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Abstract

In the aim to find the simplest and most efficient shape of a noise absorbing wall to
dissipate the energy of a sound wave, we consider a frequency model (the Helmholtz
equation) with a damping on the boundary. The damping on the boundary is firstly
related with the damping in the volume, knowing the macroscopic parameters of
a fixed porous medium. Once the well-posedness results are proved for the time-
dependent and the frequency models in the class of bounded n -sets (for instance,
locally uniform domains with a d -set boundary, containing self-similar fractals or
Lipschitz domains as examples), the shape optimization problem of minimizing the
acoustical energy for a fixed frequency is considered. To obtain an efficient wall
shape for a large range of frequencies, we define the notion of ε -optimal shapes and
prove their existence in a class of multiscale Lipschitz boundaries when we consider
energy dissipation on a finite range of frequencies, and in a class of fractals for an
infinite frequency range. The theory is illustrated by numerical results.

1 Introduction

The diffraction and absorption of waves by a system with both absorbing properties
and irregular geometry is an open physical problem. From acoustics to optics, the wave
absorption, related to the coupling between waves and matter, is a problem of interest.
This has to be solved to understand why anechoic chambers (electromagnetic or acoustic)
do work better with irregular absorbing walls. Therefore there is a question about the
existence of an optimal shape of an absorbent wall (for a fixed absorbing material), optimal
in the sense that it is as dissipative as possible for a large range of frequencies, and at the
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same time that such a wall could effectively be constructed. We consider the propagation
of acoustic waves; the acoustic absorbent material of the wall is considered as a porous
medium.

In the area of the optimization of acoustic performances of non absorbing walls,
Duhamel [14, 15] studies sound propagation in a 2D vertical cut of a road wall and
uses genetic algorithms to obtain optimal shapes (some of them are however not con-
nected and thus could not be easily manufactured). The author also uses a branch and
bound (combinatorial optimization) type linear programming in order to optimize the
position sensors that allow an active noise control, firstly introduced by Lueg [19] in 1934.
Abe et al. [1] consider a BE-based (boundary elements) shape optimization of a non
absorbing two-dimensional wall in the framework of a two-dimensional sound scattering
problem for a fixed frequency (for the Helmholtz equation) using a topological derivative
with the principle that a new shape or topology is obtained by nucleating small scattering
bodies. Also for the Helmholtz equation for a fixed frequency, using the shape deriva-
tive of a functional, representing the acoustical energy, Cao and Stanescu [10] consider a
two-dimensional shape design problem for a non-absorbing part of the boundary to re-
duce the amount of noise radiated from aircraft turbofan engines. For the same problem,
Farhadinia [17] developed a method based on measure theory, which does not require any
information about gradients and the differentiability of the cost function.

On the other hand, for shape optimization problems there are a lot of theoretical
results, reviewed in Refs. [3, 33], which rely on the topological derivatives of the cost
functional to be minimized, with numerical application of the gradient method in both
two and three dimensional cases (in the framework of solid mechanics). In this area,
Achdou and Pironneau [2] considered the problem of optimization of a photocell using
a complex-valued Helmholtz system with periodic boundary conditions with the aim to
maximize the solar energy in a dissipative region.

For acoustic waves in the two-dimensional case, optimization of the shape of an ab-
sorbing inclusion placed in a lossless acoustic medium was considered in Refs. [34, 35].
The considered model is the linear damped wave equation [13, 4], which we also consider
in our case to describe the wave propagation in a porous medium (see Section 2). Using
the topology derivative approach, Münch et al. consider in [34, 35] the minimization of
the acoustic energy of the solution of the damped wave equation at a given time T > 0
without any geometric restrictions and without the purpose of the design of an absorbent
wall.

In this article, we study the two-dimensional optimization shape problem for a Helmholtz
equation with a damping on the boundary, modeled by a complex-valued Robin boundary
condition (see system (3) and Fig. 2). The shape of the damping boundary is to be found,
in the aim to minimize the total acoustical energy of the system. The noise source can be
imposed as a source term in the equation and/or by a Dirichlet boundary condition (on
the boundary opposite to the absorbing wall) which models a noise coming from a road.
As for acoustical cavities, the domain of computation is limited on its top and bottom by
boundaries with Neumann boundary conditions.

In Section 2, we introduce the frequency model and its time-dependent analogue with
a dissipation on the boundary and analyze its dissipative properties. We compare this
model with dissipation by the boundary to the corresponding model with a dissipation
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in the volume, described by a damped wave equation in which the values of the coeffi-
cients for a given porous medium are given as functions of its macroscopic parameters
(as porosity, tortuosity and resistivity to the passage of air), as initially proposed by [21].
In particular, in Appendix A, we propose a possible way to find the complex parameter
in the Robin boundary condition of the former model that best approximates the latter.
All numerical calculations, in particular in Section 7, are performed for a porous material
named ISOREL, frequently used in building isolation.

In Section 3 we establish the well-posedness results of the introduced models with a
dissipation on the boundary in a large class of bounded domains ( (ε, δ) -domains with a
d -set boundary), containing Lipschitz domains and von Koch fractals as two particular
cases. We need these well-posedness properties of the models to be able to consider in
this class of domains the question of existence of an optimal shape, optimal in minimizing
the acoustical energy (see Eqs. (17) and (19)).

In Section 4, for the case of a regular boundary in the classical framework of shape
optimization, for any fixed frequency we have the existence of an optimal shape. To
obtain an efficient wall shape for a large range of frequencies, we define ε -optimal shapes.
Knowing empirically that for the efficient energy dissipation of an acoustic wave, its
wavelength λ must be related with a geometric scale of the wall, we confirm this fact
numerically by calculating the impact of the different geometric scales on the energy
dissipation in time (see Fig. 5, which confirms a guess that the wall length scale must be
of the order of λ/2 ). The developed optimization algorithm confirms that the optimal
shape has its largest scale length of the order of λ/2 (see Subsection 7.1 and Fig. 7).

Moreover, using the fact that a wave with a wavelength λ0 does not fit into a shape
that has a characteristic scale much smaller than its wavelength (smaller than λ0/2 ), we
prove in Section 4 the existence of an ε -optimal shape which is a multiscale Lipschitz
boundary when we consider energy dissipation on a finite range of frequencies, and which
is a fractal for an infinite range. Thus, we prove that it is not possible to obtain the most
efficient in the acoustical energy dissipation shape (an ε -optimal shape with a minimal
ε > 0 ) for all frequencies without different geometric scales.

For the case of a regular boundary we provide in Section 5 the shape derivative of an
objective functional chosen to describe the acoustical energy. Using the gradient descent
method for the shape derivative, combined with the finite volume and level set methods
introduced in Section 6, we find numerically the optimal shapes for a fixed frequency. In
Subsection 7.2, we show the stability of the numerical algorithm and the non-uniqueness
of the optimal shape, which can be explained by the non-uniqueness of the geometry
providing the same spectral properties. In Subsection 7.3 we obtain an ε -optimal shape
for a large range of frequencies. This shape is multiscale, and we show that if we keep only
the largest scale, the new shape has the same good dissipation properties as the optimal
one in the low frequencies corresponding to the chosen scale length, but is no more efficient
in higher frequencies, for which the deleted geometry scales where important.
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2 The model : Motivation and known properties

To describe the acoustic wave absorption by a porous medium, there are two possibilities.
The first is to consider wave propagation in two media, typically the air and the wall, which
corresponds to a damping in the volume. The most common mathematical model for it is
the damped wave equation [4, 13]. The second possibility is to consider only one lossless
medium, the air, and model energy dissipation by a damping condition on the boundary.
In both cases, we need to ensure the same order of energy damping corresponding to the
physical characteristics of the chosen porous medium as its porosity φ , tortuosity αh and
resistivity to the passage of air σ .

Thanks to Ref. [21], we can define the coefficients in the damped wave equation (the
case of the absorption in volume) as funtions of the above mentionned characteristics.
More precisely, for a regular bounded domain Ω ⊂ R

2 (for instance ∂Ω ∈ C1 ) composed
of two disjoint parts Ω = Ω0 ∪ Ω1 of two homogeneous media, air in Ω0 and a porous
material in Ω1 , separated by an internal boundary Γ , we consider the following boundary
value problem (for the pressure of the wave)







ξ(x)∂2t u+ a(x)∂tu−∇ · (µ(x)∇u) = 0 in Ω,
∂u
∂n
|Rt×∂Ω ≡ 0, [u]Γ = [µ∇u · n]Γ = 0,

u|t=0 = u01Ω0, ∂tu|t=0 = u11Ω0,
(1)

with ξ(x) = 1
c20

, a(x) = 0 , µ(x) = 1 in the air ( i.e. in Ω0 ) and ξ(x) = φγp
c20

, a(x) =

σ φ2γp
c20ρ0αh

, µ(x) = φ
αh

in the porous medium ( i.e. in Ω1 ). The external boundary ∂Ω

is supposed to be perfectly rigid (Neumann boundary condition) and on the internal
boundary Γ we have no-jump conditions on u and µ∇u ·n , where n is the normal unit
vector to Γ . Here, by c0 and ρ0 are denoted the sound velocity in and the density of the
air respectively, and by γp = 7/5 the ratio of specific heats. The damped character of the
wave propagation described by model (1) can be illustrated by the decreasing properties
of the energy due to the damping term a(x)ut having its support in Ω1 :

1

2

d

dt

(
∫

Ω

[

ξ(∂tu)
2 + (µ∇u) · ∇u

]

dx

)

= −
∫

Ω1

a(∂tu)
2dx. (2)

This model is numerically solved in Subsection 7.1.
But instead of the absorption in volume, especially for the sake of a simpler numerical

treatment of the shape optimization, we consider the following frequency model of the
damping by the boundary. Let Ω be a connected bounded domain of R

2 with a Lipschitz
boundary ∂Ω . We suppose that the boundary ∂Ω is divided into three parts ∂Ω =
ΓD ∪ ΓN ∪ Γ (see Fig. 2 for an example of Ω , chosen for the numerical calculations) and
consider

{ △u+ ω2u = −f(x) x ∈ Ω,

u = g(x) on ΓD,
∂u

∂n
= 0 on ΓN ,

∂u

∂n
+ α(x)u = 0 on Γ,

(3)

where α(x) is a complex-valued regular function with a strictly positive real part (Re(α) >
0 ) and a strictly negative imaginary part ( Im(α) < 0 ).
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Remark 1 This particular choice of the signs of the real and the imaginary parts of α
are provided by the well-posedness properties and the energy decay of the corresponding
time-dependent problem. In addition, as the frequency ω > 0 is supposed to be fixed, α
can contain a dependence on ω , i.e. , α ≡ α(x, ω).

Problem (3) is a frequency version of the following time-dependent wave propagation
problem, considered in Ref. [7]:

∂2t u−△u = e−iωtf(x), (4)

u|t=0 = u0, ∂tu|t=0 = u1, (5)

u|ΓD
= 0,

∂u

∂n

∣

∣

∣

∣

ΓN

= 0, (6)

∂u

∂n
− Im(α(x))∂tu+ Re(α(x))u|Γ = 0. (7)

To show the energy decay, we follow Ref. [7] and introduce the Hilbert space X0(Ω) ,
defined as the Cartesian product of the set of functions u ∈ H1(Ω) , which vanish on ΓD
and satisfy the Robin type boundary condition (7) on Γ , with the space L2(Ω) . The
equivalent norm on X0(Ω) is defined by

‖(u, v)‖2X0(Ω) =

∫

Ω

(

|∇xu|2 + |v|2
)

dx+

∫

Γ

Re(α(x))|u|2dσ

with the corresponding inner product

〈(u1, u2), (v1, v2)〉 =
∫

Ω

(∇xu1∇xv1 + u2v2) dx+

∫

Γ

Re(α(x))u1v1dσ. (8)

The advantage of this norm is that the energy balance of the homogeneous problem (4)–(7)
has the form

∂t
(

‖(u, ∂tu)‖2X0(Ω)

)

= 2

∫

Γ

Im(α(x))|∂tu|2ds.

Therefore, for Im(α) < 0 on Γ , the energy decays in time.
For the case of a smooth boundary ∂Ω (at least Lipschitz), we have the well-posedness

of two models:

Theorem 1 Let Ω ⊂ R
n be a closed domain with a smooth (at least Lipschitz) boundary

∂Ω = ΓD ∪ ΓN ∪ Γ . Let in addition Re(α(x)) > 0 , Im(α(x)) < 0 be smooth functions
(at least continuous) on Γ . Then the following results hold:

1. (C. Bardos, J. Rauch [7]) For all f ∈ L2(Ω) , (u0, u1) ∈ X0(Ω) there exists a unique
solution (u, ut) ∈ C(]0,∞[, X0(Ω)) of system (4)–(7).

2. (Gander et al. [18], Evans [16], Allaire [3]) For all f ∈ L2(Ω) , g ∈ H1/2(ΓD)
and ω > 0 there exists a unique u ∈ H1(Ω) solution of problem (3) continuously
depending on the data: there exists C > 0 not depending on f and g , such that

‖u‖H1(Ω) ≤ C
(

‖f‖L2(Ω) + ‖g‖
H

1
2 (ΓD)

)

.

In addition, if, for m ∈ N
∗ , ∂Ω ∈ Cm+2 , f ∈ Hm(Ω) and g ∈ Hm+ 3

2 (ΓD) , then
the weak solution u belongs to Hm+2(Ω) .
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Figure 1: One medium for the absorption on the boundary (left) and two media for the
absorption in the volume (right).

In order to relate the model with a damping on the boundary and the model with
a damping in the volume (see Fig. 1), we propose in Appendix A a way to identify the
parameter α in the Robin boundary condition that provides the best approximation of
the latter model by the former, in the case of a flat boundary Γ .

3 Well-posedness of the boundary dissipation models

for d -sets

We extend the well-posedness results of Theorem 1 to a more general class of boundaries,
named Ahlfors d -regular sets or simply d -sets [26], using the functional analysis on
(ε, δ) -domains [25, 26, 40], also called locally uniform domains [24]. Let us define the
main notions [5].

Definition 1 (Ahlfors d -regular set or d -set [26, 40, 27]) Let F be a Borel subset
of R

n and md be the d -dimensional Hausdorff measure, 0 < d ≤ n , d ∈ R . The set F
is called a d -set, if there exist positive constants c1 , c2 > 0 ,

c1r
d ≤ md(F ∩Br(x)) ≤ c2r

d, for ∀ x ∈ F, 0 < r ≤ 1,

where Br(x) ⊂ R
n denotes the Euclidean ball centered at x and of radius r .

Definition 2 ( (ε, δ) -domain [25, 26, 40]) An open connected subset Ω of R
n is an

(ε, δ) -domain, ε > 0 , 0 < δ ≤ ∞ , if whenever (x, y) ∈ Ω2 and |x− y| < δ , there is a
rectifiable arc γ ⊂ Ω with length ℓ(γ) joining x to y and satisfying

1. ℓ(γ) ≤ |x−y|
ε

and

2. d(z, ∂Ω) ≥ ε|x− z| |y−z||x−y| for z ∈ γ .

It is known [40] that

• All (ε, δ) domains in R
n are n -sets ( d -set with d = n ):

∃c > 0 ∀x ∈ Ω, ∀r ∈]0, δ[∩]0, 1] µ(Br(x) ∩ Ω) ≥ Cµ(Br(x)) = crn,

where µ(A) denotes the Lebesgue measure of a set A . This property is also called
the measure density condition [20]. Let us notice that an n -set Ω cannot be “thin”
close to its boundary ∂Ω .
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• If Ω is an (ε, δ) -domain and ∂Ω is a d -set ( d < n ) then Ω = Ω ∪ ∂Ω is a n -set.

In particular, a Lipschitz domain Ω is an (ε, δ) -domain and also an n -set [40]. But not
every n -set is an (ε, δ) -domain: adding an in-going cusp to an (ε, δ) -domain we obtain
an n -set which is not an (ε, δ) -domain anymore. Self-similar fractals (e.g., von Koch’s
snowflake domain) are examples of (ε,∞) -domains with a d -set boundary [12, 40] for
d > n− 1 .

To extend the usual variational formulations introduced in Refs. [7, 18] to d -set type
fractal boundaries, we use, as in Ref. [5], the existence of the d -dimensional Hausdorff
measure md on ∂Ω (see Definition 1) and a generalization of the usual trace theorem and
the Green formula in the sense of the Besov space B2,2

β (∂Ω) with β = 1 − n−d
2
> 0 (for

the definition of the Besov spaces on d -sets see Ref. [26] p.135 and Ref. [40] or Appendix
in Ref. [6]). Note that for d = n− 1 , one has β = 1

2
and

B2,2
1
2

(∂Ω) = H
1
2 (∂Ω).

Let us start with the generalization of the notion of the trace:

Definition 3 For an arbitrary open set Ω of R
n , the trace operator Tr is defined [26,

8, 29] for u ∈ L1
loc(Ω) by

Tr u(x) = lim
r→0

1

m(Ω ∩ Ur(x))

∫

Ω∩Ur(x)

u(y)dy,

where m denotes the Lebesgue measure. The trace operator Tr is considered for all x ∈ Ω
for which the limit exists.

Henceforth, the boundary ∂Ω is a d -set endowed with the d -dimensional Hausdorff
measure, and L2(∂Ω) is defined with respect to this measure as well. Hence, the following
Theorem (see Ref. [5] Section 2) generalizes the classical results [30, 31] for the Lipschitz
boundaries ∂Ω :

Theorem 2 Let Ω be an admissible in the sense of Ref. [5] domain in R
n , i.e. Ω is

an n -set, such that

• the norms ‖f‖H1(Ω) and ‖f‖C1
2 (Ω) = ‖f‖L2(Ω) + ‖f ♯1,Ω‖L2(Ω) with

f ♯1,Ω(x) = sup
r>0

r−1 inf
c∈R

1

µ(Br(x))

∫

Br(x)∩Ω
|f(y)− c|dy

are equivalent on H1(Ω) ;

• its boundary ∂Ω is a compact d -set, n− 2 < d < n .

Then,

1. H1(Ω) is compactly embedded in Lloc2 (Ω) or in L2(Ω) if Ω is bounded;

2. TrΩ : H1(Rn) → H1(Ω) is a linear continuous and surjective operator with linear
bounded inverse (the extension operator EΩ : H1(Ω) → H1(Rn) );
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3. for β = 1− (n− d)/2 > 0 the operators

Tr : H1(Rn) → L2(∂Ω), and Tr∂Ω : H1(Ω) → L2(∂Ω)

are linear compact operators with dense image Im(Tr) = Im(Tr∂Ω) = B2,2
β (∂Ω) and

with linear bounded right inverse (the extension operators)

E : B2,2
β (∂Ω) → H1(Rn) and E∂Ω : B2,2

β (∂Ω) → H1(Ω);

4. the Green formula holds (see also Refs. [29, 11] for the von Koch case in R
2 ) for

all u and v from H1(Ω) with ∆u ∈ L2(Ω) :

∫

Ω

v∆udx = 〈∂u
∂ν
,Trv〉((B2,2

β
(∂Ω))′,B2,2

β
(∂Ω)) −

∫

Ω

∇v∇udx, (9)

where the dual Besov space (B2,2
β (∂Ω))′ = B2,2

−β(∂Ω) is introduced in Ref. [27].

Remark 2 Theorem 2 is a particular case of the results proven in Ref. [5], thanks
to Refs. [20, 25, 26, 27, 40].

We also notice that in the framework the Sobolev space H1 and the Besov spaces B2,2
β

with β < 1 , as here, we does not need to impose the Markov’s local inequality on ∂Ω (see
Ref. [26] p.39), as it is trivially satisfied (see Ref. [28] p. 198). If we are working with
more regular spaces, Hk with k ≥ 2 , k ∈ N

∗ , we need to add the assumption that ∂Ω
preserves the Markov’s local inequality: for every fixed k ∈ N

∗ , there exists a constant
c = c(V, n, k) > 0 , such that

max
∂Ω∩Br(x)

|∇P | ≤ c

r
max

∂Ω∩Br(x)
|P |

for all polynomials P ∈ Pk and all closed balls Br(x) , x ∈ ∂Ω and 0 < r ≤ 1 .
For n = 2 , if Ω is a bounded connected domain, then, thanks to [25] and [20] (see

also Proposition 1 in Ref. [5]), Ω is an (ε, δ) -domain.

In this framework we prove the following theorem

Theorem 3 Let Ω be a bounded domain in R
n satisfing the conditions of Theorem 2 (for

instance an (ε, δ) -domain) with a closed d -set boundary ∂Ω = ΓD∪ΓN ∪Γ , n−2 < d <
n . By md is denoted the d –dimensional Hausdorff measure on ∂Ω (see Definition 1).
Let in addition Re(α(x)) > 0 , Im(α(x)) < 0 be continuous functions on Γ . Then the
following results hold:

1. For all f ∈ L2(Ω) , (u0, u1) ∈ X0(Ω) , there exists an unique solution U = (u, ut) ∈
C(]0,∞[, X0(Ω)) of system (4)–(7) satisfying the following energy identity

1

2

d

dt

(
∫

Ω

(|ut|2 + |∇xu|2)dx+
∫

Γ

Re(α)|u|2dmd

)

−
∫

Ω

Im(α)|ut|2dmd = e−iωt
∫

Ω

futdx. (10)
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2. For all f ∈ L2(Ω) and g ∈ B2,2
β (ΓD) (with β = 1 − n−d

2
> 0 ) and ω > 0 there

exists a unique u ∈ H1(Ω) solution of problem (3) in the following weak sense: for
all v ∈ H1(Ω)

∫

Ω

∇u · ∇v̄dx− ω2

∫

Ω

uv̄dx+

∫

Γ

αuv̄dmd =

∫

Ω

f v̄dx+

∫

ΓD

gv̄dmd. (11)

The weak solution u continuously depends on the data: there exists C > 0 , not
depending on f , g and the values of α , such that

‖u‖H1(Ω) ≤ C
(

‖f‖L2(Ω) + ‖g‖B2,2
β

(ΓD)

)

. (12)

Proof. Let us focus on the proof of the second point in Theorem 3, i.e. on the well-
posedness of the Helmholtz system (3). We introduce the space

V (Ω) = {u ∈ H1(Ω)| u = 0 on ΓD} (13)

with the norm

‖u‖2V (Ω) =

∫

Ω

|∇u|2dx+
∫

Γ

Re(α)|u|2dmd.

Thanks to the continuity of the trace operator Tr : H1(Ω) → L2(ΓD) , the space V (Ω) is
a Hilbert space with the inner product of H1(Ω) . As Γ is a part of a compact boundary
∂Ω , the norms ‖ · ‖H1(Ω) and ‖ · ‖V (Ω) are equivalent on H1(Ω) (by Proposition 3 from
Ref. [5]). Thus, the space V (Ω) is also a Hilbert space with the inner product

(u, v)V (Ω) =

∫

Ω

∇u · ∇v̄dx+
∫

Γ

Re(α)uv̄dmd.

First, we consider the boundary value problem for the Laplacian (ω = 0 ). We define a
sesquilinear form on V (Ω) by

a(u, v) =

∫

Ω

∇u · ∇v̄dx+
∫

Γ

αuv̄dmd

and an antilinear form

l(v) =

∫

Ω

f v̄dx.

We are looking for the weak solution u ∈ V (Ω) of the following variational problem

∀v ∈ V (Ω), a(u, v) = l(v).

We apply the complex version of the Lax-Milgram theorem. Indeed, the coercivity and
the continuity of the form a(·, ·) are immediate:

|a(u, u)| =
∣

∣

∣

∣

∫

Ω

|∇u|2dx+
∫

Γ

Re(α)|u|2dmd + i

∫

Γ

Im(α)|u|2dmd

∣

∣

∣

∣

≥ ‖u‖2V (Ω),
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and

|a(u, v)| ≤
∫

Γ

|α||uv|dmd +

∫

Ω

|∇u∇v|dx

≤
∫

Γ

Re(α)

√

1 +

(

Im(α)

Re(α)

)2

|uv|dmd + ‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ C

(
∫

Γ

Re(α)|u|2dmd

)
1
2
(
∫

Γ

Re(α)|v|2dmd

)
1
2

+ ‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ C‖u‖V (Ω)‖v‖V (Ω).

We notice that, thanks to the boudness of Ω , the Poincaré inequality holds on V (Ω) and
allows us to show the continuity of l :

|l(v)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ C(Ω)‖f‖L2(Ω)‖v‖V (Ω).

Using now Theorem 2, which ensures that the extension operator H1(Ω) into H1(Rn)
is continuous and that the embedding H1(Ω) to L2(Ω) is still compact, we conclude
that the operator −∆ with the boundary conditions imposed in the weak sense of Besov
spaces (see Eq. (9))

∀φ ∈ V (Ω) (u, φ)V (Ω) + i

∫

Γ

Im(α)uφdmd = λ

∫

Ω

uφdx, (14)

has a discrete spectrum and a compact resolvent as in the usual case of a regular boundary.
Thus, as a corollary of the Fredholm theorem, we also have estimation (12).

Now let us prove that a real number ω2 is not an eigenvalue of −∆ . Suppose the
converse: there exists an eigenfunction u ∈ V (Ω) , such that (14) holds for λ = ω2 ∈ R

+ .
Therefore, it also holds for φ = u and implies that Im(α) ≡ 0 on Γ , which contradicts
our assumption Im(α) < 0 . Consequently, the Helmholtz system (3) is well-posed for all
ω ∈ R in the weak sense of (11).

The well-posedness of system (4)–(7) is direct from results given in Ref. [7], which keep
true in the general d -set case, thanks to the trace extension theorems (see Theorem 2
and Ref. [5] Section 2) and the above results for the Laplacian. Indeed, if we rewrite the
system in the matrix form

d

dt
U − BU = F,

with U = (u, v) ∈ X0(Ω) , B =

(

0 I
△ 0

)

and F =

(

0
e−iωtf(x)

)

, as for the regular

case, the operator B is a closed anti-self-adjoint operator on X0(Ω) with respect to
the inner product defined in Eq. (8). In addition, B generates a strongly continuous
contraction semigroup, has compact resolvent and iω for ω ∈ R does not in the spectrum
of B , which concludes the proof. �

We finish this section by the direct corollary of Theorems 1 and 3
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Theorem 4 Let Ω be a bounded domain in R
n satisfing the conditions of Theorem 2 with

a closed d -set boundary ∂Ω = ΓD ∪ ΓN ∪ Γ (n− 2 < d < n ). By md is denoted the d –
dimensional Hausdorff measure on ∂Ω (see Definition 1). Let in addition Re(α(x)) > 0 ,
Im(α(x)) < 0 be continuous functions on Γ . Then the following problem

{ △u+ ω2u = −f(x) x ∈ Ω,

u = 0 on ΓD,
∂u

∂n
= 0 on ΓN ,

∂u

∂n
+ α(x)Tru = Trh(x) on Γ,

(15)

has a unique weak solution u ∈ V (Ω) for all f ∈ L2(Ω) and h ∈ V (Ω) in the following
sense: for all v ∈ V (Ω)

∫

Ω

∇u · ∇v̄dx− ω2

∫

Ω

uv̄dx+

∫

Γ

αTruTrv̄dmd =

∫

Ω

f v̄dx+

∫

Γ

Tr hTrv̄dmd.

The weak solution u continuously depends on the data: there exists C > 0 , independent
of f , h and the values of α , such that

‖u‖V (Ω) ≤ C
(

‖f‖L2(Ω) + ‖h‖V (Ω)

)

.

In addition, if, for m ∈ N
∗ , ∂Ω ∈ Cm+2 , f ∈ Hm(Ω) and h ∈ Hm+1(Ω) ∩ V (Ω) , then

the weak solution u belongs to Hm+2(Ω) ∩ V (Ω) .

4 Shape design problem

We consider the two dimensional shape design problem, which consists in optimizing the
shape of Γ with the Robin dissipative condition in order to minimize the acoustic energy
of the system (3). The boundaries with the Neumann and Dirichlet conditions ΓD and
ΓN are supposed to be fixed. We denote by Ω0 and Γ0 the domain and the boundary
respectively of the initial shape before optimization. The optimization step modifies the
initial shape of Γ0 to Γ = (Id + θ)Γ0 , according to the map x ∈ Γ0 7→ (x+ θ(x)) ∈ Γ
and following the vector field θ ∈ W 1,∞(R2,R2) . Here Id is the identity map x ∈ R

2 7→
x ∈ R

2 , W 1,∞(R2,R2) is the space of Lipschitz functions φ from R
2 to R

2 , such that
φ and ∇φ are uniformly bounded in R

2 . Using the notations | · |R2 for the Euclidean
norm in R

2 and | · |R2×2 for the matrices Euclidean norm on R
2 , we define the norm on

W 1,∞(R2,R2) by

‖φ‖W 1,∞(R2,R2) = sup
x∈R2

(|φ(x)|R2 + |∇φ(x)|R2×2) .

Hence
(

W 1,∞(R2,R2), ‖ · ‖W 1,∞(R2,R2)

)

is a Banach space. Following Ref. [3], p. 127, we
also define for a fixed open D with a Lipschitz boundary the space

C(Ω0) = {Ω ⊂ D ⊂ R
2| ∃θ ∈ W 1,∞(R2,R2), ‖θ‖W 1,∞(R2,R2) < 1

such that Ω = (Id+ θ)Ω0}. (16)

Actually, as only a part of the boundary, Γ , changes its shape, we can impose that for a
fixed open G with a Lipschitz boundary Γ ⊂ G (see the example of Fig. 2).
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Ω

G

D

ΓN

ΓN

ΓD Γ

Figure 2: Example of a domain Ω in R
2 with three types of boundaries: ΓD and ΓN

are fixed and Γ can be changed in the restricted area G . Here Ω∪G = D and obviously
Ω ⊂ D .

To introduce the class of the admissible domains, on which we minimize the acoustical
energy of the system (3), we define [3, 36] the quasi-distance d(Ω,Ω0) on C(Ω0)

d(Ω,Ω0) = inf
T∈T |T (Ω0)=Ω

(‖T − Id‖W 1,∞(R2,R2) + ‖T−1 − Id‖W 1,∞(R2,R2))

with the following space of diffeomorphisms on R
2 :

T = {T | (T − Id) ∈ W 1,∞(R2,R2), T−1 − Id ∈ W 1,∞(R2,R2)}.

Typically T = Id + θ with ‖θ‖W 1,∞(R2,R2) < 1 . If dH(Ω0,Ω) is the Hausdorff distance
between Ω0 and Ω , we know [36] that dH(Ω0,Ω) ≤ d(Ω0,Ω) . Hence, in the following,
our purpose is to minimize the acoustic energy in Ω on all admissible shapes of Γ keeping
constant the volume of the initial domain Ω0 , i.e. , to minimize

J(Ω, u) = A

∫

Ω

|u|2dx+B

∫

Ω

|∇u|2dx+ C

∫

Γ

|u|2dσ (17)

for the domains Ω ∈ Uad(Ω0) from the admissible class of domains

Uad(Ω0) = {Ω ∈ C(Ω0)|d(Ω,Ω0) ≤
1

8
, ΓD ∪ ΓN ⊂ ∂Ω,

∫

Ω

dx = Vol(Ω0)} (18)

with Vol(Ω0) = |Ω0| =
∫

Ω0
dx , A ≥ 0 , B ≥ 0 , C ≥ 0 positive constants for all fixed

ω > 0 . In what follows we also suppose that A , B and C are regular functions of ω :

Example 1 If J is the acoustic energy of the Helmholtz problem (3), we typically have
A = 1 , B = C = 0 or equivalently, thanks to the variational form, A = 0 , B = 1

ω2 ,

C = Re(α(ω))
ω2 .

In the definition of Uad we take d(Ω,Ω0) ≤ 1
8

according to Lemma 2.4 in Ref. [36] in the
case n = 2 and k = 1 . The restriction that all admissible domains Ω ∈ Uad have the

12



fixed parts ΓD and ΓN in their boundaries is taken into account in the parametrization
of Ω = (Id + θ)Ω0 by the vector field θ . It is sufficient to impose θ = 0 on ΓD ∪ ΓN ,
meaning that only the part Γ of the boundary may vary. In order to keep the volume
constraint, instead of Eq. (17) we can also consider the objective function

J1(Ω, u) = A

∫

Ω

|u|2dx+B

∫

Ω

|∇u|2dx+ C

∫

Γ

|u|2dσ + µ(Vol(Ω)− Vol(Ω0))
2, (19)

where µ is some positive constant of the penalization.
Following the approach of F. Murat and J. Simon [36], also explained in Ref. [22], we

have, using the continuity of u and J as functions of Ω [22], the existence of an optimal
shape:

Theorem 5 Let Ω0 ⊂ D be a domain with a Lipschitz boundary ∂Ω0 such that ΓD ∪
ΓN ⊂ ∂Ω0 , Uad be defined by (18) and ω > 0 be fixed. For the objective function
J(Ω) , defined in (17), the shape optimization problem infΩ∈Uad(Ω0) J(Ω) has at least one
minimum point (there exists at least one optimal shape of Γ ).

See also Ref. [9] for a free discontinuity approach to a class of shape optimization
problems involving Robin condition on the free boundary.

Let us notice that a bounded domain with a Lipschitz boundary is a particular case
of the (ε, δ) -domains and hence the optimal shape domain is also an (ε, δ) -domain. For
practical reasons, it is more realistic to find “the simplest” optimal shape, thus the general
fractal or (ε, δ) -domains case is not really of interest. In addition, in most practical
situations we need to find “the simplest” optimal shape not only for a fixed frequency, but
for a large frequency interval [ω0, ω1] , such that walls with such a shape could actually be
manufactured. Moreover, the functional J can be considered with frequency depending
coefficients (regular functions of ω at least from C1 ): J(Ω)(ω) . Hence, in the aim to
find the simplest shape, efficient for the energy dissipation in a range of frequencies, we
introduce the definition of an ε -optimal shape:

Definition 4 The domain Ω∗ ∈ Uad is called an ε -optimal domain for the range of
frequencies [ω0, ω1] , if for all ω ∈ [ω0, ω1] it holds

| min
Ω∈Uad

J(Ω)(ω)− J(Ω∗)(ω)| < ε,

where by J(Ω∗)(ω) is denoted the value of the functional J , calculated for the domain
Ω∗ at the frequency ω .

Remark 3 To validate the notion of ε -optimal domain, let us verify that for a fixed
ε > 0 , if Ω∗ is optimal for ω∗ , there exists an interval [ω0, ω1] , such that ω∗ ∈ [ω0, ω1] ,
for which Ω∗ is ε -optimal. Actually, we notice that

• u depends continuously on ω and Ω ;

• for a fixed frequency, J is continuous as a function of Ω ;

13



• as the functional J is continuous on ω ∈ R
+ , it is equicontinuous on the compact

[ω0, ω1] ⊂ R
+ :

∀η > 0 ∃δ1(η) > 0 : |ω∗ − ω| < δ1 ⇒ |J(Ω∗)(ω∗)− J(Ω∗)(ω)| < η;

• Jmin(ω) := minΩ∈Uad
J(Ω)(ω) is a uniquely defined continuous function of ω :

∀η̂ > 0 ∃δ2(η̂) > 0 : |ω∗ − ω| < δ2 ⇒ | min
Ω⊂Uad

J(Ω)(w)− J(Ω∗)(ω∗)| < η̂.

Therefore, for a fixed ε > 0 , there exists δ(ε) > 0 , such that, if |ω∗ − ω| < δ , we have

| min
Ω⊂Uad

J(Ω)(ω)− J(Ω∗)(ω)|

≤ | min
Ω⊂Uad

J(Ω)(ω)− J(Ω∗)(ω∗)|+ |J(Ω∗)(ω∗)− J(Ω∗)(ω)| ≤ η + η̂ = ε.

Remark 4 From Ref. [36] (Theorem 5.1 p.205 and Theorem 2.4 ii) p.59), we also know
that, since Ω∗ ∈ Uad is optimal on ω∗ , then there exists a sequence (Ωn) ⊂ Uad , such
that

d̂H(Ωn,Ω
∗) := dH(Ωn,Ω

∗) + dH(D \ Ωn, D \ Ω∗) → 0.

Consequently, for all ε > 0 there exists n0 ∈ N , such that for all n ≥ n0 Ωn is ε -optimal
around ω∗ .

Conversely, if Ω̂n ∈ Uad is εn -optimal on ω∗ , i.e. |J(Ω̂n)(ω∗) − Jmin(ω
∗)| < εn ,

then for εn → 0 there exists Ω∗ ∈ Uad such that d̂H(Ω̂n,Ω
∗) = ε̂(εn) → 0 as n→ +∞ .

Let us also formulate the physical principle:

Assumption 1 (Physical principle) A wave with a wavelength λ0 does not fit into
a shape of characteristic scale much smaller than λ0 . If the wave interaction with the
dissipative media increases, then the energy of the wave decreases.

Taking into account the physical principle and numerical results from Section 7.1, we
introduce the following definition of a “much smaller” wavelength and of “a much higher”
frequency:

Definition 5 Let ω1 > 0 be a fixed frequency. A frequency ω2 is called a much higher
frequency for ω1 , ω2 ≫ ω1 , if ω2 ≥ 2ω1 . Consequently, for the wavelengths: λ2 ≪ λ1
( λ2 is much smaller then λ1 ), if λ2 ≤ λ1

2
. Conversely, the wavelength λ is called

comparable to λ0 , if λ ∈]λ0
2
, 2λ0[ .

Since wall performances depend on the sizes of its components to compare to the wave-
lengths of the source, let us define the notion of the characteristic geometry size of a
domain Ω (or Γ , since only the boundary Γ with the Robin boundary condition can
change its shape). If Γ starts at a point xB ∈ ∂Ω and ends at a point xE ∈ ∂Ω , we
consider Γ0 , which joins the points xB and xE by a straight line. For x = (x1, x2) ∈ R

2,
we suppose that the first coordinate axis x1 follows Γ0 and the second coordinate axis
x2 follows its normal direction. Since, the boundary Γ belongs to a fixed area G , chosen
in the beginning, the largest geometrical size of Γ parallel to x2 depends on the chosen
G . Thus, we does not consider the geometries with parts having a length along the axis
x1 much smaller the length along x2 , and we especially interested in the shape sizes
projected on x1 .
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Definition 6 (Shape lengths of Ω ) Let the boundary Γ be a C1 boundary of Ω
starting from the point xB = (x1B, x

2
B) and ending in xE = (x1E , x

2
E) and Γ0 be the

straight line joining these two points (see Fig. 3 for an example). Let f0 be the linear
function defining Γ0 by x2 = f0(x

1) . We suppose that Γ can be locally defined by
the graph of a C1 function (each time denoted by f , f(x) = 0 for x ∈ Γ ). By xi
( i = 1, . . . , N ) are denoted the intersection points of Γ with Γ0 , ordered by the first
coordinate from left to right

x10 = x1B < x11 < x12 < . . . < x1N < x1E = x1N+1,

for which in any neighborhood V of xi there exists x ∈ Γ such that

∂

∂n
f(x) = ∇x1,x2f · n 6= 0.

Here n is the unit normal vector to Γ0 . These points define the deviation parts of Γ to
compare to the straight line Γ0 (see the filled regions on Figs. 3 and 4). Thus, we define
the “horizontal” lengths

hi = |xi − xi−1|R2 for i = 1, . . . , N + 1.

Let, for x ∈ Γ0 , m(x) be the number of intersections with Γ of the straight line,
passing by the point x and following the unit normal vector to Γ0 , denoted by L(x) .

If a part of Γ , limited by two lines L(xi−1) and L(xi) , can be described by a bijection
f , i.e.

for all x ∈ Γ0 with x1 ∈]x1i−1, x
1
i [, m(x) = 1,

then we find the function ( f or f0 ), which is firstly intersected by the line L(x) on
[xi−1, xi] , and define the low part fl as its graph. The other function in the couple ( f
and f0 ) defines the upper part fu and corresponds to the second intersection of L(x)
(see Fig. 4). Thus, we find the “vertical” lengths for each of such geometrical parts, by
setting

vi = ‖fu − fl‖C([x1i−1,x
1
i ])
,

and form the couples (hi, vi) .
For the intervals with m(x) > 1 , we find firstly the maximum interval [x∗i,b, x

∗
i,e] ⊂ Γ0 ,

such that for all x ∈ [x∗i,b,x
∗
i,e] m(x) > 1 ( i.e. if x = x∗i,b − ε or x = x∗i,e + ε for all

sufficiently small ε > 0 , then m(x) = 1 ) and define

h∗i = |x∗i,e − x∗i,b|R2, v∗i = dH(fh, fb)|[x∗
i,b
,x∗i,e]

,

i.e. the vertical length v∗i is given by the Hausdorff distance between fh and fb restricted
on the area between L(x∗i,b) and L(x∗i,e) . We fix, as previous, the couples (h∗i , v

∗
i ) .

Going in smaller geometrical details, on each bijection interval [xi, xi−1] with m(x) =
1 we consider all points x̃j for j = 1, . . . , K for which

∂τf(x̃j) = ∇x1,x2f · τ = 0 and P (x̃j) 6= P (x̃j+1),

where the tangential derivative is taken for the unit vector τ parallel to Γ0 and P (y) is
the orthogonal projection on Γ0 . Let us set x̃0 = xi−1 and x̃K+1 = xi . If K ≥ 3 is an
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odd number ( i.e. the derivative changes its sign more than twice between xi−1 and xi ),
then we set (as K is odd, then K + 1 is even)

h̃j = |P (x̃2j)− P (x̃2(j−1))|R2, ṽj = ‖fu − fl‖C([P (x̃2(j−1)),P (x̃2j)]) for j = 1, . . . ,
K + 1

2
.

To avoid difficult notations, the obtained sequence

(hi, vi)i=1...N ∪ (h∗i , v
∗
i )i=1...N∗ ∪ (h̃j , ṽj)j=1,...,K+1

2

is still denoted by (hi, vi)i=1...N .
If there exists x ∈ Γ0 , such that x1 ∈]x1i∗ , x1i∗+1[ for a fixed i∗ and m(x) > 1 , then the

corresponding part of Γ , given by f , is no more bijective between L(xi∗) and L(xi∗+1) .
Let us consider the union of the joint intervals ]x1i∗ , x

1
i∗+k[ ( k ≥ 1 ) on which f is not

bijective. Then, going from the left to the right on Γ inside of the area delimited by L(xi∗)
and L(xi∗+k) , we find points yj ∈ Γ ( j ∈ N ), such that

∂nf(yj) = ∇x1,x2f · n = 0 and P (yj) 6= P (yj+1),

where the normal derivative is taken for the normal unit vector n of Γ0 . Hence, we
define the horizontal lengths

hN+j = |P (yj+1)− P (yj)|R2 .

To define the vertical lengths we say that a curve in the found bijection area is the lower
geometrical part fl , if the number of intersections of L(x) with it is odd (m(x) is odd)
and is the upper part fu , if the number of intersections with it is even (see Fig. 4).
Therefore, we define hN+j as ‖fu−fl‖C(I) in the bijective compact segment I , constructed
using the points xi and the projections on Γ0 of points yj .

For each bijective interval inside of ]x1i∗ , x
1
i∗+1[ , actually between all couples of points

(yj−1, yj) , we also find, as for the bijective case, all points ỹk for k = 1, . . . , K , for which
∂τf(x̃k) = ∇x1,x2f ·τ = 0 , and, in the case of K ≥ 3 , we add h̃k = |P (ỹ2k)−P (y2(k−1))|R2

and ṽk = ‖fu − fl‖C([P (x̃2(k−1)),P (x̃2k)]) for k = 1, . . . , K+1
2

to the sequence (hi, vi)i=1...N .
Repeating the above procedure for all intervals (or more generally, for all unions of

joint intervals) on Γ0 , where at least in one point m(x) > 1 , we construct the sequence
(hi, vi)i∈N , finite or not. Now, for each i we compare hi and vi :

1. if vi ≪ hi , then di := hi (the fragment is a quasi-plane),

2. if vi and hi are comparable, then di :=
hi+vi

2
.

The case hi ≪ vi is forbidden by the assumption and by the choice of the open set G .
The lengths (di)i∈N are characteristic lengths of each element of Γ to compare to Γ0 and
are called shape’s length of Ω .

Definition 7 (Characteristic geometric size of Ω ) Let (di)i∈N be the sequence of
shape lengths of Ω . Independently of its finiteness, there exists the length d = maxi di ,
which is called the largest geometric size of Ω . If the length of Γ is finite, then the
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Figure 3: Example of the definition of horizontal shape lengths of Γ by the construction
introduced in Definition 6. Here we have 6 intersections of Γ with Γ0 and 6 additional
points yi in the region ]x1, x5[ , where there are points x ∈ Γ0 for which m(x) > 1 .
The segment [x1B , x

1
1] contains the projections of 5 points x̃i , in which the tangential

derivative of f parallel to Γ0 is equal to zero. The maximum interval [P (y2), P (y5)] ,
where m(x) > 1 , gives the length h∗ . Therefore, the sequence of the horizontal shape
lengths is given by hi for i = 1, . . . , 11 , h∗ and h̃j for j = 1, . . . , 3 . The intervals, on
which Γ can be described by a bijection for x1 ∈ [P (y2), P (y5)] , are [x2, x3] , [x3, P (y1)] ,
[P (y2), P (y1)] , [P (y1), P (y3)] , [P (y4), P (y3)] , [P (y3), P (y6)] , [P (y6), P (y5)] , [P (y6), x4] .

fu

fl

Figure 4: The choice of fu and fl for each interval, where Γ given on Fig. 3 is defined
by a bijection.

number of its shape lengths N is finite too, and there exists the minimal geometric size
dmin = min

i=1,...,N
di . Hence, let (di)i∈N be ordered decreasing by

d = d0 ≥ d1 ≥ d2 ≥ . . . , di → 0 if i→ +∞ or dN = dmin if N <∞.

The sequence (di) defines the distribution of geometrical sizes of Γ . Let Vol(Γ0) be the
length of Γ0 : Vol(Γ0) = |xE−xB |R2 . A positive number ℓk(Ω) (k ∈ N) is a characteristic
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geometric size of Ω number k if there exists K(k) ≥ 2k
[

Vol(Γ0)
2d

]

shape lengths of Ω

dim ∈
]

d

2k+1
,
d

2k−1

[

∩ [dmin, d] (m = 0, . . . , K(k)) such that ℓk(Ω) =
1

K(k)

K(k)
∑

m=1

dim.

If k = 0 , ℓ0(Ω) , denoted in what follows by ℓ(Ω) , is the largest characteristic geometry
size of Ω . If k ∈ N is such that d

2k+1 ≤ dmin <
d

2k−1 , then the corresponding ℓk(Ω) ,
denoted in what follows by ℓmin(Ω) , is the smallest characteristic geometric size of Ω .

Remark 5 Let ω0 =
2π
λ0

and Ωλ0 be a domain with the unique characteristic geometric

size ℓ(Ωλ0) = ℓmin(Ωλ0) = λ0
2

. In addition, let Ω be a domain with ℓ(Ω) = ℓ(Ωλ0) ,
ℓmin(Ω) ≪ ℓmin(Ωλ0) and dH(Ω,Ωλ0) ≤ ℓmin(Ω) . Then the domain Ω has two different
scales: ℓ(Ω) and ℓmin(Ω) . Actually, we suppose that the boundary Γ of the domain Ω
is obtained by adding to Γλ0 smaller scales. Adding a scale to the boundary of Ωλ0 , we
increase the wave interaction with the dissipative part of the boundary. Therefore, the
energy J(Ω)(ω0) can only decrease, as compared to J(Ωλ0)(ω0) , or stay equal (in the
case of no fitting of the wave inside the smallest parts of the boundary). Thus, if Ωoλ0 is
an optimal domain for the frequency ω0 , then we have

J(Ωoλ0)(ω0) ≤ J(Ω)(ω0) ≤ J(Ωλ0)(ω0).

We also use the following hypothesis, coming from the empirical physics and confirmed
by the numerical results in Section 7.1:

Assumption 2 Let Ω∗ be an optimal domain for ω∗ > 0 with n (n ∈ N) characteristic
geometric scales (ℓj(Ω

∗))j=0,...,n−1 . Then there exists j0 (0 ≤ j0 ≤ n − 1) , such that
ℓj0(Ω

∗) = λ∗

2
.

In the framework of ε -optimal shapes, the physical principle with Definition 5 directly
ensures

Corollary 1 1. Let Ω∗ be an optimal domain for ω∗ > 0 with n (n ∈ N) char-
acteristic geometric scales, such that ℓj0(Ω

∗) = λ∗

2
with 0 ≤ j0 ≤ n − 1 , as in

Assumption 2. Then any Ω ∈ Uad(Ω0) with the same characteristic geometric
scales as Ω∗ up to number j0 :

∀ j = 0, . . . , j0 ℓj(Ω) = ℓj(Ω
∗),

and dH(Ω,Ω
∗) < λ∗

4
, is also optimal on ω∗ :

J(Ω)(ω∗) = Jmin(ω
∗) = J(Ω∗)(ω∗).

2. Let ε > 0 be a fixed real number and Ω ∈ Uad(Ω0) (see Eq. (18) for the definition
of Uad(Ω0) ) be an ε -optimal domain on a range of frequencies [ω0, ω1] with the
smallest characteristic geometric size:

ℓmin(Ω) =
λ

2
for a λ ∈ [λ1, λ0].
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If Ωo ∈ Uad(Ω0) is a domain, such that

∃j ∈ N : ℓj(Ω
o) = ℓmin(Ω) and dH(Ω

o,Ω) ≤ λ

4
,

then Ωo is also ε -optimal on [ω0, ω1] (with the same ε ).

Proof. Let us prove the first point. Without loss of generality, let us suppose Ω∗ is such
that j0 = n − 1 , i.e. ℓmin(Ω

∗) = λ∗

2
. Thus, if Ω has additional characteristic geometric

sizes ℓj ≪ λ∗

2
( j ≥ n ) with dH(Ω,Ω

∗) < λ∗

4
, then by Assumption 1 and Remark 5, the

greater interaction of the wave with the dissipative boundary implies the non increasing
of the energy J(Ω)(ω∗) ≤ J(Ω∗)(ω∗) . But, since Ω∗ is optimal on ω∗ , we also have
J(Ω∗)(ω∗) = Jmin(ω

∗) ≤ J(Ω)(ω∗) . Consequently, J(Ω)(ω∗) = Jmin(ω
∗) , which ensures

that Ω is optimal on ω∗ . Therefore, to be optimal on a fixed frequency ω∗ , it is sufficient
to be optimal for the geometric sizes with ℓ = λ∗

2
, all sizes much smaller than λ∗

2
(in the

sense of dH(Ω
∗,Ω) ≤ λ∗

4
), do not change the optimal property at one frequency point.

Let us prove the second point. By the assumption, the scaling λ/2 is sufficient to be
ε -optimal on [ω0, ω1] :

∀ω ∈ [ω0, ω1] |J(Ω)(ω)− Jmin(ω)| < ε.

If we keep this scale and add characteristic scales much smaller than λ/2 , such that
dH(Ω

o,Ω) ≤ λ
4

, then it holds Jmin(ω) ≤ J(Ωo)(ω) ≤ J(Ω)(ω). Since the adding of small
characteristic scales does not change the properties to be optimal on ω , it also does not
change the property to be not farther than ε from the optimal domain. Therefore, the
properties of ε -optimality still hold for Ωo with the same ε . �

Remark 6 Thanks to the first point of Corollary 1, in what follows, for a solution of
minΩ∈Uad

J(Ω)(ω) we always take Ω with ℓmin(Ω) =
λ
2

(for λ = 2π/ω ) ( i.e. we consider
the “simplest” such Ω in terms of characteristic scales).

Definition 8 (n -times wavelength preserving optimal domain)
Let Ωλ0 be a fixed initial domain with at least Lipschitz boundary, λ0 = 2π

ω0
≤ 1

2
for

a fixed ω0 ≥ 4π and n ≥ 1 , n ∈ N . The domain Ωopt ∈ Uad(Ωλ0) is called an n -times
wavelength preserving optimal domain based on Ωλ0 for the frequency ω0 , if there exists

λn < . . . < λk < . . . < λ1 < λ0, such that ∀ k = 1, . . . , n λk ≤
λ0
2k
,

and Ωopt = Ωλn is a solution of the following minimization problem (see Eq. (18) for the
definition of the admissible domains)

J(Ωλn)(ωn) = inf
Ω⊂Uad(Ωλn−1

), dH (Ω,Ωλn−1
)≤λn

4

J(Ω)(ωn),

where for k = 1, . . . , n− 1 the domains Ωλk are solutions of the minimization problems

J(Ωλk)(ωk) = inf
Ω⊂Uad(Ωλk−1

), dH (Ω,Ωλk−1
)≤λk

4

J(Ω)(ωk).
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Remark 7 We know that dH(Ωλ0 ,Ω) ≤ d(Ωλ0 ,Ω) . In Definition 8 we have supposed that
the largest wavelength λ0 ≤ 1

2
(or the smallest frequency ω0 ≥ 4π ) in the aim to ensure

dH(Ωλ0 ,Ω) ≤ λ0
4
≤ 1

8
, where 1

8
comes from the condition from Lemma 2.4 in Ref. [36].

The additional restriction dH(Ωk,Ωλk−1
) ≤ λk

4
keeps the new set of the admissible domains

closed by the Hausdorff convergence and, thus, we still have the existence of an optimal
shape in this class [22, 36].

Proposition 1 Let Ωopt be an n -times wavelength preserving optimal domain based on
a domain Ωλ0 with Γλ0 ∈ C3 for the frequency ω0 ≥ 4π (thus 2λ0 ≤ 1 ). Then

Ωopt ∈ Uad(Ωλ0) with dH(Ωλ0 ,Ω
opt) ≤ λ0

4

and Ωopt has at least n multiscale characteristic shape lengths

ℓk(Ω
opt) =

λk
2

≤ λ0
2k+1

(k = 1, . . . , n).

Moreover,

1. for n ≥ 2 , every Ωλk , k = 1, . . . n− 1 is an (n− k) -times wavelength preserving
optimal domain based on the domain Ωλ0 for the frequency ω0 ,

2. for all k = 1, . . . , n , Ωλk has the characteristic geometric sizes of Ωλk−1
and ℓk =

ℓmin(Ωλk) =
λk
2
,

3. if Ωλ0 is an ε -optimal domain on [ωa, ωb] (ωa > 0 , ω0 ∈ [ωa, ωb] ) with ℓmin(Ωλ0) =
λ0
2

and ωb ≤ 2ω0 , then for n ≥ 1 all domains Ωλk (k = 1, . . . , n) are ε -optimal
on [ωa, ωb] (with the same ε ).

Proof. Firstly, we notice that for all n ≥ 1

dH(Ωλ0 ,Ω
opt) ≤ 1

4
(λ1 + . . .+ λn) ≤

λ0
8

(

1 +
1

2
+ . . .+

1

2n−1

)

=

(

2− 1

2n−1

)

λ0
8

=

(

1− 1

2n

)

λ0
4

≤ λ0
4
.

Application of Assumption 1 and its Corollary 1 finishes the proof. Actually, point (2) is
also a direct corollary of Assumption 2. More precisely, for point (3), we have that for all
k ≥ 1

dH(Ωλk ,Ωλk−1
) ≤ λk

4
≤ λ0

4 · 2k ≤ λb
4
,

with ℓj(Ωλk) = ℓmin(Ωλj ) ( 0 ≤ j ≤ k ) by point (2). Thus, if for all k ≥ 1 λ0
4·2k ≤ λb

4

( i.e. for λb ≥ λ0
2

), by Corollary 1, Ωλk is ε -optimal on the interval of ε -optimality of
Ωλk−1

. �

Definition 9 The interval [ω0, ω1] is called the maximum interval of ε -optimality of a
domain Ω , if for all ω ∈]ω0, ω1[ Ω is ε -optimal on ω , but no more on ω0 nor on ω1 :

∀ω ∈]ω0, ω1[ |J(Ω)(ω) − Jmin(ω)| < ε, but |J(Ω)(ωi) − Jmin(ωi)| ≥ ε (i = 0, 1).
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Now, we give the following theorem for the existence of an ε -optimal domain for a
fixed range of frequency for the problem (15), i.e. with g = 0 on ΓD :

Theorem 6 Let [ω0, ωmax] with ω0 ≥ 4π and ωmax ≤ +∞ be a fixed frequency interval,
and Ω0 be a fixed regular domain in R

2 (Γ ∈ C3) with ℓ(Ω0) = ℓmin(Ω0) =
λ0
2

.

Define N =
[

log2
ωmax

ω0

]

for ωmax <∞ . For all ω ∈ [ω0,∞[ consider

Jmin(ω) = inf
Ω∈Uad(Ω0)

J(Ω)(ω),

the minimum of the acoustical energy for the Helmholtz problem (15) with f , h and α
smooth functions of ω (of the class C1 ), such that for all fixed ω > 0 they satisfy the
assumptions of Theorem 4 and in the high frequency limit verify

for ω → +∞ f

ω2
⇀ 0 and

h

ω
⇀ 0 in L2(D),

Reα

ω
→ 0,

ω

|Imα| → c0, (20)

where c0 > 0 is a real constant.
Then Jmin(ω) → 0 for ω → +∞ and there exists δ0 ≥ 0 , depending on ω0 , such

that for all ε > δ0 there exists a domain Ω̂0 ∈ Uad(Ω0) with

λ0
4

≤ ℓmin(Ω̂0) ≤ ℓ(Ω0),

which is ε -optimal on a maximal interval [ω0, ω1] with ω1 ≥ 2ω0 (see Definition 9).
Moreover, there exists ε0 ≥ δ0 , depending on ω0 and ωmax , such that for all ε > ε0

there exists an ε -optimal domain Ω∗ on [ω0, ωmax] :

∀ω ∈ [ω0, ωmax] |J(Ω∗)(ω)− Jmin(ω)| < ε, (21)

such that dH(Ω̂0,Ω
∗) ≤ λ0

4

1. for ωmax < ∞ , Ω∗ ∈ Uad(Ω̂0) with at least N characteristic scales ℓk(Ω
∗) ≤ λ0

2k+1

for k = 1, . . . , N , where ℓN (Ω
∗) = ℓmin(Ω

∗) ;

2. for ωmax = ∞ , Ω∗ is a fractal domain (an (ε,∞) -domain), obtained as a limit for
N → +∞ of the finite case, with ℓk(Ω

∗) ≤ λ0
2k+1 for k ∈ N

∗ .

Remark 8 From the theory of the transparent or absorbing boundary conditions, it is
known that the increasing of |Imα| corresponds to the increasing of the wave absorption by
the boundary Γ , while the coefficient Reα corresponds to the reflection by Γ . Intuitively,
if h = 0 , the condition ∂u

∂|x| + (Reα − i|Imα|)u = 0 is satisfied by the wave e−iα|x| =

e−iReα|x|e−|Imα||x| , where the term e−iReα|x| gives the propagating wave and the second term
give the exponential dissipation, growing with the modulus of Imα . Hence, the condition
Reα
|Imα| → 0 as soon as ω → +∞ , imposed in Eq. (20) reads that the dissipation by Γ
dominates the reflection especially for the high frequencies.
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Proof. Theorem 4 with condition (20) ensures that Jmin(ω) → 0 for ω → +∞ . Let
us prove it for a fixed admissible domain Ω . Indeed, for any fix ω > 0 , by Theorem 4,
the operator

B : L2(Ω)× V (Ω) → V (Ω), definning by B(f, h) = u

with u , the solution of problem (15), is linear and continuous (see also Ref. [5] for the
real Robin boundary condition). Thus, if f

ω2 ⇀ 0 in L2(Ω) , then 1
ω2‖f‖2L2(Ω) → 0 and,

by the analogy, h
ω
⇀ 0 in L2(Γ) implies 1

ω
‖h‖2L2(Γ)

→ 0 . The speeds of the decays on ω
come from the fundamental solution of the Helmholtz equation: a derivative of the order
m of u is of the order ωm . Consequently, by the continuity of B , of the trace operator,
and of all functions on ω , with the help of the variational formulation we have that
for ω → +∞ the solution of problem (15) u tends in V (Ω) to 0 , the unique solution
(thanks to c0 6= 0 the real line belongs to the resolvent set) of the limit homogeneous
problem

{ △u+ u = 0 x ∈ Ω,

u = 0 on ΓD,
∂u

∂n
= 0 on ΓN ,

∂u

∂n
− ic−1

0 Tru = 0 on Γ.

In Theorem 6 we impose the decay conditions on the domain D , since it is fixed and
contains all admissible Ω . Since for all admissible Ω (which are bounded!) we have the
homogeneous Dirichlet condition on ΓD , then for all Ω it holds the Poincaré inequality,
ensuring the damping of the acoustical energy (see also Example 1, from where we directly
have J(Ω)(ω) = 1

ω2‖u‖2V (Ω) )

J(Ω)(ω) = ‖u‖2L2(Ω) ≤ CΩ‖u‖2V (Ω) → 0 as ω → +∞.

Hence, the same is true for Jmin(ω) .
Let us now prove the existence of an ε -optimal domain Ω̂0 ∈ Uad(Ω0) on an maximal

interval [ω0, ω1] with ω1 ≥ 2ω0 for a sufficiently large ε . It turns on the question how to
approximate a continuous function on a compact, here Jmin(ω) on [ω0, 2ω0] , by its value
in one point. Thanks to Remark 3, for all ε > 0 there exists δ(ε) > 0 such that for all ω
satisfying |ω∗ − ω| < δ , a domain Ω∗ , optimal for ω∗ , is ε -optimal on ]ω∗ − δ, ω∗ + δ[ .
Thus, taking ω∗ = 3ω0

2
, the question is in the possibility to have δ ≥ ω0

2
.

As Jmin(ω) is a continuous function on the compact [ω0, 2ω0] , by the Mean-value
Theorem, there exists a frequency ω∗

0 ∈ [ω0, 2ω0] , such that

Jmin(ω
∗
0) =

1

ω0

∫ 2ω0

ω0

Jmin(ω)dω.

Therefore, if Ω∗ is optimal on ω∗
0 , i.e. J(Ω∗)(ω∗

0) = Jmin(ω
∗
0) , then for all

ε > ‖Jmin(ω)− Jmin(ω
∗
0)‖C([ω0,2ω0]) + ‖J(Ω∗)(ω)− J(Ω∗)(ω∗

0)‖C([ω0,2ω0]) =: δ0

the domain Ω∗ is ε -optimal on [ω0, 2ω0] with the maximal interval of ε -optimality
[ω0, ω1] ⊃ [ω0, 2ω0] .
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Obviously, if we minimize the distance ‖J(Ω∗)(ω)−J(Ω∗)(ω∗
0)‖C([ω0,2ω0]) on the set of

optimal domains for ω∗
0 , we have

inf
Ω∗

‖J(Ω∗)(ω)− J(Ω∗)(ω∗
0)‖C([ω0,2ω0]) ≥ ‖Jmin(ω)− Jmin(ω

∗
0)‖C([ω0,2ω0]) =: r,

and hence δ0 cannot be less than 2r , which gives a limit of the precision. For instance,
for r0 < r there does not exists ω∗

0 ∈ [ω0, 2ω0] , such that

‖Jmin(ω)− Jmin(ω
∗
0)‖C([ω0,2ω0]) ≤ r0.

If Jmin(ω) is constant on [ω0, 2ω] , then the limit precision r becomes equal to zero:

∀ω ∈ [ω0, 2ω0] |Jmin(ω)−
1

ω0

∫ 2ω0

ω0

Jmin(ω)dω| = 0.

The converse is also true: if for all ε > 0 a fixed domain Ω∗ is ε -optimal on a compact
interval [ωa, ωb] , then Jmin(ω) is constant on [ωa, ωb] .

By Assumption 2 and Remark 6 ℓmin(Ω̂0) =
π
ω∗
0
=

λ∗0
2

, which is, by its definition, less

or equal to λ0
2

and bigger or equal to λ0
4

.
Now, let us consider on frequency intervals of the form [2kω0, 2

k+1ω0] the correspond-
ing limit precisions

rk := ‖Jmin(ω)−
1

2kω0

∫ 2k+1ω0

2kω0

Jmin(ω)dω‖C([2kω0,2k+1ω0]).

Since Jmin(ω) → 0 for ω → +∞ , i.e. Jmin converges towards a constant value, thus
rk → 0 for k → +∞ . Hence, it is easier to approximate Jmin (with more precision) for
high than for low frequencies. Consequently, there exist a finite number K ∈ N of the
frequency ranges of the form [2kω0, 2

k+1ω0] and k0 ∈ N , such that if rk0 = maxi=1,...,K ri
is the minimal precision on these K intervals, then for all k ≥ k0 the limit precisions in
higher frequencies are better: rk ≤ rk0 .

Therefore, taking ε0 large enough, such that ε0 ≥ 2rk0 ≥ 0 and ε0 > δ0 , to prove the
theorem it is sufficient to show that for all ε > ε0 there exists a sequence (Ωn)n=1,...N ⊂
Uad(Ω̂0) , such that

1. for all ω ∈ [ω0, 2
nω0] (n ≤ N ), the domain Ωn is ε -optimal with characteristic

scales ℓk(Ωn) ≤ λ0
2k+1 for k = 1, . . . , n , where ℓn(Ωn) = ℓmin(Ωn) ;

2. there exists Ω∗ , which is equal to ΩN ∈ Uad(Ω̂0) if N < +∞ and which is a
fractal (an (ε,∞) -domain) if N = +∞ with ℓk(Ω

∗) ≤ λ0
2k+1 for k ∈ N

∗ , such that

Ωn
∗
⇀ Ω∗ in the class of locally uniform domains (see Definition 2), i.e. :

∀ω ∈ [ω0, ωmax[ ∀η > 0 ∃M(ω, η) > 0 : ∀n ≥M(ω, η)

|J(Ωn)(ω)− J(Ω∗)(ω)| < η,
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and finally conclude that this Ω∗ is ε -optimal on [ω0, ωmax] (by point 1):

∀ω ∈ [ω0, ωmax] |J(Ω∗)(ω)− Jmin(ω)| < ε.

Let us fix ε > ε0 . For instance, a sequence of n -times wavelength preserving optimal
domains Ω̂n based on Ω̂0 for the frequency ω0 verifies the properties (1)-(2). Indeed, we

have constructed a domain Ω̂0 ∈ Uad(Ω0) with ℓmin(Ω̂0) =
λ∗0
2
∈ [λ0

4
, λ0

2
] , such that it is

ε -optimal on a maximal interval [ω0, ω
e
0[⊃ [ω0, 2ω0] . Let now, Ω̂1 ∈ Uad(Ω0) be optimal

on ω∗
1 ∈ [2ω0, 4ω0] , such that

Jmin(ω
∗
1) =

1

2ω0

∫ 4ω0

2ω0

Jmin(ω)dω and dH(Ω̂1, Ω̂0) ≤
λ∗1
4
.

Thus, Ω̂1 is an 1 -times wavelength preserving optimal domain based on Ω̂0 for the
frequency ω0 (see Definition 8). Consequently, by point (3) of Proposition 1, the domain
Ω̂1 is ε -optimal on [ω0, 2ω0] and by the optimality on the mean-value frequency ω∗

1 and
by the fact that ε is sufficiently large, Ω̂1 is also ε -optimal on [2ω0, 4ω0] . Hence, Ω̂1 is
ε -optimal on [ω0, 4ω0] . Taking each time optimal domains on the mean-values frequencies
ω∗
k with the restriction

dH(Ω̂k, Ω̂k−1) ≤
λ∗k
4
,

we obtain a sequence of n -times wavelength preserving optimal domains (Ω̂n)n=1,...,N

based on Ω̂0 for the frequency ω0 . Proposition 1 ensures the point (1) and that Ω∗ = ΩN
if N is finite.

For N = +∞ we have

∀n ∈ N dH(Ω̂n, Ω̂n+1) ≤
1

4

λ0
2n+1

,

and thus, independently on n ∈ N , by Proposition 1,

dH(Ω̂0, Ω̂n) ≤
λ0
4
.

For all n ≥ 1 the domain Ω̂n ∈ Uad(Ω̂0) is ε -optimal on [ω0, 2
nω0] with

d̂(Ω̂n, Ω̂n+1) → 0 for n→ +∞.

Hence Point (2) holds by the construction and also by the compactness results of Ref. [36]
(Theorem 5.1 p.205 and Theorem 2.4 ii) p.59). �

Remark 9 To be coherent with numerical results of Section 7, Theorem 6 is given in
the two-dimensional case. But, thanks to the general properties of the wave propagation,
the physical principle in Assumption 1 obviously holds for the three dimensional case
too, which directly applies Theorem 6 also for three-dimensional domains: to be the most
efficient to dissipate the acoustical energy in R

2 or R
3 for almost all frequencies, the

boundary Γ must be fractal.
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5 Shape derivative

Following the ideas Ref. [3], we provide two types of the shape derivation of J1 : the
first method is a formal derivation of the Lagrangian, associated with the optimization
problem, which allows in the simplest way to obtain formula (24), but does not allow to
prove it rigorously. To have a rigorous proof, as it is explained in Ref. [3], we need to
use a direct derivative approach, involving the Eulerian derivative over domain, which
is much more complicated. Two methods give the same formula (24). Let us start by
introducing the definition of the shape derivative of a function (see Ref. [3]). Without
lost of generality, we consider all times the two dimensional case (n = 2) .

Definition 10 (Shape derivative) The shape derivative of a function K(Ω) : C(Ω0) →
R at Ω0 is defined as the Fréchet derivative in W 1,∞(R2,R2) at 0 of the function θ 7→
K (Id+ θ) (Ω0) , i.e. ,

K (Id+ θ) (Ω0) = K(Ω0) +K ′(Ω0)(θ) + o(θ) with lim
θ→0

‖o(θ)‖L∞(R2)

‖θ‖W 1,∞(R2,R2)

= 0,

where K ′(Ω0) is a continuous linear form on W 1,∞(R2,R2) .

As in Ref. [3], we introduce two types of derivative. The first is the Eulerian derivative
(or shape derivative), denoted by U , and the second is the Lagrangian derivative (or
material derivative), denoted by Y .

Definition 11 (Eulerian derivative) Assume that x belongs both to the initial domain
Ω0 and to the deformed domain Ω = (Id + θ)(Ω0) . A conitinuous linear form of θ ∈
W 1,∞(R2,R2) , denoted by U(θ, x) , is called the Eulerian derivative, if it is defined by the
expression:

u ((Id+ θ)(Ω0), x) = u(Ω0, x) + U(θ, x) + o(θ), with lim
θ→0

‖o(θ)‖
‖θ‖ = 0, (22)

i.e. , U is the directional derivative of u in the direction θ .

Let us notice that Definition 11 is local and takes sense for all x in an open set Ω0 ,
since for small enough by norm θ the points x also belong to Ω . However, it does not
ensure that if x ∈ ∂Ω0 , then necessarily x ∈ Ω = (Id + θ)(Ω0) . Hence, we also need to
introduce the Lagrangian derivative:

Definition 12 (Lagrangian derivative) Let u(Ω) be defined on the domain Ω and
Ω = (Id+ θ)(Ω0). For all x ∈ Ω0 , let us define the function

û(θ, x) = u ((Id+ θ)(Ω0)) ◦ (Id+ θ) = u ((Id+ θ)(Ω0), x+ θ(x)) . (23)

The Lagrangian derivative, denoted by Y (θ, x) , is a continuous linear form of θ ,
defined by the expression (it is the directional derivative of û(θ, x) in the θ -direction)

û(θ, x) = û(0, x) + Y (θ, x) + o(θ), with lim
θ→0

‖o(θ)‖
‖θ‖ = 0,

where û(0, x) = u(Ω0, x) .
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We notice that this time, varying θ , all functions û(θ, x) are defined on the same domain
Ω0 , and we have no problem for the boundary points x ∈ ∂Ω0 .

By composition of derivatives, we have the following relation between U and Y :

Y (θ, x) = U(θ, x) + θ(x) · ∇u(Ω0, x).

We recall two important results from Ref. [3], which will be used to compute the shape
derivative of the objective functions J and J1 .

Theorem 7 (G. Allaire [3] Proposition 6.28 p.137) Let Ω0 be open bounded smooth
domain in R

2 . Let u(Ω) be a function from C(Ω0) to L1(R2) . Let, in addition, û(θ)
be the function from W 1,∞(R2,R2) to L1(R2) , defined by Eq. (23), derivable at 0 with
the derivative Y (the Lagrangian derivative of u(Ω) ). Then the function K1 from C(Ω0)
to R , defined by

K1(Ω) =

∫

Ω

u(Ω)dx,

is differentiable at Ω0 and for all θ ∈ W 1,∞(R2,R2) , we have

K ′
1(Ω0)(θ) =

∫

Ω0

(u(Ω0) div θ + Y (θ)) dx.

Similarly, if û(θ) is derivable at 0 as the function from C1(R2,R2) to L1(∂Ω0) , then

K2(Ω) =

∫

∂Ω

u(Ω)ds

is differentiable at Ω0 and, for all θ ∈ C1(R2,R2) , we have

K ′
2(Ω0)(θ) =

∫

∂Ω0

(u(Ω0)(div θ −∇θn · n) + Y (θ)) ds.

Lemma 1 (G. Allaire [3] Remark 6.29 p.138) The derivatives K ′
1 and K ′

2 can be also
expressed using the Eulerian derivative U as:

K ′
1(Ω0)(θ) =

∫

Ω0

(U(θ) + div(u(Ω0)θ)) dx,

and

K ′
2(Ω0)(θ) =

∫

∂Ω0

(

U(θ) + θ · n
(

∂u(Ω0)

∂n
+Hu(Ω0)

))

ds.

We prove the following theorem:

Theorem 8 Let Ω0 be a bounded domain in R
2 with a connect boundary ∂Ω0 ∈ C3 ,

divided in three disjoint parts ∂Ω0 = Γ0 ⊔ ΓD ⊔ ΓN . Let Ω ∈ C(Ω0) , defined in Eq. (16),
and, such that ∂Ω = Γ⊔ΓD⊔ΓN with Γ = (Id+θ)Γ0 ( θ ∈ W 2,∞(R2,R2) and ‖θ‖ < 1 ).

Let u(Ω0) ∈ H3(Ω0) be the solution of the problem (3) in Ω0 with g ∈ H
5
2 (ΓD) and
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f ∈ H1(R2) (see Theorem 1). Then the shape derivative of the objective function J1 ,
defined in Eq. (19), is given by

J ′
1(Ω0)(θ) =

∫

Γ0

θ · n
(

A|u(Ω0)|2 +B|∇u(Ω0)|2 + 2B|α|2|u(Ω0)|2

−4CRe(α)|u(Ω0)|2 + CH|u(Ω0)|2
)

ds

+

∫

Γ0

θ · nRe
(

−∇u(Ω0) · ∇w + ω2u(Ω0)w − fw − αHu(Ω0)w + 2α2u(Ω0)w
)

ds

+ 2µ

∫

Γ0

θ · n(Vol(Ω)− Vol(Ω0))ds (24)

with n the exterior normal vector on Γ0 , H the curvature of the boundary Γ0 , and
w ∈ V (Ω0) (V (Ω0) is defined in Eq. (13)), the unique solution of the adjoint problem
(see Eq. (29)) corresponding to u .

Proof. Since the data of the problem and the solution u are complex functions (except
ω which is a positive constant), let us separate the imaginary and real parts, adopting the
following notation: u = uR + iuI . Thus, the boundary value problem for the Helmholtz
equation (3) takes the following form:

△uR + ω2uR = fR(x) x ∈ Ω, (25)

uR = gR(x) on ΓD,
∂uR
∂n

= 0 on ΓN ,
∂uR
∂n

+ αRuR − αIuI = 0 on Γ,

△uI + ω2uI = fI(x) x ∈ Ω, (26)

uI = gI(x) on ΓD,
∂uI
∂n

= 0 on ΓN ,
∂uI
∂n

+ αIuR + αRuI = 0 on Γ.

The objective functional is considered as a function of the real and the complex parts of
u :

J(Ω, uR, uI) =A

∫

Ω

(

|uR|2 + |uI |2
)

dx+B

∫

Ω

(

|∇uR|2 + |∇uI |2
)

dx

+ C

∫

Γ

(

|uR|2 + |uI |2
)

ds.

Variational formulation. We take the inner product in L2(Ω) of (25)+i (26) by a
test function φ = φR + iφI ∈ H1(Ω) . With separation of the real and imaginary parts
we obtain

∫

Ω

(△uR + ω2uR − fR)φRdx−
∫

Ω

(△uI + ω2uI − fI)φIdx = 0,
∫

Ω

(△uI + ω2uI − fI)φRdx+

∫

Ω

(△uR + ω2uR − fR)φIdx = 0.

By integration by parts, we find
∫

ΓD

(

∂gR
∂n

φR − ∂gI
∂n

φI

)

ds−
∫

Γ

((αRuR − αIuI)φR − (αIuR + αRuI)φI) ds

+

∫

Ω

(

∇uI∇φI −∇uR∇φR + ω2 (uRφR − uIφI) + fIφI − fRφR
)

dx = 0, (27)
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and
∫

ΓD

(

∂gI
∂n

φR +
∂gR
∂n

φI

)

ds−
∫

Γ

((αIuR + αRuI)φR + (αRuR − αIuI)φI) ds

+

∫

Ω

(

−∇uI∇φR −∇uR∇φI + ω2 (uIφR + uRφI)− fIφR − fRφI
)

dx = 0. (28)

Formal derivation (Lagrangian). We define (see [3] p. 152) the Lagrangian of the
optimization problem as the sum of the functional J and the variational formulations (27)
and (28), by also adding the terms with Lagrangian multipliers λR and λI , in the aime
to ensure a penalization the Dirichlet boundary condition on ΓD :

L(Ω, uR, uI , wR, wI , λR, λI) = A

∫

Ω

(|uR|2 + |uI |2)dx

+B

∫

Ω

(|∇uR|2 + |∇uI |2)dx+ C

∫

Γ

(

|uR|2 + |uI |2
)

ds

+

∫

Ω

(

∇uI∇wI −∇uR∇wR + ω2 (uRwR − uIwI) + fIwI − fRwR
)

dx

−
∫

Γ

((αRuR − αIuI)wR − (αIuR + αRuI)wI) ds

+

∫

ΓD

(

∂uR
∂n

wR − ∂uI
∂n

wI

)

ds +

∫

ΓD

λR(uR − gR)ds+

∫

ΓD

λI(uI − gI)ds,

where uR , uI , wR , wI , λR and λI are in H1(R2) . As the functional J and the
displacement vector θ of the boundary are real, for the optimization we need to consider
only real part of variational form of the direct problem. Therefore the conjugate problem
can be found from the system

〈

∂L

∂uR
(Ω, uR, uI , wR, wI , λR, λI), ψR

〉

= 0,

〈

∂L

∂uI
(Ω, uR, uI , wR, wI , λR, λI), ψI

〉

= 0,

with
〈

∂L

∂uR
, ψR

〉

=

∫

Ω

(2AuRψR + 2B∇uR∇ψR −∇wR∇ψR + ω2wRψR)dx

−
∫

Γ

(αRwR − αIwI − 2CuR)ψRds +

∫

∂Ω

(2B∇uR −∇wR) · nψRds

+

∫

ΓD

∂ψR
∂n

wRds+ λR

∫

ΓD

ψRds,
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and
〈

∂L

∂uI
, ψI

〉

=

∫

Ω

(2AuIψI + 2B∇uI∇ψI +∇wI∇ψI − ω2wIψI)dx

+

∫

Γ

(αIwR + αRwI + 2CuI)ψIds+

∫

∂Ω

(2B∇uI +∇wI) · nψIds

+

∫

ΓD

∂ψI
∂n

wIds+ λI

∫

ΓD

ψIds.

After the integration by parts, we obtain the following adjoint problem:






















































△wR + ω2wR = −2(AuR(Ω0)−B△uR(Ω0)) x ∈ Ω0,

wR = 0 on ΓD,
∂wR
∂n

= 0 on ΓN ,

∂wR
∂n

+ αRwR − αIwI = −2B[αRuR(Ω0)− αIuI(Ω0)] + 2CuR(Ω0) on Γ0,

△wI + ω2wI = 2(AuI(Ω0)− B△uI(Ω0)) x ∈ Ω0,

wI = 0 on ΓD,
∂wI
∂n

= 0 on ΓN ,

∂wI
∂n

+ αIwR + αRwI = 2B(αRuI(Ω0) + αIuR(Ω0))− 2CuI(Ω0) on Γ0.

(29)

Then, λR = (−2B∇uR +∇wR) · n and λI = (−2B∇uI −∇wI) · n . We notice that the
adjoint problem (29) can be more compactly rewritten for the complex-valued functions
w ∈ V (Ω0) (w = wR + iwI ), u(Ω0) and α :



















△w + ω2w = −2 (Aū(Ω0)− B△ū(Ω0)) x ∈ Ω0,

w = 0 on ΓD,
∂w

∂n
= 0 on ΓN ,

∂w

∂n
+ αw = −2Bᾱū(Ω0) + 2Cū(Ω0) on Γ0.

(30)

Since the Dirichlet and Neumann boundaries are supposed to be fixed, we impose θ = 0
on ΓD and ΓN . Consequently, functions λR and λI do not contribute to the final
formula of the shape derivative. Hence, J ′(Ω0)(θ) is given by

J ′(Ω0)(θ) =
∂L

∂Ω
(Ω0, uR, uI , wR, wI)(θ)

=

∫

Γ0

θ · n
(

A|u|2 +B|∇u|2 − 2CRe(α)|u|2 + CH|u|2
)

ds

+

∫

Γ0

θ · nRe
(

−∇u · ∇w + ω2uw − fw − αHuw − α
∂(uw)

∂n

)

ds, (31)

where n is the outward normal on Γ0 and H is the curvature of Γ0 . Using the boundary
conditions and adding the volume constraint, we directly obtain (24).

Derivation. Since ΓD does not move in our assumption, and thus, the value g does
not have any influence to the shape derivative J ′(Ω0) , in what following, in the aim to
simplify the notations, we take g ≡ 0 on ΓD .
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We take the variational form of the problem over Ω and we transform it in a variational
form over Ω0 . For this we change the variables x = y + θ(y) and consider u(θ) =
u ((Id+ θ)(Ω0))◦(Id+θ) with a test function of the form φ(x) = ψ◦(Id+θ)−1(x) = ψ(y) .
We use the formulas (see Ref. [3] Lemmas 6.21 and 6.23)

∫

Ω

fdx =

∫

(Id+θ)Ω0

fdx =

∫

Ω0

f ◦ (Id+ θ)| det∇(Id+ θ)|dx,

(∇f) ◦ (Id+ θ) =
(

(∇(Id+ θ))−1)t∇ (f ◦ (Id+ θ)) ,
∫

∂(Ω0+θ)

fds =

∫

Γ0

f ◦ (Id+ θ)| det(I +∇θ)||((I +∇θ)−1)tn|R2ds

with I = ∇Id ( i.e., I is the identity matrix) to obtain

−
∫

Γ0

αu(θ)ψ| det(I +∇θ)||((I +∇θ)−1)tn|R2ds

−
∫

Ω0

(A(θ)∇u(θ)) · ∇ψdy +
∫

Ω0

ω2u(θ)ψ| det(I +∇θ)|dy

=

∫

Ω0

f ◦ (Id+ θ)ψ| det(I +∇θ)|dy −
∫

ΓD

∂u

∂n
ψds,

where

A(θ) = | det(I +∇θ)|(I +∇θ)−1((I +∇θ)−1)t.

With the notation Y = 〈u′(0), θ〉 , being the Lagrangian derivative at 0 of u(θ) in the
direction θ , and u(0) = u(Ω0) , we find that for all ψ ∈ V (Ω0)

∫

Ω0

(−∇Y · ∇ψ + ω2Y ψ)dy +

∫

Ω0

(

− div θI +∇θ + (∇θ)t
)

∇u(0) · ∇ψdy

+

∫

Ω0

ω2u(0)ψ div θdy =

∫

Ω0

div(fθ)ψdy +

∫

Γ0

α
(

Y + u(0)(div θ − (∇θ)t n · n)
)

ψds.

Consequently, the Lagrangian derivative Y ∈ V (Ω0) is the unique solution of the following
problem

△Y + ω2Y =div
(

− div θI +∇θ + (∇θ)t)∇u(Ω0)
)

− ω2u(Ω0) div θ + div(fθ) in Ω0,

Y = 0 on ΓD,
∂Y

∂n
= 0 on ΓN , (32)

∂Y

∂n
+ αY =− αu(Ω0)

(

div θ − (∇θ)t n · n
)

+
(

− div θI +∇θ + (∇θ)t
)

∇u(Ω0) · n on Γ0.

The well-posedness of the system (32) follows from the regularity of θ , f and u on Ω0

(see Theorem 4).
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The equation for the Lagrangian derivative Y can be simplified to

△Y + ω2Y = △(θ · ∇u(Ω0)) + ω2θ · ∇u(Ω0).

Since the Eulerian derivative U = Y − θ · ∇u(Ω0) and θ = 0 on ΓD and ΓN , we obtain
that U ∈ V (Ω0) is solution of the following problem



















△U + ω2U = 0 in Ω0,

U = 0 on ΓD,
∂U

∂n
= 0 on ΓN ,

∂U

∂n
+ αU = θ · n

(

α2u(Ω0)−
∂2u(Ω0)

∂n2

)

+∇t(θ · n) · ∇tu(Ω0) on Γ0,

(33)

with the notation of the tangential gradient ∇tφ = ∇φ − (∇φ · n)n. Let us show it.
Thanks to the regularity of the boundary ∂Ω , the elements of H1(Ω) can be considered
as the restrictions of the corresponding elements of H1(R2) . Thus, we can reformulate
the variational form (27)–(28) by “to find u(Ω) ∈ V (R2), such that for all φ ∈ V (R2) it
holds

∫

Ω

∇u · ∇v̄dx− ω2

∫

Ω

uv̄dx+

∫

Γ

αuv̄dσ =

∫

Ω

f v̄dx.′′

We derive the last equality at Ω0 , using Theorem 7 and the facts, that θ = 0 on ΓD and
ΓN . Hence, we find that u′(Ω0)(θ) = U , where U satisfies

∫

Ω0

(−∇U · ∇φ+ ω2Uφ)dx−
∫

Γ0

αUφds

=

∫

Γ0

θ · n
(

∇u · ∇φ− ω2uφ+ fφ+ αHuφ+ α
∂(uφ)

∂n

)

ds. (34)

From Eq. (34), for the test function φ of a compact support in Ω , we find (see for example
Ref. [3] p. 144) that it holds the equation △U + ω2U = 0 .

To prove the boundary conditions of system (33), we use the following relations on Γ0

∇u · ∇φ− ∂u

∂n

∂φ

∂n
= ∇tu · ∇tφ,

∂u

∂n
= −αu on Γ0,

to transform Eq. (34) to the equality

∫

Ω0

(−∇U∇φ+ω2Uφ)dx−
∫

Γ0

αUφds =

∫

Γ0

θ ·n(∇tu·∇tφ+(f−ω2u)φ+αHuφ−α2uφ)ds.

Noticing, as in Ref. [22] Proposition 5.4.12 and Theorem 5.4.13 p. 196, that for u ∈
{H3(Ω0)| u = 0 on ΓD} (using the regularity property for f ∈ H1(R2) , g ∈ H3(R2) and
∂Ω0 ∈ C3 ) and φ ∈ {C∞(R2)| φ = 0 on ΓD} , there hold the relations

f − ω2u = △u = △tu+H
∂u

∂n
+
∂2u

∂n2
on Γ0,

∫

Γ0

θ · nφ△tuds = −
∫

Γ0

∇tu∇t(φθ · n)ds = −
∫

Γ0

(θ · n∇tu∇tφ+ φ∇tu∇t(θ · n))ds.
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Since, in addition,
∫

Ω0

(−∇U∇φ + ω2Uφ)dx = −
∫

Γ0

φ
∂U

∂n
ds+

∫

Ω0

(△U + ω2U)φdx = −
∫

Γ0

φ
∂U

∂n
,

we finally obtain the boundary conditions for the system (33).
Therefore, thanks to Theorem 7, we find the shape derivative of J as

J ′(Ω0)(θ) =

∫

Ω0

div
(

θ
(

A|u(Ω0)|2 + B|∇u(Ω0)|2
))

dx

+ C

∫

Γ0

θ · n
(

∂|u(Ω0)|2
∂n

+H|u(Ω0)|2
)

ds+

∫

Ω0

(2A (uR(Ω0)UR + uI(Ω0)UI)

+2B (∇uR(Ω0)∇UR +∇uI(Ω0)∇UI)) dx+ 2C

∫

Γ0

(uR(Ω0)UR + uI(Ω0)UI)ds

=

∫

Γ0

θ · n
(

A|u(Ω0)|2 +B|∇u(Ω0)|2 + C
∂|u(Ω0)|2

∂n
+ CH|u(Ω0)|2

)

ds

+

∫

Ω0

Re (2Aū(Ω0)U + 2B∇ū(Ω0)∇U) dx+ 2C

∫

Γ0

Re(ū(Ω0)U)ds.

On the other hand, we also have relation (34). So, we would like to find φ, such that

∫

Ω0

(−∇U · ∇φ+ ω2Uφ)dx−
∫

Γ0

αUφds+

∫

ΓD

∇U · nφds =

−
∫

Ω0

(2Aū(Ω0)U + 2B∇ū(Ω0)∇U)−
∫

Γ0

2Cū(Ω0)Uds. (35)

Let w be the solution of the adjoint problem (30), then Eq. (35) is satisfied for φ = w .
Hence,
∫

Ω0

Re (2Aū(Ω0)U + 2B∇ū(Ω0)∇U) dx+
∫

Γ0

2CRe(ū(Ω0)U)ds

=

∫

Γ0

θ · nRe
(

−∇u(Ω0) · ∇w + ω2u(Ω0)w − fw − αHu(Ω0)w − α
∂(u(Ω0)w)

∂n

)

ds.

Finally, we obtain the shape derivative J ′(Ω0)(θ) given by formula (31). Using the Robin
boundary condition, we obtain

α∇(uw) · n = α (w∇u · n + u∇w · n) = −2α2uw − 2B|α|2|u|2 + 2Cα|u|2.

Then, we can calculate the shape derivative of J as

J ′(Ω0)(θ) =

∫

Γ0

θ · n
(

A|u(Ω0)|2 +B|∇u(Ω0)|2 + 2B|α|2|u(Ω0)|2

−4CRe(α)|u(Ω0)|2 + CH|u(Ω0)|2
)

ds

+

∫

Γ0

θ · nRe
(

−∇u(Ω0) · ∇w + ω2u(Ω0)w − fw − αHu(Ω0)w + 2α2u(Ω0)w
)

ds.

32



Now, if we add to the objective function the volume constraint with the Lagrange coeffi-
cient µ (see Eq. (19))

J1(Ω, u) = J(Ω, u) + µ (Vol(Ω)− Vol(Ω0))
2 ,

the shape derivative of objective function J1 is given by

J ′
1(Ω0)(θ) = J ′(Ω0)(θ) + 2µ

∫

Γ0

θ · n (Vol(Ω)−Vol(Ω0)) ds,

which concludes the proof. �

6 Shape optimization algorithm

We want to solve numerically, using the descend gradient method, the following mini-
mization problem: for ω > 0 and Ω0 find Ωopt ∈ Uad(λ,Ω0) , such that

J1(Ω
opt) = min

Ω∈Uad(λ,Ω0)
J1(Ω).

We rewrite the shape derivative of J1 , given by Eq. (24), in the form

J ′
1(Ω0)(θ) =

∫

Γ0

(θ · n)(−V )ds, (36)

where by the velocity −V is denoted

− V =
(

A|u|2 +B|∇u|2 + 2B|α|2|u|2 − 4CRe(α)|u|2 + CH|u|2
)

+ Re
(

−∇u · ∇w + ω2uw − fw − αHuw + 2α2uw
)

+ 2µ (Vol(Ω)− Vol(Ω0)) . (37)

If the velocity V follows the outward normal direction, or equivalently, if θ ·n = V , then
Eq. (36) implies that

J ′
1(Ω0)(θ) = −

∫

Γ0

V 2ds < 0,

which ensures the decreasing behavior of the objective function. To calculate it, we need
to know u , the solution of the Helmholtz equation in Ω0 , but also w , the solution of
the adjoint problem and the curvature H . Inspired by Refs. [3, 38, 39], we construct a
shape optimization algorithm composed of the following steps:

(i) Solving the Helmholtz problem (3) by a center finite difference schema in a fixed do-
main D , which is assumed to contain all domains Ω during the shape optimization
process.

(ii) Calculating the velocity V of the Robin boundary Γ , based on the shape derivative,
and then extending a such velocity towards the normal vector on the whole domain
D , or at least around the Robin boundary.
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(iii) Solving the level set equation to obtain a new shape.

If J ′
1(Ω)(θ) ≥ 0 , then Ω is an optimal domain, and the algorithm stops. In order to

describe the shape of the domain, we use a concept of level sets. More precisely, the level
set function ψ of the domain Ω ⊂ D is defined by







ψ(x) = 0 iff x ∈ (∂Ω ∩D),
ψ(x) < 0 iff x ∈ Ω,
ψ(x) > 0 iff x ∈ (D \ Ω).

The level set method, initially devised by S. Osher and J-A. Sethian in Ref. [38], allows,
not only to define implicitly the domain, but also to follow easily the propagation of
the boundary during the evolution process. Let us take into account a particle x(t) on
the boundary, which propagates in time, hence it has the zero-level set all time, i.e. ,
ψ(x(t), t) = 0 . By the chain rule, it yields that

ψt + x′(t) · ∇ψ (x(t), t) = 0. (38)

If V is the velocity in the outward normal direction of the boundary, i.e. x′(t) · n = V ,
with n = ∇ψ

|∇ψ| , then from Eq. (38), we obtain a so-called level set equation

ψt + V |∇ψ| = 0, (39)

associated with the initial condition ψ(x, t = 0) = 0 . This equation is of Hamilton-Jacobi
type, and in what follows we call it the Hamilton-Jacobi equation.

To calculate the shape derivative of the objective function and velocity’s extension,
we use formula (24). More precisely, we calculate −V (see Eq. (37)) and use the descend
gradient method, taking θ = V n , in the aim to obtain a new domain, which has a smaller
value of the objective function. After solving the Helmholtz equation (3) and the adjoint
problem (30), we find numerically the corresponding solutions u and w , and evaluate
∇u and ∇w . The curvature H is calculated, basing on the level set function ψ , by the
following equation

H = ∇ · ∇ψ
|∇ψ| =

ψyyψ
2
x − 2ψxψyψxy + ψxxψ

2
y

(

ψ2
x + ψ2

y

)3/2
.

To apply the level set method, we need to know the velocity V not only on the boundary,
but in both sides of the Robin boundary Γ . Naturally, V is defined inside the domain
Ω , so we have to extend V outside the domain to be able to solve the Hamilton-Jacobi
equation (39). The method to extend V outside the domain [37, 39], on one way, is to
solve until the stationary state the equation

φt + β(x, y)∇φ · n = 0,

with the initial condition φ(t = 0) equal to V inside the domain Ω and zero elsewhere.
Here by n is denoted the outward normal vector to Γ . The mesh, used to solve the
Hamilton-Jacobi equation, is coarser than the mesh, used to solve the Helmholtz equation.
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We use an upwind schema for solving the Hamilton-Jacobi equation [37, 39] and discretize
Eq. (39) as follows

ψn+1
ij − ψnij

∆t
+
[

max (Vij , 0)∇+ +min (Vij, 0)∇−] = 0, (40)

where

∇+ =
[

max
(

D−x
ij , 0

)2
+min

(

D+x
ij , 0

)2
+max

(

D−y
ij , 0

)2
+min

(

D+y
ij , 0

)2
]1/2

,

∇− =
[

max
(

D+x
ij , 0

)2
+min

(

D−x
ij , 0

)2
+max

(

D+y
ij , 0

)2
+min

(

D−y
ij , 0

)2
]1/2

,

D−x
ij =

ψn(i, j)− ψn(i− 1, j)

∆x
, D+x

ij =
ψn(i+ 1, j)− ψn(i, j)

∆x
,

D−y
ij =

ψn(i, j)− ψn(i, j − 1)

∆y
, D+y

ij =
ψn(i, j + 1)− ψn(i, j)

∆y
,

and ψ0 = ψ(t = 0) is the signed distance function, defined by

ψ0(x, y) = ±dist[(x, y),Γ], (x, y) ∈ D. (41)

In the last formula, Γ is the Robin boundary, and the sign plus (or minus) corresponds
to outside (or inside) of the domain Ω . Schema (40) is stable under the CFL condition

∆t ≤ ∆x

max(|V (x, y)|)
√
2

(42)

with a space-step ∆x = ∆y .

7 Numerical experiments

For all numerical tests, presented below, we consider the rectangle D = [0, 3] × [0, 1] ,
and suppose that D always contains the domain Ω , on which we solve the Helmholtz
equation. The boundaries ΓN and ΓD are fixed, as it is shown on Fig. 2, and Γ is the
moving boundary inside of G = [3

2
, 3]× [0, 1] . Here G ∩Ω is the 1

2
-neighborhood of the

flat Γ , fixed at x = 2 . If Ω has the flat boundary Γ , then Ω = [0, 2]× [0, 1] with the
characteristic lengths ℓ = 1 and L = 2ℓ .

The Helmholtz equation is considered with a wave number k = ω
c0

, i.e ,

∆ u+ k2u = −f,

where c0 is the sound speed in the air. We take f = 0 , g = 1
σ
√
2π

exp
(

− (y−1/2)2

2σ2

)

with σ = 1 in the Helmholtz boundary value problem. For the chosen σ , the smallest
wavelength, excited by g , is λ = ℓ

2
. The parameter α in the Robin boundary con-

dition depends on the value of the frequency ω . It is calculated for ISOREL, using a
minimization of the difference between the solution of the problem with a volume dis-
sipation (described by a damped wave equation) and the solution of the problem with

35



the boundary dissipation for the flat shape of Γ (see Appendix A and Fig. 1). We solve
the Helmholtz boundary value problem on the fine mesh with the size h = ℓ

64
, and we

perform the level set approach for the optimization algorithm on the coarse mesh of the
size κ = 2h = ℓ

32
(in the aim of a penalization of too much complicated shapes of Γ ).

However, we notice that κ≪ λ .

7.1 Illustrations for Assumption 1 and Theorem 6

Time depending energy decay. We consider the three shallow cavities

Ω = Ω0 ⊔ Ω1 =]0, 1[×]− 2, 2[,

shown on Fig. 5 with two homogeneous media, air (lower part) and a porous material
(upper part), separated by an internal boundary Γi , i = 0, 1, 2 . To preserve the volume
of each medium and to model the increasing irregularity of the interface, as compared
to the plane Γ0 (at y = 0 ), we chose as Γ1 and Γ2 as the first two fractal genera-
tions of a symmetric element. The external boundary ∂Ω is supposed to be perfectly
rigid (Neumann boundary condition). Air is considered as a loss-less medium, and the
porous medium (ISOREL) is considered as a dissipative homogeneous medium. As it was
mentioned in Section 2, using the ideas of Hamet [21], the wave propagation in Ω can
be modeled by problem (1) (which is the wave equation in the air ( a = 0 ), and is the
damped wave equation [4, 13] ( a 6= 0 ) in the porous medium), where we take an initial
data as a Gaussian, centered in a fixed point x0 = (0.75,−1.5) of Ω0 :

u|t=0 =
1

δ
√
2π
e−

|x−x0|
2

2δ2 , ∂tu|t=0 = 0

with δ = 0.1 . Such choice of δ ensures that supp(u|t=0) ⊂ Ω0 . We discretize Eq. (1)
in a way which mimics the energy dissipation (2), and which is an adaptation to damped
acoustic waves of the finite volume method presented in Ref. [23]. Let uni be the dis-
cretized pressure in the control volume i at time n∆t , then we write

ξ
un+1
i − 2uni + un−1

i

∆t2
+ a

un+1
i − un−1

i

2∆t
− [∇ · (µ∇un)]i = 0,

so that the energy En+1/2 := 1
2

(

∫

Ω
ξ
(

un+1−un
∆t

)2
dx+

∫

Ω
µ∇un · ∇un+1dx

)

is damped as

1

∆t

(

En+1/2 − En−1/2
)

= −
∫

Ω1

a
(un+1 − un−1

2∆t

)2

dx.

Fig. 5 shows that an irregular shape of the internal boundary can significantly increase
the dissipation properties of the porous medium (Γ1,2 as compared to Γ0 ). The efficient
energy damping by Γ1 , compared to the damping performances of Γ0 , are much better
and we notice that the wavelength λ of the wave, created by the initial data, is compared
(two times bigger) to the characteristic length scale size of the geometry Γ1 . At the same
time, the small difference in the energy decays, corresponding to the internal boundaries
Γ1 and Γ2 , confirms the hypothesis of Assumption 1: the wave does not penetrate in the
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Figure 5: Pressure contours at t = 0.01 in cavities with an internal boundary of different
Minkowski fractal generations (from left to right and top to bottom: Γ0 (flat), Γ1 and
Γ2 ) and the corresponding energy damping. The size of the mesh is 128× 512 .

smallest geometry parts of the size λ/8 , but the wave still keeps a good penetration for
the scales of the order λ/2 as for Γ1 . This finally implies that the shape of the internal
boundary does not need to be “too complicated” for being an efficient acoustic absorbent
for a fixed frequency.

Frequency optimization results. Taking Ω0 = [0, 2]× [0, 1] ⊂ D , we firstly calculate
the values of J

J =

∫

Ω

|u|2dx+
∫

Ω

|∇u|2dx+ Re(α)

∫

Γ

|u|2ds

for a range of frequencies for the flat shape Ω0 , for instance for ω ∈ [2400, 4000] . Let us
fixe a frequency ω0 = 3170 , corresponding to a local maximum of J . For this fixed ω0

we have α = 23.7699− 24.8367i (see Appendix A).
We perform two numerical tests, taking different initial domains Ω0 in the shape

optimization algorithm: the flat geometry of Γ (see Fig. 6) and a non-flat Γ (see Fig. 7)
with the smallest characteristic geometric size ℓmin(Ω0) much smaller than the wavelength
λ = ℓ

2
. The optimal shape on Fig. 6 has a mean value of shape’s scale length of the order

of ℓ
4
, i.e. ℓ(Ω16) = λ

2
. The optimal shape Ω̂10 = Ω∗

opt on Fig. 7 keeps the largest

characteristic geometrical size of the order of λ
2

( ℓ(Omega∗opt) = λ
2

) and for smaller
scales Ω∗

opt is in a small neighborhood of Ωflat
opt .
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Figure 6: From the top to the bottom the values of |u|2 and |∇u|2 on the domains (from
the left to right) Ω0 (with the flat Γ ), Ω5 , Ω8 and Ω16 respectively with the same scale
of colors in each row (the red values are maximal and the blue values are minimal (near
zero)). The domain Ω0 is the initial shape and the domain Ω16 is the optimal shape for
ω = 3170 .

(a) |u(Ω̂0)|2 (b) iter = 3 (c) iter = 5 (d) iter = 10
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Figure 7: From the top to the bottom the values of |u|2 and |∇u|2 on the domains (from
the left to right) Ω̂0 , Ω̂3 , Ω̂5 and Ω̂10 respectively with the same scale of colors in each
row. The domain Ω̂0 is the initial shape and the domain Ω̂10 is the optimal shape for
ω = 3170 .

Figure 8 confirms the concept of the ε -optimality of a domain form a small neighbor-
hood of the optimal domain with the same characteristic geometric size, equal to λ/2 (see
Corollary 1). In addition, Figure 8 shows the existence of the frequency interval [ω1, ω2] ,
including ω0 = 3170 , for which the optimal shapes Ωflat

opt and Ω∗
opt are ε -optimal by the
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Figure 8: The objective function J as a function of ω for the flat shape Ω0 = Ωflat given
by the blue line, for the optimal shape Ω16 = Ωflat

opt (see Fig. 6) given by the red line,

and for the optimal shape Ω̂10 = Ω∗
opt (see Fig. 7) given by the green line. The optimal

domains Ωflat
opt and Ω∗

opt are J(Ω0)(ω0)/J(Ω
∗
opt)(ω0) = 27.5 times better for the energy

dissipation than the flat shape Ω0 .

continuity of the functional J1 on ω .

7.2 Properties of the optimization algorithm

In this Section we illustrate the stability properties of the optimization algorithm.
As in Subsection 7.1, we fix the frequency ω0 = 3170 , which is a local maximum

of J(Ω)(ω) =
∫

Ω
|u|2dx , calculated for Ω0 =]0, 2[×]0, 1[ in a range of frequencies, for

instance, ω ∈ [3000, 6000] . This time we chose A = 1 and B = C = 0 for the simulation
of the acoustical energy.

If we start the optimization algorithm one time from Ω0 = Ωa0 and the second time
from Ω0 = Ωb0 , such that dH(Ω

a
0,Ω

b
0) < ε is mall enough, then the optimal shapes Ωaopt

and Ωbopt are “almost the same”, i.e. there exists C > 0 , depending only on ε , such that
the distance

dH(Ω
a
opt,Ω

b
opt) < C(ε)dH(Ω

a
0,Ω

b
0)

is also small enough. Hence, |J(Ωaopt)(ω0)−J(Ωbopt)(ω0)| ≪ 1 is also small enough by the
continuity of J as a function of the domain; see Fig. 9 for the numerical example.

Let us also notice, that, as for the question of Mark Kac “Can one hear the shape of
a drum?”, we don’t have the uniqueness of the optimal shape Γ , since different shapes
can have the same spectrum and be identically efficient in the dissipation of the energy in
the fixed range of frequency. Fig. 10 illustrates the case, when the initial shape Ω0 = Ωc0
is not in a small neighborhood of Ωaopt and ℓ(Ωc0) is almost equal to ℓ(Ωaopt) . For this
choice of Ωc0 we obtain that Ωdopt is not in a small neighborhood of Ωflat

opt , but we still
have |J(Ωcopt)(ω0) − J(Ωaopt)(ω0)| ≪ 1 . Moreover, Fig. 11 shows, that the values of the
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Figure 9: The values of |u|2 are presented on two initial and optimal domains for
the fixed frequency ω0 = 3170 . From the left to the right: the initial domain Ωa0
and the corresponding optimal domain Ωaopt = Ωa11 , the initial domain Ωb0 , taken in
a small neighborhood of Ωa0 , and the corresponding optimal domain Ωbopt = Ωb10 . We
see that Ωaopt is in a small neighborhood of Ωbopt (the shapes of Γa and Γb are al-
most the same). The values of J are also almost the same: J(Ωaopt)(ω0) ≈ 0.1458 and

J(Ωbopt)(ω0) ≈ 0.1458 . To compare to the flat shape Ω0 = [0, 2] × [0, 1] , for which
J(Ω0)(ω0) = 4.286 , J(Ω0)(ω0)/J(Ω

a
opt)(ω0) = 27.492 , hence the optimal shapes dissipate

the energy 27.5 times better than the flat one. In the bottom, the convergence of the
optimization algorithm for two cases of the initial domain: for Ωa0 in the left and for Ωb0
in the right.

functional |J(Ωcopt)(ω)− J(Ωaopt)(ω)| ≪ 1 are almost the same for all ω in a rather large
neighborhood of ω0 .

7.3 Optimized “simple” wall for a large range of frequencies

In this Subsection, we are searching of an ε -optimal shape of the wall Ω , minimizing the
acoustical energy

J(Ω)(ω) =

∫

Ω

|u|2dx

in a large range of frequencies with a simplest possible design. Let us fix the range of
frequencies for the energy dissipation: ω ∈ [3000, 6000] .

As in Sections 7.1 and 7.2, we fix the frequency ω0 = 3170 of a local maximum of J
on Ωflat =]0, 2[×]0, 1[ . We perform the shape optimization algorithm for this frequency,
taking as the initial shape Ω0 , given on Fig. 12, and we obtain Ω1 , optimal at ω = 3170 .
Noticing that all local maxima of J(Ω1) are smaller than the local maxima of J(Ωflat)

40



(a) initial
Ωflat

0

(b) Ωflat
opt (c) initial Ωc

0 (d) Ωc
opt

 

 

0

0.5

1

0 5 10 15 20

10
0

 

 

0 5 10 15 20
−0.05

0

0.05

iteration

 

 
vol − vol

0

J + µ (vol
0
 − vol)2

J

(f) Convergence starting by Ωflat
0

0 5 10 15 20

10
−0.7

10
−0.2

 

 

0 5 10 15 20
−0.02

0

0.02

iteration

 

 

J + µ (vol
0
 − vol)2

J

vol − vol
0

(g) Convergence starting by Ωc
0

Figure 10: The values of |u|2 are presented on two initial and optimal domains for the
fixed frequency ω0 = 3170 . From the left to the right: the initial domain Ωflat

0 and
the corresponding optimal domain Ωflat

opt , the initial domain Ωc0 , significantly different to
Ωflat

0 and to Ωflat
opt , taken with ℓ(Ωc0) ≈ ℓ(Ωflat

opt) , and the corresponding optimal domain
Ωcopt. We see that Ωflat

opt is not in a small neighborhood of Ωc
opt (the shapes of Γa and

Γb are really different). But the values of J for ω0 = 3170 are also almost the same:
J(Ωflat

opt) = 0.1654 and J(Ωc
opt) = 0.1659 .
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Figure 11: The objective function J as a function of ω for the flat shape Ω0 is given by
the blue line, for the optimal shape Ωflat

opt (see Fig. 10) is given by the red line, and for
the optimal shape Ωcopt (see Fig. 10) is given by the green line.
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(a) Ω0 (b) Ω1 (c) Ω2 (d) Ω3

(e) Ω4 (f) Ω5 (g) Ω6 (h) Ω7

Figure 12: Shapes, which are used in the optimization algorithm process: from left to
right in the top line- Ω0 (the initial shape), Ωk , k = 1, 2, 3, and from left to right in the
bottom line - Ωk , k = 4, 5, 6, 7 . The domain Ω7 is generated manually in the aim to
simplify Ω6 (the final ε -optimal shape).

3000 3500 4000 4500 5000 5500 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ω

ob
je

ct
iv

e 
fu

nc
tio

n

 

 

J(Ω
flat

)

J(Ω
1
)

J(Ω
2
)

J(Ω
3
)

J(Ω
4
)

J(Ω
5
)

J(Ω
6
)

Figure 13: The values of the objective function (A = 1, B = 0, C = 0 ) on flat shape
J(Ω0) as a function on ω ∈ [3000, 6000] are presented by the blue line, the values of
J(Ω1) (see Fig.12 for the shape of Ω1 ) are presented by the red line, of J(Ω2) by the
yellow line, of J(Ω3) by the green line, of J(Ω4) by the magenta line, of J(Ω5) by the
marine blue line, and of J(Ω6) by the black dashed line.

(see Fig. 13), we choose Ω1 as the initial domain and restart the optimization algorithm,
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Figure 14: Comparison of the dissipative properties of the flat shape Ωflat , the optimal
Ω6 and of its simplification Ω7 . The values of J(Ωflat) , of J(Ω6) and of J(Ω7) (A =
1, B = 0, C = 0 ) as functions of ω ∈ [3000, 6000] are given by the blue, red and green
lines respectively.
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Figure 15: Energy distribution in Ωflat , Ω6 and Ω7 respectively for ω = 3235 , cor-
responding to the case, when J(Ω6) ≈ J(Ω7) are almost the same (precisely J(Ω6) =
0.2841, J(Ω7) = 0.2829 )
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Figure 16: Energy distribution in Ωflat , Ω6 and Ω7 respectively for ω = 3495 , corre-
sponding to the case, when J(Ω6) = 0.4767 and J(Ω7) = 0.5077 take slight different
values.
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Figure 17: Energy distribution in Ωflat , Ω6 and Ω7 respectively for ω = 3415 , the
frequency, which yields a local maximum of the objective function on the domain Ω7 .

minimizing in the neighborhood of Ω1 the sum of functionals

3
∑

k=1

J(Ω)(ωk),

where ω1 = 3410 , ω2 = 4025 and ω3 = 4555 are the local maxima of J(Ω1) . This
minimization gives the optimal shape Ω2 , such that

1. Ω2 is ε -optimal in the neighborhood of ωk for k = 0, 1, 2, 3 ;

2. all local maxima of J(Ω2) are smaller than the local maxima of J(Ω1) .

Choosing ω4 = 3625 and ω5 = 4240 , corresponding to the local maxima of J(Ω2) , we
take Ω2 as the initial domain and restart the optimization algorithm, minimizing

J(Ω)(ω4) + J(Ω)(ω5)

to obtain the optimal shape Ω3 , such that

1. Ω3 is ε -optimal in the neighborhood of ωk for k = 0, . . . , 5 ;

2. all local maxima of J(Ω3) are smaller than the local maxima of J(Ω2) .

We iterate this process up to Ω6 and we are stopped by the restriction that Γ must be
containing by the area [3

2
, 3]× [0, 1] .

The shape of Ω6 contains multiscale geometry, which ensures the dissipative perfor-
mances of the wall in a large range of frequencies (see Fig. 13). Thinking about the
demolding process of wall’s construction, we simplify the geometry of Ω6 , deleting the
multiscaling and keeping only the biggest characteristic scale of Ω6 (see the domain Ω7

(generated by hand) on Fig. 12). As we can see from Fig. 14, since we have kept almost
unchanged the biggest characteristic geometric size ℓ(Ω6) ≈ ℓ(Ω7) , the energy dissipation
is almost the same in the corresponding range of frequencies (see red and green lines for
[3000, 3700] on Fig. 14). As all smaller scale details have been deleted, the shape of Ω7 is
not so good as the shape of Ω6 to dissipate higher frequencies (see red and green lines for
[3700, 6000] on Fig. 14). Hence, Fig. 14 shows that the compromises between two desired
properties “to be the most dissipative” (as Ω6 here) and “to be simple to construct” (on
the example of Ω7 ) is not too bad, especially if we know the most important frequencies
to dissipate. Figures 15–17 show the energy distribution for three values of frequencies
illustrating the three typical cases: J(Ω6) ≈ J(Ω7) , J(Ω6) < J(Ω7) and J(Ω7) has its
local maximum.
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8 Conclusion

The well-posedness for the wave equation and the Helmholtz equation with a damping on
the boundary was obtain in the class of n -sets, which generalizes the case of Lipschitz
boundary to d -sets, which are fractal for n − 1 < d < n . In the framework of a
noise barrier optimization, we have introduced the concept of the ε -optimal domains and
have shown that for a efficient dissipation of the energy in a large band of frequencies,
the ε -optimal domain must have a multiscale boundary geometry. More precisely, we
have proved that an ε -optimal domain for all frequencies exists and, to be the most
dissipative, it has a fractal boundary with a characteristic scale for a fractal generation
λ/2 . The shape derivation of a general energy functional was obtained for the complex-
valued Helmholtz boundary value problem. With the purpose to find the most efficient
and the simplest ε -optimal domain, easy to construct, we have developed a numerical
algorithm, using the classical conjugate gradient method, combined with the level set
method, which allows to find an efficient multiscale shape for a large range of frequency.
We have illustrated the theoretical results by the numerical examples. In particular, we
show that if, in addition, we simplify the obtained optimal shape, by deleting the smaller
scales of the geometry, the new shape is efficient in the frequencies corresponding to its
characteristic geometry scale length, but no more efficient in the higher frequencies.
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A Approximation of the damping parameter α in the

Robin boundary condition by a model with dissipa-

tion in the volume

Theorem 9 Let Ω =]−L, L[ × ]−ℓ, ℓ[ be a domain with a simply connected sub-domain
Ω0 , whose boundaries are ]−L, 0[ ×{ℓ} , {−L} × ]− ℓ, ℓ[ , ]−L, 0[ ×{−ℓ} and another
boundary, denoted by Γ , which is the straight line starting in (0,−ℓ) and ending in (0, ℓ) ,
denoting by Γ . In addition let Ω1 be the supplementary domain of Ω0 in Ω , so that Γ
is the common boundary of Ω0 and Ω1 . The length L is supposed to be large enough.

Then the following problem (the frequency version of the wave damped problem (1))

−∇ · (µ0∇u0)− ω2ξ0u0 = 0 in Ω0, (43)

−∇ · (µ1∇u1)− ω2ξ̃1u1 = 0 in Ω1, (44)
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with

ξ̃1 = ξ1

(

1 +
ai

ξ1ω

)

,

together with boundary conditions on Γ

u0 = u1 and µ0∇u0 · n = µ1∇u1 · n, (45)

and the condition on the left boundary

u0(−L, y) = g(y), (46)

and some other boundary conditions, can be replaced by the following model

−∇ · (µ0∇u2)− ω2ξ0u2 = 0 in Ω0 (47)

with boundary absorption condition on Γ

µ0∇u2 · n+ αu2 = 0 (48)

and the condition on the left boundary

u2(−L, y) = g(y) (49)

with a complex parameter α , minimizing the following expression

A||u0 − u2||2L2(Ω0)
+B||∇(u0 − u2)||2L2(Ω0)

.

More precisely, let u0 , u1 , u2 and g be decomposed into Fourier modes in the y direc-
tion, denoting by k the associated wave number, and let

ek(α) = A||u0,k − u2,k||2L2(]−L,0[) +B||∇(u0,k − u2,k)||2L2(]−L,0[),

f(x) = (λ0µ0 − x) exp(−λ0L) + (λ0µ0 + x) exp(λ0L),

χ(k, α) = gk

(

λ0µ0 − λ1µ1

f(λ1µ1)
− λ0µ0 − α

f(α)

)

,

η(k, α) = gk

(

λ0µ0 + λ1µ1

f(λ1µ1)
− λ0µ0 + α

f(α)

)

,

where






λ0 =
√

k2 − ξ0
µ0
ω2 if k2 ≥ ξ0

µ0
ω2,

λ0 = i
√

ξ0
µ0
ω2 − k2 if k2 ≤ ξ0

µ0
ω2.

(50)

Then

ek(α) = (A+B|k|2)
(

1

2λ0

{

|χ|2 [1− exp(−2λ0L)]

+|η|2 [exp(2λ0L)− 1]
}

+ 2LRe (χη̄)
)

+B
λ0
2

{

|χ|2 [1− exp(−2λ0L)] + |η|2 [exp(2λ0L)− 1]
}

− 2Bλ20LRe (χη̄)
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if k2 ≥ ξ0
µ0
ω2 or

ek(α) = (A+B|k|2)
(

L(|χ|2 + |η|2) + i

λ0
Im {χη̄ [1− exp(−2λ0L)]}

)

+BL|λ0|2
(

|χ|2 + |η|2
)

+ iBλ0Im {χη̄ [1− exp(−2λ0L)]}

if k2 < ξ0
µ0
ω2 , and the parameter α can be found from the minimization of the error

function

e(α) :=
∑

k=nπ
L
,n∈Z

ek(α).

Proof. We shall decompose u0 , u1 and u2 into modes in the y direction, denoting by
k the associated wave number.

The mode u1,k solves

∂xxu0,k −
(

k2 − ξ0
µ0

ω2

)

u0,k = 0,

and thus
u0,k(x) = A0 exp(λ0x) +B0 exp(−λ0x), (51)

where λ0 is given in Eq. (50).
The mode u1,k solves

∂xxu1,k −
(

k2 − ξ̃1
µ1
ω2

)

u1,k = 0,

and thus
u1,k(x) = A1 exp(λ1x) +B1 exp(−λ1x), (52)

where

λ21 = k2 −
(

1 +
ai

ξ1ω

)

ξ1
µ1

ω2,

so that

λ1 =
1√
2

√

√

√

√

k2 − ξ1
µ1
ω2 +

√

(

k2 − ξ1
µ1
ω2

)2

+

(

aω

µ1

)2

− i√
2

√

√

√

√

ξ1
µ1
ω2 − k2 +

√

(

k2 − ξ1
µ1
ω2

)2

+

(

aω

µ1

)2

.

For large L , since Re(λ1) > 0 , the value of A1 tend to 0 , so that we may neglect the
first contribution in the right-hand side of (52). Consequently we consider the expression

u1,k(x) = B1 exp(−λ1x). (53)
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Continuity conditions (45) and expressions (51) and (53) imply the following relations

A0 +B0 = B1 , µ0λ0(A0 −B0) = −µ1λ1B1,

from which we infer that

B0 =
λ0µ0 + λ1µ1

λ0µ0 − λ1µ1

A0,

and thus

u0,k(x) = A0

[

exp(λ0x) +
λ0µ0 + λ1µ1

λ0µ0 − λ1µ1
exp(−λ0x)

]

.

The decomposition of the boundary condition (46) into Fourier modes implies that u0,k(−L) =
gk , which gives the final expression

u0,k(x) = gk
[(λ0µ0 − λ1µ1) exp(λ0x) + (λ0µ0 + λ1µ1) exp(−λ0x)]
[(λ0µ0 − λ1µ1) exp(−λ0L) + (λ0µ0 + λ1µ1) exp(λ0L)]

. (54)

Let us now turn to the expression of u2,k . Since the equation (47) is the same as that
verified by u0,k , both solutions have the same general form:

u2,k(x) = A2 exp(λ0x) +B2 exp(−λ0x).

The Robin boundary condition (48) on Γ implies that

µ0λ0(A2 −B2) + α(A2 +B2) = 0,

which means that

u2,k(x) = A2

[

exp(λ0x) +
λ0µ0 + α

λ0µ0 − α
exp(−λ0x)

]

.

Application of the boundary condition (49) implies the final expression

u2,k(x) = gk
[(λ0µ0 − α) exp(λ0x) + (λ0µ0 + α) exp(−λ0x)]
[(λ0µ0 − α) exp(−λ0L) + (λ0µ0 + α) exp(λ0L)]

. (55)

Using (54) and (55), we have that

(u0,k − u2,k)(x) = χ(k, α) exp(λ0x) + η(k, α) exp(−λ0x), (56)

where the coefficients χ and η are computed from (54) and (55). In order to compute
the L2 norm of this expression, we must first compute the square of its modulus (by η̄
is denoted the complex conjugate of η ):

|u0,k − u2,k|2(x) = |χ|2| exp(λ0x)|2 + |η|2| exp(−λ0x)|2 + 2Re
(

χη̄ exp(λ0x)exp(−λ0x)
)

.

Note that, according to the values of k , the expression above may be simplified into

|u0,k − u2,k|2(x) = |χ|2 exp(2λ0x) + |η|2 exp(−2λ0x) + 2Re (χη̄) ,
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if k2 ≥ ξ0
µ0
ω2 , or

|u0,k − u2,k|2(x) = |χ|2 + |η|2 + 2Re (χη̄ exp(2λ0x)) ,

if k2 < ξ0
µ0
ω2 . Thus, we have for k2 ≥ ξ0

µ0
ω2

∫ 0

−L
|u0,k − u2,k|2(x)dx =

1

2λ0

{

|χ|2 [1− exp(−2λ0L)] + |η|2 [exp(2λ0L)− 1]
}

+ 2LRe (χη̄)

or, for k2 < ξ0
µ0
ω2 ,

∫ 0

−L
|u0,k − u2,k|2(x)dx = L(|χ|2 + |η|2) + i

λ0
Im {χη̄ [1− exp(−2λ0L)]} .

Now, we also have to compute the L2 norm of the gradient of (u0,k − u2,k) . Noting
that

∇(u0,k − u2,k) =

(

∂x(u0,k − u2,k)
ik(u0,k − u2,k)

)

,

it holds that
|∇(u0,k − u2,k)|2 = |k|2|u0,k − u2,k|2 + |∂x(u0,k − u2,k)|2.

With the expression (56), it follows that

|∂x(u0,k − u2,k)|2 = |λ0|2
[

|χ|2 exp(2λ0x) + |η|2 exp(−2λ0x)− 2Re (χη̄)
]

,

if k2 ≥ ξ0
µ0
ω2 , or

|∂x(u0,k − u2,k)|2 = |λ0|2
[

|χ|2 + |η|2 − 2Re (χη̄ exp(2λ0x))
]

,

if k2 < ξ0
µ0
ω2 , and thus

∫ 0

−L
|∂x(u0,k − u2,k)|2(x)dx =

λ0
2

{

|χ|2 [1− exp(−2λ0L)] + |η|2 [exp(2λ0L)− 1]
}

− 2λ20LRe (χη̄) ,

if k2 ≥ ξ0
µ0
ω2 , or, if k2 < ξ0

µ0
ω2 ,

∫ 0

−L
|∂x(u0,k − u2,k)|2(x)dx = L|λ0|2

(

|χ|2 + |η|2
)

+ iλ0Im {χη̄ [1− exp(−2λ0L)]} .

Therefore, we can find α as the solution of the mentioned minimization problem. �

Since the minimization will be done numerically and since the sequence (z,−z, z −
z, · · · ) = z(exp(i(j∆x)/∆x)) is the highest frequency mode that can be reached on a grid
of size ∆x , then, in practice, the sum may be truncated to

e∆x(α) :=
∑

k=nπ
L
,n∈Z,− L

∆x
≤n≤ L

∆x

ek(α).
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Figure 18: The real (top left) and imaginary (top right) parts of α and the sum of the
errors e∆x (in the bottom) as function of frequencies ω ∈ [600, 30000] calculated for the
ISOREL porous material.

For the equations (43)–(44), we use the same coefficients as for problem (1) and take the
values corresponding to a porous medium, called ISOREL, using in the building isolation.
More precisely we assume: φ = 0.7 , γp = 1.4 , σ = 142300N.m−4.s , ρ0 = 1.2kg/m3 ,
αh = 1.15 , c0 = 340m.s−1 .

Using the function fminsearch (in Matlab), we find the value of α presented in
Fig. A.

Remark 10 Fig. A allows us to compare the difference between two considered time-
dependent models for the damping in the volume and for the damping on the boundary. We
see that Re(α) is not a constant in general, but for ω → +∞ Im(α) is a linear function
of ω . In this sense, the damping properties of two models are almost the same, but the
reflection is more accurately considered by the damping wave equation in the volume.
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