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Abstract

We consider random walks λ-biased towards the root on a Galton–Watson tree, whose
offspring distribution (pk)k≥1 is non-degenerate and has finite mean m > 1. In the transient
regime 0 < λ < m, the loop-erased trajectory of the biased random walk defines the λ-
harmonic ray, whose law is the λ-harmonic measure on the boundary of the Galton–Watson
tree. We answer a question of Lyons, Pemantle and Peres [8] by showing that the λ-harmonic
measure has a.s. strictly larger Hausdorff dimension than that of the visibility measure. We
also prove that the average number of children of the vertices visited by the λ-harmonic
ray is a.s. bounded below by m and bounded above by m−1∑ k2pk. Moreover, the average
number of children along the λ-harmonic ray is a.s. strictly larger than the average number
of children along the λ-biased random walk trajectory. We observe that the latter is not
monotone in the bias parameter λ.

Keywords. random walk, harmonic measure, Galton–Watson tree, stationary measure.
AMS 2010 Classification Numbers. 60J15, 60J80.

1 Introduction
Consider a Galton–Watson tree T rooted at e with a non-degenerate offspring distribution
(pk)k≥0. We suppose that p0 = 0, pk < 1 for all k ≥ 1, and the mean offspring number
m = ∑

k≥1 kpk ∈ (1,∞). So the Galton–Watson tree T is supercritical and leafless. Let T be
the space of all infinite rooted trees with no leaves. The law of T is called the Galton–Watson
measure GW on T . For every vertex x in T, let ν(x) stand for its number of children. We
denote by x∗ the parent of x and by xi, 1 ≤ i ≤ ν(x), the children of x.

For λ ≥ 0, conditionally on T, the λ-biased random walk (Xn)n≥0 on T is a Markov chain
starting from the root e, such that, from the vertex e all transitions to its children are equally
likely, whereas for every vertex x ∈ T different from e,

PT(Xn+1 = x∗ | Xn = x) = λ

ν(x) + λ
,

PT(Xn+1 = xi | Xn = x) = 1
ν(x) + λ

, for every 1 ≤ i ≤ ν(x).

∗Supported in part by the grant ANR-14-CE25-0014 (ANR GRAAL)
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Note that λ = 1 corresponds to the simple random walk on T, and λ = 0 corresponds to the
simple forward random walk with no backtracking. Lyons established in [5] that (Xn)n≥0 is
almost surely transient if and only if λ < m. Throughout this work, we assume λ < m and
hence the λ-biased random walk is always transient.

For a vertex x ∈ T, let |x| stand for the graph distance from the root e to x. Let ∂T denote
the boundary of T, which is defined as the set of infinite rays in T emanating from the root.
Since (Xn)n≥0 is transient, its loop-erased trajectory defines a unique infinite ray Ξλ ∈ ∂T,
whose distribution is called the λ-harmonic measure. We call Ξλ the λ-harmonic ray in T.

For different rays ξ, η ∈ ∂T, let ξ ∧ η denote the vertex common to both ξ and η that is
farthest from the root. We define the metric

d(ξ, η) := exp(−|ξ ∧ η|) for ξ, η ∈ ∂T, ξ 6= η.

Under this metric, the boundary ∂T has a.s. Hausdorff dimension logm. Lyons, Pemantle and
Peres [6, 7] showed the dimension drop of harmonic measure: for all 0 ≤ λ < m, the Hausdorff
dimension of the λ-harmonic measure is a.s. a constant dλ < logm. The 0-harmonic measure
associated with the simple forward random walk was called visibility measure in [6]. Its Hausdorff
dimension is a.s. equal to the constant ∑k≥1(log k)pk = GW[log ν], where we write ν = ν(e)
for the offspring number under GW.

Recently, Berestycki, Lubetzky, Peres and Sly [4] applied the dimension drop result d1 <
logm to show cutoff for mixing time of simple random walk on a random graph starting from
a typical vertex. The Hausdorff dimension of the 0-harmonic measure was similarly used in [4]
and independently used by Ben-Hamou and Salez in [3] to determine the mixing time of the
non-backtracking random walk on a random graph.

The primary result of this work answers a question of Ledrappier posed in [8]. This question
is also stated as Question 17.28 in Lyons and Peres’s book [9].

Theorem 1. For all λ ∈ (0,m), we have dλ > GW[log ν], meaning that the Hausdorff di-
mension of the λ-harmonic measure is a.s. strictly larger than the Hausdorff dimension of the
0-harmonic measure. Moreover,

lim
λ→0+

dλ = GW[log ν] and lim
λ→m−

dλ = logm.

When λ increases to the critical value m, it is non-trivial that the support of the λ-harmonic
measure has its Hausdorff dimension tending to that of the whole boundary. Besides, Jensen’s
inequality implies GW[log ν] > − log GW[ν−1]. The preceding theorem thus improves the lower
bound dλ > − log GW[ν−1] shown by Virág in Corollary 7.2 of [10].

Our proof of Theorem 1 originates from the construction of a probability measure µHARMλ

on T that is stationary and ergodic for the harmonic flow rule. In Section 4 below, its Radon–
Nikodým derivative with respect to GW is given by (7). We derive afterwards an explicit
expression for the dimension dλ, and prove Theorem 1 in Section 5. The way to find this
harmonic-stationary measure µHARMλ

is inspired by a recent work of Aïdékon [1], in which he
found explicitly the stationary measure of the environment seen from a λ-biased random walk.
It renders possible an application of the ergodic theory on Galton–Watson trees developed in
[6] to the biased random walk. After introducing the escape probability of λ-biased random
walk on a tree in Section 2, we will give a precise description of Aïdékon’s stationary measure
in Section 3.

Apart from the Hausdorff dimension of harmonic measure, another quantity of interest is
the average number of children of vertices visited by the harmonic ray Ξλ. For an infinite path
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→
x = (x0, x1, . . .) in T, if the limit

lim
n→∞

1
n

n∑
k=0

ν(xk)

exists, we call it the average number of children of the vertices along the path →x . Section 7
will be devoted to comparing the average number of children of vertices along different random
paths in T. The main results in this direction are summarized in the following way.

Theorem 2. For all λ ∈ (0,m),

(i) the average number of children of the vertices visited by the λ-harmonic ray Ξλ in T is
a.s. strictly larger than m, and strictly smaller than m−1∑ k2pk;

(ii) the average number of children of the vertices visited by the λ-harmonic ray Ξλ in T is
a.s. strictly larger than the average number of children seen by the λ-biased random walk
(Xn)n≥0 in T.

Assertion (i) above was suggested by some numerical calculations concerning the case λ = 1
mentioned at the end of Section 17.10 in [9]. By the strong law of large numbers, the average
number of children seen by the simple forward random walk is a.s. equal to m. On the other
hand, the uniform measure on the boundary of T can be obtained by putting mass 1 uniformly on
the vertices of level n in T and taking the weak limit as n→∞. We say that a random ray in T
is uniform if it is distributed according to the uniform measure on ∂T. When∑(k log k)pk <∞,
the uniform measure on ∂T has a.s. Hausdorff dimension logm, and the uniform ray in T can be
identified with the distinguished infinite path in a size-biased Galton–Watson tree. In particular,
the average number of children seen by the uniform ray in T is equal to m−1∑ k2pk. For more
details we refer the reader to Section 6 of [6] or Chapter 17 of [9].

Concerning assertion (ii) in Theorem 2, it is worth pointing out that the average number of
children seen by the λ-biased random walk is not monotone with respect to λ: Proposition 9
in Section 7 will show that this number is strictly smaller than m when λ ∈ (0, 1), equal to m
when λ = 0 or 1, and strictly larger than m when λ ∈ (1,m). Hence, its right continuity at 0
(established in Proposition 10) implies that the average number of children seen by the λ-biased
random walk cannot be monotonic nondecreasing for all λ ∈ (0,m). This lack of monotonicity
might be explained by two opposing effects of having a small bias λ: on one hand, it helps the
random walk to escape faster to infinity, and we know that a high-degree path is in favour of the
escape of the λ-biased random walk, but on the other hand, small bias implies less backtracking,
so the λ-biased random walk spends less time on high-degree vertices.

The FKG inequality for product measures (also known as the Harris inequality) will be
extremely useful in proving Theorem 2. For assertion (ii), we need some extra knowledge on the
speed of the λ-biased random walk, which will be presented in Section 6.

We close this introduction by mentioning that the following question from [8] remains open.
Question 1. Is the dimension dλ of the λ-harmonic measure nondecreasing for λ ∈ (0,m)?

Taking into account the previous discussion, we find it intriguing to ask the same question
for the average number of children along the λ-harmonic ray.
Question 2. Is the average number of children of the vertices visited by the λ-harmonic ray in
T nondecreasing for λ ∈ (0,m)?
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2 Escape probability and the effective conductance
For a tree T ∈ T rooted at e, we define T∗ as the tree obtained by adding to e an extra adjacent
vertex e∗, called the parent of e. The new tree T∗ is naturally rooted at e∗. For a vertex u ∈ T ,
the descendant tree Tu of u is the subtree of T formed by those edges and vertices which become
disconnected from the root of T when u is removed. By definition, Tu is rooted at u.

Unless otherwise stated, we assume λ ∈ (0,m) in the rest of the paper. Under the probability
measure PT , let (Xn)n≥0 denote a λ-biased random walk on T∗. For any vertex u ∈ T , define
τu := min{n ≥ 0: Xn = u} the hitting time of u, with the usual convention that min ∅ = ∞.
Let

βλ(T ) := PT (τe∗ =∞ | X0 = e) = PT (∀n ≥ 1, Xn 6= e∗ | X0 = e)

be the probability of never visiting the parent e∗ of e when starting from e. For notational ease,
we will make implicit the dependency in λ of the escape probability by writing β(T ) = βλ(T ).
For GW-a.e. T , 0 < β(T ) < 1. By coupling with a biased random walk on N, we see that
β(T ) > 1− λ. Moreover, Lemma 4.2 of [1] shows that

0 < GW
[ 1
λ− 1 + β(T )

]
<∞. (1)

For a vertex u ∈ T , |u| = 1, the probability that a λ-harmonic ray in T passes through u is

β(Tu)∑
|w|=1 β(Tw) .

If the tree T is viewed as an electric network, and if the conductance of an edge linking
vertices of level n and n + 1 is λ−n, then Cλ(T ) denotes the effective conductance of T from
its root to infinity. As for the escape probability, we will write C(T ) for Cλ(T ) to simplify the
notation. Using the link between reversible Markov chains and electric networks, we know that

β(T ) = C(T∗) = C(T )
λ+ C(T ) and C(T ) = λβ(T )

1− β(T ) . (2)

This relationship between β(T ) and C(T ) will be used repeatedly. Since C(T ) > β(T ), the lower
bound C(T ) > 1− λ also holds. Moreover, for x ∈ R,

λ−1x C(T )
(λ− 1 + C(T ))(1 + λ−1x) + λ−1x

= β(T )x
λ− 1 + β(T ) + x

.

Taking x = C(T ′) for another tree T ′ yields the following identity

β(T ′)C(T )
λ− 1 + β(T ′) + C(T ) = β(T )C(T ′)

λ− 1 + β(T ) + C(T ′) . (3)

Using (2) we can also verify that

(λ− 1 + β(T ) + C(T ′))(1 + λ−1C(T )) = λ(1 + λ−1C(T ))(1 + λ−1C(T ′))− 1
= (λ− 1 + β(T ′) + C(T ))(1 + λ−1C(T ′)). (4)

The following integrability result will be used to prove the inequality dλ > GW[log ν].

Lemma 3. For 0 < λ < m, we have GW
[
log β(T )−1] <∞.
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Proof. For a λ-biased random walk (Xk)k≥0 on the tree T , let

τn := min{k ≥ 0: |Xk| = n}

be its hitting time of level n. For a vertex u ∈ T , we define

βn(u) := PT (τn < τu∗ | X0 = u)

the probability to hit level n before u∗ when starting from u. If the vertex u is at level n, clearly
βn(u) = 1. We write 1, 2, . . . , ν(e) for the children of the root e. The Markov property of random
walk implies that

βn(e) =
∑ν(e)
i=1 βn(i)

λ+∑ν(e)
i=1 βn(i)

.

See e.g. [1, Section 4.1] for the derivation. Taking x = λ(∑ν(e)
i=1 βn(i))−1 and x0 = λν(e)−1 ≤ x

in the inequality log(1 + x) ≤ log x+ log(1 + x−1
0 ), we deduce that

log 1
βn(e) = log

(
1 + λ∑ν(e)

i=1 βn(i)

)
≤ log(1 + λ−1ν(e)) + log λ+ log 1∑ν(e)

i=1 βn(i)
.

Let ε < 1 be some positive number. For the descendant tree Ti, we have β(Ti) ≤ βn(i). Then,

log 1∑ν(e)
i=1 βn(i)

≤
(

log 1
βn(1)

)
1{βn(i)≤ε,∀i≥2} + log ε−1 ≤

(
log 1

βn(1)

)
1{β(Ti)≤ε,∀i≥2} + log ε−1.

By convention, the indicator functions involved above are equal to 1 on the event {ν(e) = 1}.
Taking expectation gives

GW
[

log 1
βn(e)

]
≤ GW

[
log(λ+ ν(e))

]
+ log ε−1 + GW

[
log 1

βn−1(e)

]
GW

[
qν(e)−1
ε

]
,

where qε := GW(β(T ) ≤ ε). Notice that qε → 0 as ε→ 0. So we can take ε small enough such
that

Aε := GW[qν(e)−1
ε ] < 1.

Hence, writing Bε := GW[log(λ+ ν(e))] + log ε−1 <∞, we obtain

GW
[

log 1
βn(e)

]
≤ Bε

1−Aε
.

Letting n→∞, we have βn(e)→ β(T ). An application of Fatou’s lemma finishes the proof.

3 Stationary measure of the tree seen from random walk
We set up some notation before presenting Aïdékon’s stationary measure. For a rooted tree
T ∈ T , its boundary ∂T is the set of all rays starting from the root. Clearly, one can identify
∂T∗ with ∂T . Let

T ∗ := {(T, ξ) | T ∈ T , ξ = (ξn)n≥0 ∈ ∂T}

denote the space of trees with a marked ray. By definition, ξ0 coincides with the root vertex
of T . If T1 and T2 are two trees rooted respectively at e1 and e2, we define T1−•T2 as the tree
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rooted at the root e2 of T2 formed by joining the roots of T1 and T2 by an edge. The root e2 is
the parent of e1 in T1−•T2, thus we will not distinguish e2 from (e1)∗. Given a ray ξ ∈ ∂T , there
is a unique tree T+ such that T = Tξ1−•T+. Therefore, T ∗ is in bijection with the space{

(T−•T+, ξ) | T, T+ ∈ T , ξ = (ξn)n≥0 ∈ ∂T
}
.

Introducing a marked ray helps us to keep track of the past trajectory of the biased random
walk. In particular, the initial starting point of the random walk, towards which the bias is
exerted, would be represented by the marked ray at infinity. To be more precise, if we assign a
vertex u ∈ T to be the new root of the tree T , the re-rooted tree will be written as ReRoot(T, u).
Given ξ = (ξn)n≥0 ∈ ∂T , we say that x is the ξ-parent of y in T if x becomes the parent of y in
the tree ReRoot(T, ξn) for all sufficiently large n. A random walk on T is λ-biased towards ξ if
the random walk always moves to its ξ-parent with probability λ times that of moving to one
of the other neighbors.

We consider the Markov chain on T ∗ that, starting from some fixed tree T with a marked
ray ξ = (ξn)n≥0, is isomorphic to a random walk on T λ-biased towards ξ. Recall that ν(ξ0)
is the number of edges incident to the root. The transition probabilities pRWλ

of this Markov
chain are defined as follows:

• If T ′ = ReRoot(T, x) and ξ′ = (x, ξ0, ξ1, ξ2, . . .) with a vertex x adjacent to ξ0 being different
from ξ1,

pRWλ
((T, ξ), (T ′, ξ′)) = 1

ν(ξ0)− 1 + λ
;

• If T ′ = ReRoot(T, ξ1) and ξ′ = (ξ1, ξ2, . . .),

pRWλ
((T, ξ), (T ′, ξ′)) = λ

ν(ξ0)− 1 + λ
;

• Otherwise, pRWλ
((T, ξ), (T ′, ξ′)) = 0.

Now we are ready to define the environment that is invariant under re-rooting along a
λ-biased random walk. Let T and T+ be two independent Galton–Watson trees of offspring
distribution (pk)k≥0. We write e for the root vertex of T, and e+ for the root vertex of T+. Let
ν+ denote the number of children of e+ in T+. Similarly, let ν denote the number of children of
e in T. Note that the number of children of e+ in T−•T+ is ν+ + 1. Conditionally on (T,T+), let
R be a random ray in T distributed according to the λ-harmonic measure on ∂T. We assume
that (T−•T+,R) is defined under the probability measure P .

Definition 1. The λ-augmented Galton–Watson measure AGWλ is defined as the probability
measure on T ∗ that is absolutely continuous with respect to the law of (T−•T+,R) with density

c−1
λ

(λ+ ν+)β(T)
λ− 1 + β(T) + C(T+) , (5)

where
cλ = E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

]
is the normalizing constant.
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e+e
R

T+
1

T+
2

T+
i

T+
ν+

T1

Tν

T+T

Tk

Figure 1: The random tree T−•T+ rooted at e+ with a marked ray R

It follows from the inequality λ− 1 + C(T+) > 0 that

cλ = E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

]
< E

[
λ+ ν+] = λ+m.

Let T+
1 , . . . ,T

+
ν+ denote the descendant trees of the children of e+ in T+. With a slight

abuse of notation, let T1,T2, . . . ,Tν denote the descendant trees of the children of e inside T.
See Fig. 1 for a schematic illustration. By the parallel law of conductances,

C(T+) =
ν+∑
i=1

β(T+
i ) and C(T) =

ν∑
i=1

β(Ti). (6)

We will frequently use the branching property that conditionally on ν+, the collection of trees
{T,T+

1 , . . . ,T
+
ν+} are independent and identically distributed according to GW.

According to Theorem 4.1 in [1], the λ-augmented Galton–Watson measure AGWλ is the
asymptotic distribution of the environment seen from the λ-biased random walk on T.

Proposition 4. The Markov chain with transition probabilities pRWλ
and initial distribution

AGWλ is stationary.

Proof. Let F : T → R+ and G : T ∗ → R+ be nonnegative measurable functions. Let (T̃−•T̃+, R̃)
denote the tree with a marked ray obtained from (T−•T+,R) by performing a one-step transition
according to pRWλ

. It suffices to show that

E
[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)F (T̃+)G(T̃, R̃)

]
= E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)F (T+)G(T,R)

]
.

To compute the left-hand side, we need to distinguish two different situations.
Case I: There exists 1 ≤ i ≤ ν+ such that the root of T+

i becomes the new root of T̃−•T̃+.
For each i ∈ [1, ν+], it happens with probability 1/(ν+ + λ). In this case,

T̃+ = T+
i and T̃ = T−•T+

6=i,
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where T+
6=i stands for the tree rooted at e+ containing only the descendant trees {T+

j , 1 ≤ j ≤
ν+, j 6= i} together with the edges connecting their roots to e+. It is easy to see that T+

i and
T−•T+

6=i are two i.i.d. Galton–Watson trees. Meanwhile, R̃ ∈ ∂T̃ is the ray R+ obtained by
adding the vertex e+ to the beginning of the sequence R. We set accordingly

I := E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

ν+∑
i=1

1
ν+ + λ

F (T+
i )G(T−•T+

6=i,R
+)
]

= E

[
β(T)

λ− 1 + β(T) + C(T+)

ν+∑
i=1

F (T+
i )G(T−•T+

6=i,R
+)
]
.

Given T and T+, we let R 6=i be a random ray in the tree T−•T+
6=i distributed according to the

λ-harmonic measure on the tree boundary. Then R+ can be identified with R 6=i conditionally
on {R6=i ∈ ∂T}. We see that I is equal to

E

[
β(T)

λ− 1 + β(T) + C(T+)

ν+∑
i=1

F (T+
i )G(T−•T+

6=i,R6=i)1{R6=i∈∂T}
C(T−•T+

6=i)
β(T)

]

= E

[ 1
λ− 1 + β(T) + C(T+)

ν+∑
i=1

F (T+
i )G(T−•T+

6=i,R6=i)1{R6=i∈∂T}C(T−•T
+
6=i)
]
.

By symmetry, we deduce further that

I = E

[ C(T−•T+
6=1)

λ− 1 + β(T) + C(T+)F (T+
1 )G(T−•T+

6=1,R6=1)
(
1{R6=1∈∂T} +

ν+∑
i=2

1{R6=1∈∂T+
i }

)]

= E

[ C(T−•T+
6=1)

λ− 1 + β(T) + C(T+)F (T+
1 )G(T−•T+

6=1,R6=1)
]
.

As β(T) + C(T+) = β(T) + ∑ν+
i=1 β(T+

i ) = β(T+
1 ) + C(T−•T+

6=1), we obtain from the previous
display that

I = E

[ C(T)
λ− 1 + β(T+) + C(T)F (T+)G(T,R)

]
.

Using (3) and (2), we get therefore

I = E

[
β(T)

λ− 1 + β(T) + C(T+)
C(T+)
β(T+)F (T+)G(T,R)

]
= E

[
β(T)(λ+ C(T+))

λ− 1 + β(T) + C(T+)F (T+)G(T,R)
]
.

Case II: The vertex e becomes the new root of T̃−•T̃+, which happens with probability
λ/(ν+ + λ). In this case, if R passes through the root of Tk for some integer k ∈ [1, ν], then

T̃ = Tk and T̃+ = T+−•T6=k,

where T6=k stands for the tree rooted at e formed by all descendant trees {T`, 1 ≤ ` ≤ ν, ` 6= k}
together with the edges connecting their roots to e. As in the previous case, Tk and T+−•T6=k
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are two independent Galton–Watson trees. But R̃ is now the ray R− obtained by deleting e
from the beginning of the sequence R. We set thus

II := E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

λ

ν+ + λ

ν∑
k=1

F (T+−•T6=k)G(Tk,R−)1{R−∈∂Tk}
]

= E

[
λβ(T)

λ− 1 + β(T) + C(T+)

ν∑
k=1

F (T+−•T6=k)G(Tk,R−)1{R−∈∂Tk}
]
.

Given T and T+, we let Rk be a random ray in the tree Tk distributed according to the λ-
harmonic measure. It follows that

II = E

[ ν∑
k=1

λβ(T)
λ− 1 + β(T) + C(T+)F (T+−•T6=k)G(Tk,Rk)

β(Tk)
C(T)

]

= E

[ ν∑
k=1

β(Tk)
(λ− 1 + β(T) + C(T+))(1 + λ−1C(T))F (T+−•T6=k)G(Tk,Rk)

]
.

Using the identity (4), we see that

(λ− 1 + β(T) + C(T+))(1 + λ−1C(T)) =
(
λ− 1 + β(T+) + C(T)

)(
1 + λ−1C(T+)

)
=

(
λ− 1 + β(Tk) + C(T+−•T6=k)

)(
1 + λ−1C(T+)

)
.

Together with (2), it implies

II = E

[ ν∑
k=1

β(Tk)(1 + λ−1C(T+))−1

λ− 1 + β(Tk) + C(T+−•T6=k)
F (T+−•T6=k)G(Tk,Rk)

]

= E

[ ν∑
k=1

β(Tk)(1− β(T+))
λ− 1 + β(Tk) + C(T+−•T6=k)

F (T+−•T6=k)G(Tk,Rk)
]
.

Observe that the root of T+−•T6=k has ν children. For any integer m ≥ k, the conditional law of
(Tk,T+−•T6=k) given {ν = m} is the same as that of (T,T+) conditionally on {ν+ = m}. Hence,
we obtain

II = E

[ ν+∑
k=1

β(T)(1− β(T+
k ))

λ− 1 + β(T) + C(T+)F (T+)G(T,R)
]

= E

[
β(T)(ν+ − C(T+))

λ− 1 + β(T) + C(T+)F (T+)G(T,R)
]
.

Finally, adding up Cases I and II, we have

E
[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)F (T̃+)G(T̃, R̃)

]
= E

[
β(T)(λ+ C(T+))

λ− 1 + β(T) + C(T+)F (T+)G(T,R)
]

+ E

[
β(T)(ν+ − C(T+))

λ− 1 + β(T) + C(T+)F (T+)G(T,R)
]

= E
[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)F (T+)G(T,R)

]
,

which completes the proof of the stationarity.
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We write →x for an infinite path (xn)n≥0 in T . Let RWλ×AGWλ be the probability measure
on the space {

(→x, (T, ξ)) | (T, ξ) ∈ T ∗,→x ⊂ T
}

that is associated to the Markov chain considered in Proposition 4. It is given by choosing a tree
T with a marked ray ξ according to AGWλ, and then independently running on T a random
walk λ-biased towards ξ.

4 Harmonic-stationary measure
Let HARMT

λ be the flow on the vertices of T in correspondence with the λ-harmonic measure
on ∂T , so that HARMT

λ (u) coincides with the mass given by the λ-harmonic measure to the set
of all rays passing through the vertex u. We denote by HARMλ the transition probabilities for a
Markov chain on T , that goes from a tree T to the descendant tree Tu, |u| = 1, with probability

HARMT
λ (u) = β(Tu)∑

|w|=1 β(Tw) = β(Tu)
C(T ) .

The existence of a HARMλ-stationary probability measure µHARMλ
that is absolutely con-

tinuous with respect to GW was established in Lemma 5.2 of [7]. Taking into account the
stationary measure of the environment AGWλ, we can construct µHARMλ

as an induced mea-
sure by considering the λ-biased random walk at the exit epochs. See [6, Section 8] and [7,
Section 5] for more details.

According to Proposition 5.2 of [6], µHARMλ
is equivalent to GW and the associated HARMλ-

Markov chain is ergodic. Ergodicity implies further that µHARMλ
is the unique HARMλ-stationary

probability measure absolutely continuous with respect to GW. Due to uniqueness, we can
identify µHARMλ

via the next result.

Lemma 5. For every x > 0, set

κλ(x) := GW
[

β(T )x
λ− 1 + β(T ) + x

]
= E

[
β(T)x

λ− 1 + β(T) + x

]
.

The finite measure κλ(C(T ))GW(dT ) is HARMλ-stationary.

Proof. The function κλ : R+ → R+ is bounded and strictly increasing. In fact, for GW-a.e. T ,
λ− 1 + β(T ) > 0. The function

β(T )x
λ− 1 + β(T ) + x

is strictly increasing in x, and it is bounded above by β(T ). Thus, κλ(x) < GW[β(T )] < 1.
We write ν for the offspring number of the root of T . Conditionally on the event {ν = k},

let T1, . . . , Tk denote the descendant trees of the children of the root. In order to prove the
HARMλ-stationarity, we must verify that for any bounded measurable function F on T , the
integral

∫
F (T )κλ(C(T ))GW(dT ) is equal to

I :=
∞∑
k=1

pk

k∑
i=1

∫
F (Ti)κλ(C(T )) β(Ti)

β(T1) + · · ·+ β(Tk)
GW(dT | ν = k)

=
∞∑
k=1

kpk

∫
F (T1)κλ(C(T )) β(T1)

β(T1) + · · ·+ β(Tk)
GW(dT | ν = k).
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Using the definition of κλ and the branching property, we see that I is given by
∞∑
k=1

kpk

∫
F (T1) β(T0)β(T1)

λ− 1 + β(T0) + β(T1) + · · ·+ β(Tk)
GW(dT | ν = k)GW(dT0)

=
∞∑
k=1

kpk

∫
F (T1) β(T0)β(T1)

λ− 1 + β(T0) + β(T1) + · · ·+ β(Tk)
GW(dT0)GW(dT1) · · ·GW(dTk)

=
∞∑
k=1

pk

∫
F (T1) β(T1)(β(T0) + β(T2) + · · ·+ β(Tk))

λ− 1 + β(T0) + β(T1) + · · ·+ β(Tk)
GW(dT0)GW(dT1) · · ·GW(dTk)

=
∫
F (T1) β(T1)C(T )

λ− 1 + β(T1) + C(T )GW(dT )GW(dT1).

Hence, it follows from (3) that

I =
∫
F (T1) β(T )C(T1)

λ− 1 + β(T ) + C(T1)GW(dT )GW(dT1) =
∫
F (T1)κλ(C(T1))GW(dT1),

which finishes the proof.

We deduce from the preceding lemma that the Radon–Nikodým derivative of µHARMλ
with

respect to GW is a.s.

dµHARMλ

dGW (T ) = 1
hλ
κλ(C(T )) = 1

hλ

∫
β(T ′)C(T )

λ− 1 + β(T ′) + C(T )GW(dT ′), (7)

where the normalizing constant

hλ =
∫

β(T ′)C(T )
λ− 1 + β(T ′) + C(T )GW(dT )GW(dT ′) = E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
.

Writing R(T ) = C(T )−1 for the effective resistance, one can reformulate (7) as

dµHARMλ

dGW (T ) = 1
hλ

∫
λ−1

(λ− 1)R(T )R(T ′) +R(T ) +R(T ′) + λ−1 GW(dT ′).

When λ = 1, it coincides with the expression of the same density in Section 8 of [6].
Using the proof of Lemma 5, we see that the mesure µHARMλ

defined by (7) is still HARMλ-
stationary when p0 > 0 is allowed. We also point out that the proof of Proposition 17.31 in [9]
(corresponding to the case λ = 1) can be adapted to derive (7) from the construction of µHARMλ

by inducing.
To finish this section, let us mention a work in progress of Rousselin containing some general

condition for a Markov chain on trees to have a stationary measure. His result also applies to
the HARMλ-Markov chain considered above.

5 Dimension of the harmonic measure
Let T be a random tree distributed as µHARMλ

, and let Θ be the λ-harmonic ray in T. If we denote
the vertices along Θ by Θ0,Θ1, . . ., then according to the flow property of harmonic measure, the
sequence of descendant trees (TΘn)n≥0 is a stationary HARMλ-Markov chain. In what follows,
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we write HARMλ × µHARMλ
for the law of (Θ,T) on the space {(ξ, T ) | T ∈ T , ξ ∈ ∂T}. Recall

that the ergodicity of HARMλ × µHARMλ
results from Proposition 5.2 in [6].

As shown in [6, Section 5], the Hausdorff dimension dλ of the λ-harmonic measure coincides
with the entropy

EntropyHARMλ
(µHARMλ

) :=
∫

log 1
HARMT

λ (ξ1)
HARMλ × µHARMλ

(dξ,dT ).

Thus, by (2) we have

dλ =
∫

log C(T )
β(Tξ1)HARMλ × µHARMλ

(dξ,dT )

=
∫

log λβ(T )
β(Tξ1)(1− β(T ))HARMλ × µHARMλ

(dξ,dT ).

By stationarity,

dλ =
∫

log λ

1− β(T )µHARMλ
(dT ) =

∫
log

(
C(T ) + λ

)
µHARMλ

(dT ), (8)

provided the integral
∫

log β(T )−1µHARMλ
(dT ) is finite. Using the explicit form (7) of µHARMλ

,
we see that this integral is equal to

h−1
λ E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+) log 1
β(T+)

]
,

in which the expectation is less than

E

[
β(T)

λ− 1 + β(T)
(
C(T+) log 1

β(T+)
)]

= E

[
β(T)

λ− 1 + β(T)

]
· E
[
λβ(T+)

1− β(T+) log 1
β(T+)

]
. (9)

Notice that for x ∈ (0, 1),
0 < x

1− x log 1
x
< 1.

Hence, the product in (9) is bounded by

GW
[

λβ(T )
λ− 1 + β(T )

]
,

which is finite according to (1). Therefore, the formula (8) is justified. By (7) again, we obtain

dλ = h−1
λ

∫
log

(
C(T ) + λ

) β(T ′)C(T )
λ− 1 + β(T ′) + C(T )GW(dT )GW(dT ′)

= h−1
λ E

[
log(C(T+) + λ) β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
.

Now we proceed to show that dλ > GW[log ν]. Recall that the function κλ is strictly
increasing. The FKG inequality implies that

E

[
log(C(T+) + λ) β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
> E

[
log(C(T+) + λ)

]
× E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
.
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In view of the previous formula for dλ, it suffices to prove

GW[log(C(T ) + λ)] ≥ GW[log ν].

In fact, the strict inequality holds. Recall the notation that T1, . . . , Tν stand for the descendant
trees of the children of the root in T . It is justified by Lemma 3 that

GW[log(C(T ) + λ)] = GW
[

log λ

1− β(T )

]
= GW

[
log λβ(T )

β(T1)(1− β(T ))

]
= GW

[
log C(T )

β(T1)

]
= GW

[
log

∑ν
i=1 β(Ti)
β(T1)

]
.

By strict concavity of the log function,
ν∑
j=1

1
ν

log
∑ν
i=1 β(Ti)
β(Tj)

≥
ν∑
j=1

1
ν

log ν = log ν,

with equality if and only if for all 1 ≤ j ≤ ν,∑ν
i=1 β(Ti)
β(Tj)

= ν.

But this condition for equality cannot hold for GW-a.e. T . Therefore,

GW[log(C(T ) + λ−1)] = GW
[

log
∑ν
i=1 β(Ti)
β(T1)

]
= GW

[ ν∑
j=1

1
ν

log
∑ν
i=1 β(Ti)
β(Tj)

]
> GW[log ν].

To complete the proof of Theorem 1, it remains to examine the asymptotic behaviors of dλ:
When λ→ 0+, a.s. β(T)→ 1 and C(T+) = ∑ν+

i=1 β(T+
i )→ ν+. Since

β(T)C(T+)
λ− 1 + β(T) + C(T+) ≤ β(T) ≤ 1, (10)

we can use Lebesgue’s dominated convergence to get limλ→0+ hλ = 1. Similarly, it follows from

log(C(T+) + λ) β(T)C(T+)
λ− 1 + β(T) + C(T+) ≤ log(C(T+) + λ) ≤ log(ν+ +m)

that limλ→0+ dλ = E[log ν+] = GW[log ν].
When λ→ m−, a.s. β(T)→ 0 and C(T+)→ 0. We have seen that the FKG inequality yields

the lower bound
dλ > E[log(C(T+) + λ)].

Using again dominated convergence, we obtain

lim
λ→m−

E[log(C(T+) + λ)] = logm.

On the other hand, recall that dλ < logm. Consequently, dλ → logm when λ→ m−.
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6 Speed of the biased random walk
For the λ-biased random walk (Xn)n≥0 on T starting from the root, Lyons, Pemantle and Peres
[7] showed that a.s. the limit

`λ := lim
n→∞

|Xn|
n

exists, and is a strictly positive deterministic constant provided λ < m. We call `λ the speed
(or rate of escape) of the λ-biased random walk.

Given the asymptotic distribution AGWλ of the environment, the speed `λ is calculated in
[1, Theorem 1.1] as

`λ = c−1
λ E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

( ν+∑
i=1

1
ν+ + λ

− λ

ν+ + λ

)]

= c−1
λ E

[ (ν+ − λ)β(T)
λ− 1 + β(T) + C(T+)

]
.

Another way to compute `λ comes from the observation that the speed equals the probability
to be at an exit point under the stationary measure RWλ×AGWλ (see Proposition 8.2 in [6]),
which yields the formula

`λ = c−1
λ E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

ν+∑
i=1

1
ν+ + λ

β(T+
i )
]

= c−1
λ E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
= hλ
cλ
.

This alternative interpretation of `λ can be shown using the Kac lemma in ergodic theory. Here,
we would rather establish the equality

E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
= E

[ (ν+ − λ)β(T)
λ− 1 + β(T) + C(T+)

]
(11)

by a direct verification. In fact, the right-hand side of (11) is given by

E

[ (ν+ + 1)β(T)
λ− 1 + β(T) + C(T+)

]
− E

[ (1 + λ)β(T)
λ− 1 + β(T) + C(T+)

]
.

By symmetry and (2), this difference is equal to

E

[ C(T+) + β(T)
λ− 1 + β(T) + C(T+)

]
− E

[ (1 + λ)β(T)
λ− 1 + β(T) + C(T+)

]
=E

[ C(T+)− λβ(T)
λ− 1 + β(T) + C(T+)

]
=E

[ C(T)C(T+)
(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
+ E

[
λ(C(T+)− C(T))

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
.
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The second expectation in the last line vanishes, because

E

[
λC(T+)

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
= E

[ C(T+)
λ− 1 + C(T+) + C(T) + λ−1C(T)C(T+)

]
= E

[ C(T)
λ− 1 + C(T+) + C(T) + λ−1C(T)C(T+)

]
= E

[
λC(T)

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
< λ.

To finish the proof of (11), we use (2) again to see that the left-hand side of (11) also coincides
with

E

[ C(T)C(T+)
(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
.

The following lemma will be useful in the next section.

Lemma 6. We have the inequalities

E
[

ν+β(T)C(T+)
λ−1+β(T)+C(T+)

]
E
[

ν+(ν++λ)β(T)
λ−1+β(T)+C(T+)

] > E
[

ν+(ν+−λ)β(T)
λ−1+β(T)+C(T+)

]
E
[

ν+(ν++λ)β(T)
λ−1+β(T)+C(T+)

] > m− λ
m+ λ

> `λ =
E
[

(ν+−λ)β(T)
λ−1+β(T)+C(T+)

]
E
[

(ν++λ)β(T)
λ−1+β(T)+C(T+)

] .
Before giving the proof, we point out that m−λ

m+λ is the speed of the λ-biased random walk on
an m-ary tree when m ∈ N. The strict inequality

`λ <
m− λ
m+ λ

indicates the slowing down of the walk due to randomness of the Galton–Watson tree. It has
already been shown in Corollary 7.1 of Virág [10] by different arguments.

Proof. To establish the first inequality, we proceed as in the proof of (11) to show that

E
[ ν+β(T)C(T+)
λ− 1 + β(T) + C(T+)

]
> E

[ ν+(ν+ − λ)β(T)
λ− 1 + β(T) + C(T+)

]
. (12)

The left-hand side is equal to

E

[
ν+C(T)C(T+)

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
,

while the right-hand side is given by

E

[
ν+(ν+ + 1)β(T)

λ− 1 + β(T) + C(T+)

]
− E

[
ν+(1 + λ)β(T)

λ− 1 + β(T) + C(T+)

]
=E

[
ν+(C(T+) + β(T))

λ− 1 + β(T) + C(T+)

]
− E

[
ν+(1 + λ)β(T)

λ− 1 + β(T) + C(T+)

]
=E

[
ν+(C(T+)− λβ(T))
λ− 1 + β(T) + C(T+)

]
=E

[
ν+C(T)C(T+)

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
+ E

[
λν+(C(T+)− C(T))

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
.
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Notice that

C(T+)− C(T)
(λ− 1 + C(T+))(λ+ C(T)) + C(T) =

∑ν+
i=1 β(T+

i )− C(T)∑ν+
i=1 β(T+

i )(λ+ C(T)) + λ(λ− 1 + C(T))

is strictly increasing with respect to ν+. Applying the FKG inequality, we see that

E

[
λν+(C(T+)− C(T))

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
> E

[
ν+] · E[ λ(C(T+)− C(T))

(λ− 1 + C(T+))(λ+ C(T)) + C(T)

]
,

where in the product the second expectation equals zero. The proof of (12) is thus finished.
The second inequality in question can be easily reduced to

E
[ ν+(ν+ + λ)β(T)
λ− 1 + β(T) + C(T+)

]
> E

[
ν+ + λ

]
· E
[ ν+β(T)
λ− 1 + β(T) + C(T+)

]
,

which results again from the FKG inequality, since

E
[ ν+(ν+ + λ)β(T)
λ− 1 + β(T) + C(T+)

]
= E

[ (ν+ + λ)C(T+)
λ− 1 + β(T) + C(T+)

]
and

E
[ ν+β(T)
λ− 1 + β(T) + C(T+)

]
= E

[ C(T+)
λ− 1 + β(T) + C(T+)

]
.

Conversely, the FKG inequality implies that

E
[ (ν+ + λ)β(T)
λ− 1 + β(T) + C(T+)

]
< E

[
ν+ + λ

]
· E
[ β(T)
λ− 1 + β(T) + C(T+)

]
,

which yields the third inequality `λ < m−λ
m+λ .

7 Average number of children along a random path
Recall that for every vertex x in a tree T , we write ν(x) for its number of children. Birkhoff’s
ergodic theorem implies that for HARMλ × µHARMλ

-a.e. (ξ, T ),

lim
n→∞

1
n

n−1∑
k=0

ν(ξk) =
∫
ν(e)µHARMλ

(dT ) = h−1
λ E

[
ν+β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
.

The last expectation is finite, as we derive from (10) that

ν+β(T)C(T+)
λ− 1 + β(T) + C(T+) ≤ ν

+.

Since µHARMλ
is equivalent to GW, the convergence above also holds for HARMλ × GW-

a.e. (ξ, T ). Hence, the average number of children of the vertices visited by the λ-harmonic
ray in a Galton–Watson tree is the same as the µHARMλ

-mean degree of the root.
For every k ≥ 1, we set

A(k) := E

[
β(T)∑k

i=1 β(T+
i )

λ− 1 + β(T) +∑k
i=1 β(T+

i )

]
.
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The sequence (A(k))k≥1 is strictly increasing. Moreover,

A(k)
k

= E

[
β(T)β(T+

1 )
λ− 1 + β(T) +∑k

i=1 β(T+
i )

]
is strictly decreasing with respect to k.

Proposition 7. For 0 < λ < m, ∫
ν(e)µHARMλ

(dT ) > m.

Furthermore,
∫
ν(e)µHARMλ

(dT )→ m as λ→ 0+.

Proof. The first assertion, reformulated as

E

[
ν+β(T)∑ν+

i=1 β(T+
i )

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
> E[ν+] · E

[
β(T)∑ν+

i=1 β(T+
i )

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
,

is a simple consequence of the FKG inequality, since

GW[νA(ν)] > GW[ν] ·GW[A(ν)].

When λ → 0+, a.s. β(T) → 1 and C(T+) → ν+. Using Lebesgue’s dominated convergence,
we have seen at the end of Section 5 that limλ→0+ hλ = 1. The same argument applies to the
convergence of

E

[
ν+β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
towards E[ν+] = m.

Under GW we define a random variable ν̂ having the size-biased distribution of ν.

Proposition 8. For 0 < λ < m,∫
ν(e)µHARMλ

(dT ) < GW[ν̂] = m−1∑ k2pk.

If we assume further that
∑
k3pk <∞, then

∫
ν(e)µHARMλ

(dT )→ GW[ν̂] as λ→ m−.

Proof. Since
∫
ν(e)µHARMλ

(dT ) < ∞, we may assume ∑ k2pk < ∞ throughout the proof. The
inequality in the first assertion can be written as

E[ν+] · E
[

ν+β(T)∑ν+
i=1 β(T+

i )
λ− 1 + β(T) +∑ν+

i=1 β(T+
i )

]
< E[(ν+)2] · E

[
β(T)∑ν+

i=1 β(T+
i )

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
.

By conditioning on ν+, we see that it is equivalent to

GW[A(ν̂)] < GW[ν̂] ·GW
[
A(ν̂)
ν̂

]
,

which results from the FKG inequality.
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For the second assertion, remark that

E

[
ν+β(T)∑ν+

i=1 β(T+
i )

m− 1

]
= GW[ν2] ·GW[β(T )]2

m− 1 ,

E

[
β(T)∑ν+

i=1 β(T+
i )

m− 1

]
= GW[ν] ·GW[β(T )]2

m− 1 .

When the offspring distribution p admits a second moment, Proposition 3.1 of [2] shows that

β(T )
GW[β(T )]

is uniformly bounded in L2(GW). Using this fact, we can verify that

lim
λ→m−

hλ · E
[
β(T)∑ν+

i=1 β(T+
i )

m− 1

]−1
= 1.

With the third moment condition ∑ k3pk <∞, we similarly have

lim
λ→m−

E

[
ν+β(T)∑ν+

i=1 β(T+
i )

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
· E
[
ν+β(T)∑ν+

i=1 β(T+
i )

m− 1

]−1
= 1.

Consequently, ∫
ν(e)µHARMλ

(dT )→ GW[ν2]
GW[ν] = GW[ν̂]

as λ→ m−.

Now we turn to investigate the average number of children seen by λ-biased random walk
on the Galton–Watson tree T. First of all, as remarked in [6, Section 8], the ergodicity of
HARMλ×µHARM implies that RWλ×AGWλ is also ergodic. For a tree T rooted at e, let ν+(e)
denote the number of children of the root minus 1. Since

E

[
ν+(λ+ ν+)β(T)

λ− 1 + β(T) + C(T+)

]
= E

[ (λ+ ν+)C(T+)
λ− 1 + β(T) + C(T+)

]
≤ λ+ E[ν+] <∞,

it follows from Birkhoff’s ergodic theorem that for RWλ ×AGWλ-a.e. (→x, (T, ξ)),

lim
n→∞

1
n

n−1∑
k=0

ν(xk) =
∫
ν+(e)AGWλ(dT, dξ) = c−1

λ E

[
ν+(λ+ ν+)β(T)

λ− 1 + β(T) + C(T+)

]
. (13)

Using arguments similar to those in the remark on page 600 of [6], we deduce that the average
number of children seen by the λ-biased random walk on T is a.s. given by the same integral∫
ν+(e)AGWλ(dT, dξ).

Proposition 9. We have

∫
ν+(e)AGWλ(dT, dξ)


< m when 0 < λ < 1;
= m when λ ∈ {0, 1};
> m when 1 < λ < m.
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Proof. For every integer k ≥ 1 we set

Bλ(k) := E

[ (λ+ k)β(T)
λ− 1 + β(T) +∑k

i=1 β(T+
i )

]
.

Clearly, we have ∫
ν+(e)AGWλ(dT, dξ) = m

GW[Bλ(ν̂)]
GW[Bλ(ν)] .

When λ ∈ {0, 1}, Bλ(k) ≡ 1 for all k. We will show that the sequence (Bλ(k))k≥1 is strictly
decreasing when 0 < λ < 1, and strictly increasing when 1 < λ < m. Therefore, by the FKG
inequality, GW[Bλ(ν̂)] > GW[Bλ(ν)] when 1 < λ < m, and GW[Bλ(ν̂)] < GW[Bλ(ν)] when
0 < λ < 1.

To get the claimed monotonicity of the sequence (Bλ(k))k≥1, notice that

Bλ(k + 1) = E

[ (λ+ k)β(T) + β(T+
k+1)

λ− 1 + β(T) +∑k+1
i=1 β(T+

i )

]
.

Simple calculations give

Bλ(k + 1)−Bλ(k) = E

[−(λ+ k)β(T)β(T+
k+1) + β(T+

k+1)(λ− 1 + β(T) +∑k
i=1 β(T+

i ))
(λ− 1 + β(T) +∑k+1

i=1 β(T+
i ))(λ− 1 + β(T) +∑k

i=1 β(T+
i ))

]

= E

[
β(T+

k+1)(λ− 1)(1− β(T))
(λ− 1 + β(T) +∑k+1

i=1 β(T+
i ))(λ− 1 + β(T) +∑k

i=1 β(T+
i ))

]

+ E

[ −kβ(T+
k+1)β(T) + β(T+

k+1)∑k
i=1 β(T+

i )
(λ− 1 + β(T) +∑k+1

i=1 β(T+
i ))(λ− 1 + β(T) +∑k

i=1 β(T+
i ))

]
.

Since the last expectation vanishes, Bλ(k + 1)−Bλ(k) < 0 if and only if λ < 1.

The next result, together with the preceding one, shows that
∫
ν+(e)AGWλ(dT, dξ) is not

monotone with respect to λ.

Proposition 10. As λ→ 0+,
∫
ν+(e)AGWλ(dT, dξ) converges to m.

Proof. Note that
β(T)

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )
≤ 1.

By Lebesgue’s dominated convergence it follows that limλ→0+ cλ = 1. Similarly, we have

lim
λ→0+

E

[
λν+β(T)

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
= 0.

On the other hand,

E

[ (ν+)2β(T)
λ− 1 + β(T) +∑ν+

i=1 β(T+
i )

]
= E

[
ν+∑ν+

i=1 β(T+
i )

λ− 1 + β(T) +∑ν+
i=1 β(T+

i )

]
,

to which we can apply Lebesgue’s dominated convergence again to get

lim
λ→0+

E

[ (ν+)2β(T)
λ− 1 + β(T) +∑ν+

i=1 β(T+
i )

]
= E[ν+] = m.

In view of (13), the proof is thus finished.
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Proposition 11. Assume that
∑
k3pk <∞. Then,

lim
λ→m−

∫
ν+(e)AGWλ(dT, dξ) = m2 +∑

k2pk
2m .

Proof. As for the analogous result in Proposition 8, we can use the uniform boundedness in
L2(GW) of β(T )/GW[β(T )] to see that

lim
λ→m−

cλ · E
[(λ+ ν+)β(T)

λ− 1

]−1
= 1 = lim

λ→m−
E

[
ν+(λ+ ν+)β(T)

λ− 1 + β(T) + C(T+)

]
· E
[
ν+(λ+ ν+)β(T)

λ− 1

]−1
.

Hence, it follows from

E

[(λ+ ν+)β(T)
λ− 1

]−1
E

[
ν+(λ+ ν+)β(T)

λ− 1

]
= E[ν+(λ+ ν+)]

E[λ+ ν+] = λm+∑
k2pk

λ+m

that
lim

λ→m−
c−1
λ E

[
ν+(λ+ ν+)β(T)

λ− 1 + β(T) + C(T+)

]
= lim

λ→m−
λm+∑

k2pk
λ+m

= m2 +∑
k2pk

2m ,

which finishes the proof by (13).

Proposition 12. For all 0 < λ < m, we have
∫
ν(e)µHARMλ

(dT ) >
∫
ν+(e)AGWλ(dT, dξ).

Proof. In view of (11), the required inequality

E

[
ν+β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
E

[ (λ+ ν+)β(T)
λ− 1 + β(T) + C(T+)

]
> E

[
ν+(λ+ ν+)β(T)

λ− 1 + β(T) + C(T+)

]
E

[
β(T)C(T+)

λ− 1 + β(T) + C(T+)

]
directly results from Lemma 6.

Combining Propositions 7, 8, 10 and 11, we see that

lim
λ→0+

(∫
ν(e)µHARMλ

(dT )−
∫
ν+(e)AGWλ(dT, dξ)

)
= 0,

and if ∑ k3pk <∞,

lim
λ→m−

(∫
ν(e)µHARMλ

(dT )−
∫
ν+(e)AGWλ(dT, dξ)

)
=
∑
k2pk −m2

2m > 0.
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