Shape optimization for the Helmholtz equation with complex Robin boundary conditions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Shape optimization for the Helmholtz equation with complex Robin boundary conditions

Résumé

In the aim to find the simplest and most efficient shape of a noise absorbing wall to dissipate the energy of a sound wave, we consider a frequency model (the Helmholtz equation) with a damping on the boundary. The damping on the boundary is firstly related with the damping in the volume, knowing the macroscopic parameters of a fixed porous medium. Once the well-posedness results are proved for the time-dependent and the frequency models in the class of bounded $n$-sets (for instance, locally uniform domains with a $d$-set boundary, containing self-similar fractals or Lipschitz domains as examples), the shape optimization problem of minimizing the acoustical energy for a fixed frequency is considered. To obtain an efficient wall shape for a large range of frequencies, we define the notion of $\epsilon$-optimal shapes and prove their existence in a class of multiscale Lipschitz boundaries when we consider energy dissipation on a finite range of frequencies, and in a class of fractals for an infinite frequency range. The theory is illustrated by numerical results.
Fichier principal
Vignette du fichier
Optimization-Preprint.pdf (5.99 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01558043 , version 1 (06-07-2017)
hal-01558043 , version 2 (01-02-2018)
hal-01558043 , version 3 (22-02-2018)
hal-01558043 , version 4 (28-08-2019)
hal-01558043 , version 5 (27-03-2020)
hal-01558043 , version 6 (17-07-2020)

Identifiants

  • HAL Id : hal-01558043 , version 1

Citer

Frédéric Magoulès, Thi Phuong Kieu Nguyen, Pascal Omnes, Anna Rozanova-Pierrat. Shape optimization for the Helmholtz equation with complex Robin boundary conditions. 2017. ⟨hal-01558043v1⟩
945 Consultations
644 Téléchargements

Partager

More