Harmonic measure for biased random walk in a supercritical Galton-Watson tree - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Harmonic measure for biased random walk in a supercritical Galton-Watson tree

Shen Lin
  • Fonction : Auteur
  • PersonId : 1012063

Résumé

We consider random walks $\lambda$-biased towards the root on a Galton-Watson tree, whose offspring distribution $(p_k)_{k\geq 1}$ is non-degenerate and has finite mean $m>1$. In the transient regime $\lambda\in (0,m)$, the loop-erased trajectory of the biased random walk defines the $\lambda$-harmonic ray, whose law is the $\lambda$-harmonic measure on the boundary of the Galton-Watson tree. We answer a question of Lyons, Pemantle and Peres by showing that the $\lambda$-harmonic measure has a.s. strictly larger Hausdorff dimension than that of the visibility measure. We also prove that the average number of children of the vertices visited by the $\lambda$-harmonic ray is a.s. bounded below by $m$ and bounded above by $m^{-1}\sum k^2 p_k$. Moreover, the average number of children along the $\lambda$-harmonic ray is a.s. strictly larger than the average number of children along the $\lambda$-biased random walk trajectory. We observe that the latter is not monotone in the bias parameter $\lambda$.
Fichier principal
Vignette du fichier
harmonic_bias.pdf (519.89 Ko) Télécharger le fichier
agw.pdf (60.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01557744 , version 1 (06-07-2017)
hal-01557744 , version 2 (31-07-2017)
hal-01557744 , version 3 (10-11-2017)

Identifiants

Citer

Shen Lin. Harmonic measure for biased random walk in a supercritical Galton-Watson tree . 2017. ⟨hal-01557744v2⟩
233 Consultations
204 Téléchargements

Altmetric

Partager

More