A Study into Ant Colony Optimization, Evolutionary Computation and Constraint Programming on Binary Constraint Satisfaction Problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2004

A Study into Ant Colony Optimization, Evolutionary Computation and Constraint Programming on Binary Constraint Satisfaction Problems

Résumé

We compare two heuristic approaches, evolutionary computation and ant colony optimisation, and a complete tree-search approach, constraint programming, for solving binary constraint satisfaction problems. We experimentally show that, if evolutionary computation is far from being able to compete with the two other approaches, ant colony optimisation nearly always succeeds in finding a solution, so that it can actually compete with constraint programming. The resampling ratio is used to provide insight into heuristic algorithms performances. Regarding efficiency, we show that if constraint programming is the fastest when instances have a low number of variables, ant colony optimisation becomes faster when increasing the number of variables.
Fichier principal
Vignette du fichier
evocop04-pub.pdf (110.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01541524 , version 1 (27-03-2020)

Identifiants

Citer

Jano van Hemert, Christine Solnon. A Study into Ant Colony Optimization, Evolutionary Computation and Constraint Programming on Binary Constraint Satisfaction Problems. 4th European Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2004), May 2004, Coimbra, Portugal. pp.114-123, ⟨10.1007/978-3-540-24652-7_12⟩. ⟨hal-01541524⟩
73 Consultations
103 Téléchargements

Altmetric

Partager

More