A Study of Greedy, Local Search and Ant Colony Optimization Approaches for Car Sequencing Problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

A Study of Greedy, Local Search and Ant Colony Optimization Approaches for Car Sequencing Problems

Résumé

This paper describes and compares several heuristic approaches for the car sequencing problem. We first study greedy heuristics, and show that dynamic ones clearly outperform their static counterparts. We then describe local search and ant colony optimization (ACO) approaches, that both integrate greedy heuristics, and experimentally compare them on benchmark instances. ACO yields the best solution quality for smaller time limits, and it is comparable to local search for larger limits. Our best algorithms proved one instance being feasible, for which it was formerly unknown whether it is satisfiable or not.
Fichier principal
Vignette du fichier
car-seq.pdf (211.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01541499 , version 1 (25-03-2020)

Identifiants

Citer

Jens Gottlieb, Markus Puchta, Christine Solnon. A Study of Greedy, Local Search and Ant Colony Optimization Approaches for Car Sequencing Problems. EvoWorkshops: Workshops on Applications of Evolutionary Computation, Apr 2003, Essex, United Kingdom. ⟨10.1007/3-540-36605-9_23⟩. ⟨hal-01541499⟩
189 Consultations
284 Téléchargements

Altmetric

Partager

More