
HAL Id: hal-01541524
https://hal.science/hal-01541524

Submitted on 27 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Study into Ant Colony Optimization, Evolutionary
Computation and Constraint Programming on Binary

Constraint Satisfaction Problems
Jano van Hemert, Christine Solnon

To cite this version:
Jano van Hemert, Christine Solnon. A Study into Ant Colony Optimization, Evolutionary Com-
putation and Constraint Programming on Binary Constraint Satisfaction Problems. 4th European
Conference on Evolutionary Computation in Combinatorial Optimization (EvoCOP 2004), May 2004,
Coimbra, Portugal. pp.114-123, �10.1007/978-3-540-24652-7_12�. �hal-01541524�

https://hal.science/hal-01541524
https://hal.archives-ouvertes.fr

A Study into Ant Colony Optimisation, Evolutionary

Computation and Constraint Programming on

Binary Constraint Satisfaction Problems

Jano I. van Hemert1 and Christine Solnon2

1 CWI, P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands
jvhemert@cwi.nl

2 LIRIS, CNRS FRE 2672, University of Lyon 1, Nautibus,
43 bd du 11 novembre, 69 622 Villeurbanne cedex, France

csolnon@liris.cnrs.fr

Abstract. We compare two heuristic approaches, evolutionary compu-
tation and ant colony optimisation, and a complete tree-search approach,
constraint programming, for solving binary constraint satisfaction prob-
lems. We experimentally show that, if evolutionary computation is far
from being able to compete with the two other approaches, ant colony
optimisation nearly always succeeds in finding a solution, so that it can
actually compete with constraint programming. The resampling ratio
is used to provide insight into heuristic algorithms performances. Re-
garding efficiency, we show that if constraint programming is the fastest
when instances have a low number of variables, ant colony optimisation
becomes faster when increasing the number of variables.

1 Introduction

Solving constraint satisfaction problems (csps) involves finding an assignment
of values to variables that satisfies a set of constraints. This general problem has
many real-life applications, such as time-tabling, resource allocation, pattern
recognition, and machine vision.

To solve csps, one may explore the search space in a systematic and complete
way, until either a solution is found, or the problem is proven to have no solution
[1]. In order to reduce the search space, this kind of complete approach is usually
combined with filtering techniques that narrow the variables domains with re-
spect to some partial consistencies. Completeness is a very desirable feature, but
it may become intractable on hard combinatorial problems. Hence, incomplete
approaches, such as evolutionary computation and ant colony optimisation, have
been proposed. These approaches do not perform an exhaustive search, but try to
quickly find approximately optimal solutions in an opportunistic way: the search
space is explored stochastically, using heuristics to guide the search towards the
most-promising areas.

[2] and [3] provide experimental comparisons of different evolutionary algo-
rithms with complete methods for solving binary constraint satisfaction prob-
lems. Both studies show that evolutionary computation is far from being able

to compete with complete methods. A first motivation of this paper is to go on
these comparative studies by integrating another heuristic approach, based on
the Ant Colony Optimisation metaheuristic. Another motivation is to propose
an explanation of the reasons for the differences of performances of the three ap-
proaches. Indeed, [4] introduces the notion of resampling ratio, that allows one
to measure how often an algorithm re-samples the search space, i.e., generates a
candidate solution already generated before. This measure is used in this paper
to get insight into search efficiency of the three compared approaches.

In the next section we explain what constraint satisfaction problems are and
what makes them an interesting object of study. Then in Section 3 we introduce
the three algorithms involved in the empirical comparison, which is presented in
Section 4. Concluding remarks are given in Section 5.

2 Constraint Satisfaction

A constraint satisfaction problem (csp) [1] is defined by a triple (X, D, C) such
that X is a finite set of variables, D is a function that maps every variable
to its finite domain and C is a set of constraints. A label, denoted by 〈Xi, vi〉,
is a variable-value pair that represents the assignment of value vi to variable
Xi. An assignment, denoted by A = {〈X1, v1〉, . . . , 〈Xk, vk〉}, is a set of labels
and corresponds to the simultaneous assignment of values v1, . . . , vk to variables
X1, . . . , Xk respectively. An assignment is complete if it contains a label for each
variable of the csp. A solution of a csp is a complete assignment that satisfies
all the constraints.

2.1 Random binary CSPs

Binary csps only have binary constraints, that is, each constraint involves two
variables exactly. Binary csps may be generated at random. A class of randomly
generated csps is characterized by four components 〈n, m, p1, p2〉 where n is
the number of variables, m is the number of values in each variable’s domain,
p1 ∈ [0, 1] is a measure of the density of the constraints, i.e., the number of
constraints, and p2 ∈ [0, 1] is a measure of the tightness of the constraints, i.e.,
the number of inconsistent pairs of values for each constraint.

Experiments reported in this paper were obtained with random binary csps
generated according to Model E as described in [5], that is, the set of conflicting
value pairs is created by uniformly, independently and with repetitions selecting
pe

(

n
2

)

m2 edges out of the
(

n
2

)

m2 possible ones. This process guarantees that no
flawed variables are generated, which would otherwise make instances easy to
solve.

After generating a problem instance with Model E, we can measure the den-
sity and the tightness of the constraints for this instance. The density of the
constraints p1 is often equal to one, except for very small (< 0.05) values of pe.
The tightness of the constraints p2 is always smaller than or equal to pe because
of the possible repetitions. With sufficiently high pe values (> 0.11) the p2 value
will be lower than pe.

2.2 Phase-transitions

When considering a class of combinatorial problems, rapid transitions in solv-
ability may be observed as an order parameter is changed [6]. These “phase-
transitions” occur when evolving from instances that are under-constrained, and
therefore solved rather easily, to instances that are over-constrained, whose in-
consistency is thus proven rather easily. Harder instances usually occur between
these two kinds of “easy” instances, when approximately 50% of the instances
are satisfiable.

In order to predict the phase-transition region, [7] introduces the notion of
“constrainedness” of a class of problems, noted κ, and shows that when κ is close
to 1, instances are critically constrained, and belong to the phase-transition re-
gion. For a class of random binary csps 〈n, m, p1, p2〉, [7] defines this constrained-
ness by κ = n−1

2
p1logm(1

1−p2

).
One might think that phase-transitions only concern complete approaches,

as they are usually associated with transitions from solvable to unsolvable in-
stances, and incomplete approaches cannot detect whether a problem is not
solvable. However, different studies (e.g., [8, 9]) have shown that very similar
phase-transition phenomena may also be observed with incomplete approaches.

3 Algorithms

3.1 Ant Colony Optimisation

The main idea of the Ant Colony Optimization (aco) metaheuristic [10] is to
model the problem as the search of a best path in a “construction graph” that
represents the states of the problem. Artificial ants walk through this graph,
looking for good paths. They communicate by laying pheromone trails on edges
of the graph, and they choose their path with respect to probabilities that depend
on the amount of pheromone previously left.

The aco algorithm considered in our comparative study is called Ant-solver,
and it is described in [11]; we briefly recall below the main features of this
algorithm.

Construction graph and pheromone trails: The construction graph associates a
vertex with each variable/value pair 〈Xi, v〉 such that Xi ∈ X and v ∈ D(Xi).
There is a non oriented edge between any pair of vertices corresponding to two
different variables. Ants lay pheromone trails on edges of the construction graph.
Intuitively, the amount of pheromone laying on an edge (〈Xi, v〉, 〈Xj , w〉) repre-
sents the learned desirability of assigning simultaneously value v to variable Xi

and value w to variable Xj . As proposed in [12], pheromone trails are bounded
between τmin and τmax, and they are initialized at τmax.

Construction of an assignment by an ant: At each cycle, each ant constructs
an assignment, starting from an empty assignment A = ∅, by iteratively adding
labels to A until A is complete. At each step, to select a label, the ant first chooses
a variable Xj ∈ X that is not yet assigned in A. This choice is performed with

respect to the smallest-domain ordering heuristic, i.e., the ant selects a variable
that has the smallest number of consistent values with respect to the partial
assignment A under construction. Then, the ant chooses a value v ∈ D(Xj) to
be assigned to Xj . The choice of v is done with respect to a probability which
depends on two factors, respectively weighted by two parameters α and β: a
pheromone factor —which corresponds to the sum of all pheromone trails laid
on all edges between 〈Xj , v〉 and the labels in A— and a heuristic factor —
which is inversely proportional to the number of new violated constraints when
assigning value v to variable Xj .

Local improvement of assignments: Once a complete assignment has been con-
structed by an ant, it is improved by performing some local search, i.e., by
iteratively changing some variable-value assignments. Different heuristics can be
used to choose the variable to be repaired and the new value to be assigned to
this variable. For all experiments reported below, we have used the min-conflict
heuristics [13], i.e., we randomly select a variable involved in some violated con-
straint, and then we assign this variable with the value that minimizes the num-
ber of constraint violations.

Pheromone trails update: Once every ant has constructed an assignment, and
improved it by local search, the amount of pheromone laying on each edge is
updated according to the aco metaheuristic, i.e., all pheromone trails are uni-
formly decreased —in order to simulate some kind of evaporation that allows
ants to progressively forget worse paths— and then pheromone is added on edges
participating to the construction of the best assignment of the cycle —in order
to further attract ants towards the corresponding area of the search space.

3.2 Evolutionary Computation

In the most basic form, an evolutionary algorithm that solves constraint sat-
isfaction problems uses a population of candidate solutions, i.e., complete as-
signments. The fitness is equal to the number of violated constraints, which
needs to be minimised to zero. Such a basic approach does not yield a power-
ful constraint solver. To improve effectiveness and efficiency, many additional
mechanisms such as heuristic operators, repair mechanisms, adaptive schemes,
and different representations exist. Craenen et al. [3] have performed a large
scale empirical comparison on 11 evolutionary algorithms that employ a vari-
ety of mechanisms. They conclude that the three best algorithms, Heuristics ga

version 3, Stepwise Adaptation of Weights and the Glass-Box approach, have
performances that are statistically not significantly different. However, all three
are significantly better than the other 8 algorithms. This conclusion differs from
[2] because the newer study considers even harder and larger problem instances.

We have selected the Glass-Box approach in our study and we use the same
implementation as in [3], which is called JavaEa2 [14]. It can be downloaded for
free and used under the gnu General Public License [15]. We provide a short
overview of the algorithm to provide insight into its concept, for a more detailed
description of the algorithm and all its parameters we refer to [16, 3].

The Glass-Box approach is proposed by Marchiori [16]. By rewriting all con-
straints into one form the algorithm can then process these constraints one at a
time. For each constraint that is violated the corresponding candidate solution is
repaired with a local search such that this constraint no longer is violated. How-
ever, previously repaired constraints are not revisited, thus a repaired candidate
solutions not necessarily yields a feasible solution. The evolutionary algorithm
keeps the local search going by providing new candidate solutions. A heuristic
is added to the repair mechanism by letting it start with the constraint involved
in the most violations.

3.3 Constraint Programming

Constraint programming dates back to 1965 when Chronological Backtracking
was proposed [17]. Since then many variants have been proposed that rely on
the basic principle of using recursion to move through the search space in an
exhaustive way. The main interest in creating more variants is to speed up the
process by making smarter moves and decisions. These involve a better order
in which the variables and their domains are evaluated, as well as providing
mechanisms that make it possible to take larger leaps through the search tree.

Here we use a constraint programming algorithm that uses forward checking

(fc) of Haralick and Elliot [18] for its constraint propagation, which means that
the algorithm first assigns a value to a variable and then checks all unassigned
variables to see if a valid solution is still possible. The goal of forward checking
is to prune the search tree by detecting inconsistencies as soon as possible. To
improve upon the speed, conflict-directed backjumping (cbj) [19] was added to it
by Prosser [20] to form fc-cbj. The speed improvement comes from the ability to
make larger jumps backward when the algorithm gets into a state where it needs
to backtrack to a previous set of assignments by jumping back over variables of
which the algorithm knows that these will provide no solutions.

4 Experiments

This section reports experimental results obtained by the three algorithms Ant-
solver, Glass-Box, and fc-cbj, in order to compare their effectiveness and effi-
ciency.

To determine the effectiveness of the algorithms, we compare their success
ratio, i.e., the percentage of runs that have succeeded in finding a solution. Note
that, without any time limit, complete approaches always succeed in finding a
solution as we only consider solvable instances.

To determine the efficiency of the algorithms, we compare the number of
conflict checks they have performed. A conflict check is defined as querying
if the assignment of two variables is allowed. Thereby we can characterize the
speed of the algorithms independently from implementation and hardware issues
as all algorithms have to perform conflict checks, which take the most time in
execution.

Finally, the resampling ratio is used to get insight into how efficient algo-
rithms are in sampling the search space. If we define S as the set of unique can-
didate solutions generated by an algorithm over a whole run and evals as the total
number of generated candidate solutions then the resampling ratio is defined as
evals−|S|

evals
. Low values correspond with an efficient search, i.e., not many duplicate

candidate solutions are generated. Note that complete approaches never generate
twice a same candidate solution, so that their resampling ratio is always zero.

4.1 Experimental setup

The Ant-solver algorithm has been run with the following parameters setting:
α = 2, β = 10, ρ = 0.99, τmin = 0.01, τmax = 4, as suggested in [11]. The number
of ants has been set to 15 and the maximum number of cycles to 2 000, so that
the number of generated candidate solutions is limited to 30 000.

The Glass-Box algorithm has been run with a population size of 10, a gener-
ational model using linear ranking selection with a bias of 1.5 to determine the
set of parents. The mutation rate was set to 0.1. The evolutionary algorithm ter-
minates when either a solution is found or the maximum of 100 000 evaluations
is reached.

For both Ant-solver and Glass-Box, we have performed 10 independent runs
for each instance, and we report average results over these 10 runs.

4.2 Test suites

We compare the three algorithms on two test suites of instances, all generated
according to Model E.

Test suite 1 is used to study what happens when moving towards the phase
transition region —where the most difficult instances are supposed to be. It
contains 250 instances, all of them having 20 variables and 20 values in each
variable’s domain, i.e., n = m = 20, and a density of constraints p1 equals
to 1, i.e., there is a constraint between any pair of different variables. These
250 instances are grouped into 10 sets of 25 problem instances per value of the
tightness parameter p2, ranging between 0.21 and 0.28, as the phase transition
region occurs when p2 = 0.266 (which corresponds with pe = 0.31 when using
Model E).

Test suite 2 is used to study the scale-up properties of the algorithms within
the phase transition region. It is composed of 250 instances, grouped into 10 sets
of 25 instances per number of variables n, ranging from 15 to 60. For all these
instances, the domain size m of each variable is kept constant at 5. To make
sure the problem instances have similar positions with respect to the phase-
transition region, so that the difficulty of instances only depends on the number
of variables, we keep the constrainedness κ = 0.92 on average (with a standard
deviation of 0.019) by setting appropriately the order parameter pe.

4.3 Moving towards the phase-transition region

Table 1 reports results obtained by each algorithm for each group of 25 instances
of test suite 1. This table clearly shows that for the Glass-Box approach, one
of the best known evolutionary algorithms for solving binary csps, the success
ratio quickly drops from one to almost zero when moving towards the phase
transition. Set against this result, Ant-solver seems a much better competition
for the complete method fc-cbj, being able to find a solution for nearly all the
runs.

Table 1. Results of Glass-Box (gb), Ant-solver (as), and fc-cbj on the 250
〈20, 20, 1, p2〉 instances of test suite 1, grouped into 10 sets of 25 instances per value of
p2 ranging between 0.213 and 0.280.

p2 0.213 0.221 0.228 0.236 0.244 0.251 0.259 0.266 0.273 0.280

Success ratio

gb 1.00 0.97 0.86 0.65 0.36 0.17 0.10 0.02 0.03 0.02
as 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.98 1.00
fc-cbj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Resampling ratio

gb 0.10 0.23 0.40 0.60 0.78 0.87 0.90 0.94 0.93 0.93
as 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.14 0.13 0.08
fc-cbj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average number of conflict checks

gb 2.4e6 1.5e7 5.3e7 1.2e8 2.0e8 2.6e8 3.1e8 3.6e8 3.9e8 4.3e8
as 2.5e5 4.4e5 1.0e6 2.5e6 6.3e6 1.8e7 5.4e7 1.2e8 1.1e8 9.0e7
fc-cbj 5.7e4 1.2e5 2.1e5 7.0e5 1.7e6 5.2e6 2.0e7 4.1e7 4.1e7 2.6e7

Standard deviation of the number of conflict checks

gb 1.4e7 5.3e7 1.0e8 1.3e8 1.3e8 1.1e8 1.1e8 8.0e7 9.3e7 9.8e7
as 2.4e5 4.7e5 9.6e5 2.4e6 6.6e6 1.8e7 5.2e7 2.8e8 2.0e8 1.1e8
fc-cbj 5.3e4 1.5e5 2.9e5 7.5e5 1.4e6 4.2e6 2.9e7 3.1e7 2.4e7 1.5e7

Constraint checks ratio of gb and as w.r.t. fc-cbj

gb/fc-cbj 42.11 125.00 252.38 171.43 117.65 50.00 15.50 8.78 9.51 16.54
as/fc-cbj 4.39 3.67 4.76 3.57 3.71 3.46 2.70 2.93 2.68 3.46

The resampling ratio reveals what happens. As the success ratio of Glass-
Box drops, its resampling ratio keeps increasing, even to levels of over 90%,
indicating that Glass-Box does not diversify enough its search. For Ant-solver
we only observe a slight increase of the resampling ratio, up to 14% around the
most difficult point at p2 = 0.266, which corresponds with a slight drop in its
success ratio.

However, when we compare the efficiency of the three algorithms by means of
the number of conflict checks, we notice that although Ant-solver is faster than
Glass-Box, it is slower than fc-cbj. The last two lines of table 1 display the ratio

of the number of conflict checks performed by Glass-Box and Ant-solver with
respect to fc-cbj, and show that Glass-Box is from 8 to 250 times as slow as
fc-cbj whereas Ant-solver is from two to five times as slow than fc-cbj. Note
that for Ant-solver this ratio is rather constant: for Ant-solver and fc-cbj, the
number of conflict checks increases in a very similar way when getting closer to
the phase transition region.

4.4 Varying the number of variables

Table 2 reports results obtained by the three algorithms for each group of 25
instances of test suite 2. In this table, one can first note that the effectiveness
of the Glass-Box approach decreases when increasing the number of variables
and although the rise in efficiency seems to slow down, this corresponds with
success ratios less than 50%. The resampling ratio shows inverse behaviour with
the success ratio. On the contrary, Ant-solver always finds a solution, while its
resampling ratio is always less than 3% for each setting. The search of Ant-solver
is thus extremely efficient for this scale-up experiment.

Table 2. Results of Glass-Box (gb), Ant-solver (as), and fc-cbj on the 250 〈n, 5, p1, p2〉
instances of test suite 2, grouped into 10 sets of 25 instances per value of n ranging
between 15 and 60.

n 15 20 25 30 35 40 45 50 55 60
p1 0.99 0.98 0.95 0.92 0.89 0.85 0.81 0.78 0.74 0.72
p2 0.19 0.15 0.12 0.10 0.093 0.086 0.080 0.075 0.071 0.069

Success ratio

gb 0.86 0.70 0.58 0.57 0.38 0.28 0.23 0.20 0.11 0.14
as 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
fc-cbj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Resampling ratio

gb 0.32 0.47 0.51 0.51 0.58 0.64 0.65 0.63 0.62 0.61
as 0.021 0.014 0.008 0.003 0.002 0.001 0.001 0.000 0.000 0.000
fc-cbj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average number of conflict checks

gb 1.1e7 3.6e7 7.1e7 1.0e8 1.9e8 2.7e8 3.7e8 4.4e8 6.0e8 7.0e8
as 6.0e4 2.4e5 7.0e5 1.5e6 4.7e6 8.4e6 1.6e7 4.0e7 6.5e7 1.0e8
fc-cbj 5.1e3 3.9e4 2.0e5 8.9e5 4.7e6 3.2e7 7.8e7 5.3e8 3.0e9 9.0e9

Standard deviation of the number of conflict checks

gb 2.3e7 4.8e7 7.7e7 1.1e8 1.4e8 1.6e8 1.8e8 2.1e8 2.0e8 2.7e8
as 6.8e4 2.8e5 8.5e5 1.8e6 6.7e6 9.3e6 2.0e7 4.7e7 6.2e7 7.6e7
fc-cbj 4.4e3 3.3e4 1.8e5 7.2e5 3.4e6 4.0e7 6.9e7 4.6e8 3.2e9 7.6e9

Conflict checks ratio of gb and as w.r.t. fc-cbj

gb/fc-cbj 2156.86 923.08 355.00 112.36 40.43 8.44 4.74 0.83 0.20 0.08
as/fc-cbj 11.76 6.15 3.50 1.69 1.00 0.26 0.21 0.08 0.02 0.01

Regarding efficiency, we note that fc-cbj starts out as the fastest algorithm
at first, but at 35 variables it loses this position to Ant-solver. This difference
in efficiency is clearly visible in the last line of Table 2: for instances with 15
variables, fc-cbj is 12 times as fast than Ant-solver, whereas for instances with
60 variables, it is 100 times as slow.

Actually, the number of conflict checks performed by Ant-solver for comput-
ing one candidate solution is in O(n2m) (where n is the number of variables and
m the size of the domain of each variable), and the number of computed candi-
date solutions is always bounded to 30 000. Hence, the complexity of Ant-solver
grows in a quadratic way with respect to the number of variables, and experi-
mental results of Table 2 actually confirm this. On the contrary, the theoretical
complexity of tree-search approaches such as fc-cbj grows exponentially with
respect to the number of variables. Even though fc-cbj uses elaborate back-
tracking techniques, i.e., trying to jump over unsuccessful branches of the search
tree, experimental results show us that the number of conflict checks performed
by fc-cbj still increases exponentially.

5 Conclusions

Experiments reported in this paper showed us that, considering effectiveness, ant
colony optimisation is a worthy competitor to constraint programming, as Ant-
solver almost always finds a solution, whereas evolutionary computation more
often fails in finding solutions when getting closer to the phase transition region,
or when increasing the size of the instances.

Scale-up experiments showed us that, on rather small instances, the con-
straint programming approach fc-cbj is much faster than the two considered
incomplete approaches. However, run times of fc-cbj grow exponentially when
increasing the number of variables, so that on larger instances with more than
35 variables, its efficiency becomes significantly lower than Ant-solver and Glass-
Box.

The resampling ratio is a good indication of the problems that occur during
the search in both the ant colony optimisation and the evolutionary algorithms.
Whenever an algorithm’s resampling increases this corresponds to a decrease in
effectiveness. At the same time the efficiency will also drop.

Future research will incorporate experiments on over constrained instances,
the goal of which is to find an assignment that maximises the number of satisfied
constraints.

Acknowledgements

We thank Bart Craenen for developing the JavaEa2 platform and making it
freely available to the community.

References

1. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
2. van Hemert, J.: Comparing classical methods for solving binary constraint satis-

faction problems with state of the art evolutionary computation. In Cagnoni, S.,
Gottlieb, J., Hart, E., Middendorf, M., Raidl, G., eds.: Applications of Evolution-
ary Computing. Number 2279 in Springer Lecture Notes on Computer Science,
Springer-Verlag, Berlin (2002) 81–90

3. Craenen, B., Eiben, A., van Hemert, J.: Comparing evolutionary algorithms on
binary constraint satisfaction problems. IEEE Transactions on Evolutionary Com-
putation 7 (2003) 424–444

4. van Hemert, J., Bäck, T.: Measuring the searched space to guide efficiency: The
principle and evidence on constraint satisfaction. In Merelo, J., Panagiotis, A.,
Beyer, H.G., Fernández-Villacañas, J.L., Schwefel, H.P., eds.: Parallel Problem
Solving from Nature — PPSN VII. Number 2439 in Springer Lecture Notes on
Computer Science, Springer-Verlag, Berlin (2002) 23–32

5. Achlioptas, D., Kirousis, L., Kranakis, E., Krizanc, D., Molloy, M., Stamatiou, Y.:
Random constraint satisfaction: A more accurate picture. Constraints 4 (2001)
329–344

6. Cheeseman, P., Kenefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Proceedings of the IJCAI’91. (1991) 331–337

7. Gent, I., MacIntyre, E., Prosser, P., Walsh, T.: The constrainedness of search. In:
Proceedings of AAAI-96, AAAI Press, Menlo Park, California. (1996)

8. Davenport, A.: A comparison of complete and incomplete algorithms in the easy
and hard regions. In: Proceedings of CP’95 workshop on Studying and Solving
Really Hard Problems. (1995) 43–51

9. Clark, D., Frank, J., Gent, I., MacIntyre, E., Tomv, N., Walsh, T.: Local search and
the number of solutions. In: Proceedings of CP’96, LNCS 1118, Springer Verlag,
Berlin, Germany. (1996) 119–133

10. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discrete optimiza-
tion. Artificial Life 5 (1999) 137–172

11. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions
on Evolutionary Computation 6 (2002) 347–357

12. Stützle, T., Hoos, H.: MAX −MIN Ant System. Journal of Future Generation
Computer Systems 16 (2000) 889–914

13. Minton, S., Johnston, M., Philips, A., Laird, P.: Minimizing conflicts: a heuris-
tic repair method for constraint satistaction and scheduling problems. Artificial
Intelligence 58 (1992) 161–205

14. Craenen, B.: JaveEa2: an evolutionary algorithm experimentation platform for
constraint satisfaction in Java (Version 1.0.1) http://www.xs4all.nl/~bcraenen/
JavaEa2/download.html.

15. Foundation, F.S.: The gnu general public license (Version 2, June 1991) http:

//www.gnu.org/licenses/gpl.txt.
16. Marchiori, E.: Combining constraint processing and genetic algorithms for con-

straint satisfaction problems. In Bäck, T., ed.: Proceedings of the 7th International
Conference on Genetic Algorithms, Morgan Kaufmann (1997) 330–337

17. Golomb, S., Baumert, L.: Backtrack programming. ACM 12 (1965) 516–524
18. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint-satisfaction

problems. Artificial Intelligence 14 (1980) 263–313
19. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learn-

ing, and cutset decomposition. Artificial Intelligence 41 (1990) 273–312
20. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computa-

tional Intelligence 9 (1993) 268–299

