Optimal absorption of acoustical waves by a boundary - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Optimal absorption of acoustical waves by a boundary

Résumé

In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the energy of a sound wave, we consider a frequency model (the Helmholtz equation) with a damping on the boundary. The damping on the boundary is firstly related with the damping in the volume, knowing the macroscopic parameters of a fixed porous medium. Once the well-posedness results are proved for the time-dependent and the frequency models in the class of bounded $n$-sets (for instance, locally uniform domains with a $d$-set boundary, containing self-similar fractals or Lipschitz domains as examples), the shape optimization problem of minimizing the acoustical energy for a fixed frequency is considered. To obtain an efficient wall shape for a large range of frequencies, we define the notion of $\epsilon$-optimal shapes and prove their existence in a class of multiscale Lipschitz boundaries when we consider energy dissipation on a finite range of frequencies, and in a class of fractals for an infinite frequency range. The theory is illustrated by numerical results.
Fichier principal
Vignette du fichier
Preprint.pdf (3.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01558043 , version 1 (06-07-2017)
hal-01558043 , version 2 (01-02-2018)
hal-01558043 , version 3 (22-02-2018)
hal-01558043 , version 4 (28-08-2019)
hal-01558043 , version 5 (27-03-2020)
hal-01558043 , version 6 (17-07-2020)

Identifiants

  • HAL Id : hal-01558043 , version 4

Citer

Thi Phuong Kieu Nguyen, Frédéric Magoulès, Pascal Omnes, Anna Rozanova-Pierrat. Optimal absorption of acoustical waves by a boundary. 2017. ⟨hal-01558043v4⟩

Collections

FED-MATH
1009 Consultations
694 Téléchargements

Partager

More