

V ′ :=
⊕

λ V
′(λ); the decomposition in two summands V = (

⊕

λ U(λ)) ⊕ V ′ is or-

thogonal and the derived subalgebra of gl(V )C can be identified with sl(V ′). If there

exists j ∈ Zm0
such that kj , kj+1 > 2, then we can construct in each case a non-zero

element N in hC1 ∩ sl(V ′) with N(V ′(λj)) ⊂ V ′(λj+1), N(V ′(λj+1)) ⊂ V ′(λj) and

N(U(λ)) = 0 = N(V ′(λk)) for any λ ∈ S and any k /∈ {j, j + 1}. This contradicts

the stability hypothesis since N ∈ hC \kC, see Lemma 4.5 (iii). Thus, the only sta-

ble gradings to consider are those with

{

kj = 1 for j such that λj /∈ {±1}

kj ∈ {1, 2} for j such that λj ∈ {±1}
.

The different possibilities are listed in Table 3 (up to multiplication of a by −1 in

type B, which gives rise to the same grading). Once again, H0 is a torus in each

case so the corresponding grading must be obtained from a Kac diagram of the

form X
(ℓ)
n (

¯
1). These Kac diagrams are identified in the last column of Table 3. �

Lemma 4.11. If (H0, h1) is a θ-representation associated to a Kac diagram of

Table 1 (resp. Table 2) then it does not satisfy (resp. it satisfies) condition (P) of

Lemma 4.8.

The proof of this lemma relies on computer-based computations. First, we list

representatives of the nilpotent H0-orbits on h1. For any such representative ni,

we choose a random element n′
i ∈ hn−1. Then we compute h

(ni,n
′

i)
0 . It turns out to

be {0} for each i in cases of Table 2 so (P) holds. In cases of Table 1, we compute

wi := {y ∈ hni

0 | [y, hni

−1] = {0}} =
⋂

z∈h
ni
−1

h
(ni,z)
0 . In each case, it turns out that

there exists i such that wi 6= {0}. Hence (P) must fail in these cases. An example
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Case
Parity

of m0

Parity of

dim(V )
Condition on the kj X

(ℓ)
n (

¯
1)

First case / / ∀j, kj = 1 A
(1)
n (

¯
1)

Second case even

odd kj =

{

2 if j = 0

1 else
B

(1)
n (

¯
1)

even
∀j, kj = 1 D

(1)
n (

¯
1)

kj =

{

2 if j ∈ {0, m0

2 }

1 else
D

(2)
n (

¯
1)

Third case even even ∀j, kj = 1 C
(1)
n (

¯
1)

Fourth case odd
even kj =

{

2 if j = 0

1 else
A

(2)
2p−1(¯

1)

odd ∀j, kj = 1 A
(2)
2p (¯

1)

Table 3. Stable classical locally free grading of rank 1

of such ni,wi is given in the table, using the numbering of the roots as in [Bo] and

where xα denotes a root vector for the root α.

Lemma 4.12. Let (H0, h1) be a locally free stable θ-representation with h simple.

Then there is no proper Levi l arising from h1 such that (L0, l
′
1) corresponds to a

Kac diagram of Table 1.

Proof. Assume that such a proper Levi exists. Then h is of type E7 or E8 and the

Cartan subspace of h1 is of dimension 2 or 3. Moreover the order of the automor-

phism θ giving rise to the graduation is a multiple of 9 or 14. We can now consider

all the possible Kac diagrams of type E7 or E8 such that dim g1−dim g0 ≥ 2. After

computation, it turns out that the resulting Zm-gradings have order which are not

multiple of 9 or 14, which is a contradiction. �

Remark 4.13. Conjecture 1.3 in the case of a locally free stable θ-representation

follows from [BLLT, Theorem 1.2]. We briefly explain here how to recover it using

the results of this paper. First, note that the 5 exceptional cases of Table 1 are of

rank one. Then it follows from [BLLT, Proposition 3.4 & 5.1] that the natural map

c⊕ c∨/W → V ⊕V ∗///G is a dominant closed immersion, hence an isomorphism. In

the other cases, Theorem 4.6 ensures that µ−1(0) is normal. So the same holds for

the symplectic reduction and the result follows from [BLLT, Proposition 5.1] and

Remark 1.4.

Note that the ground results on polar representations of [DK] are known for θ-

representations over any algebraically closed field of characteristic zero. Thus, we

don’t need the assumption k = C used in [BLLT].
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