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Abstract. This paper describes and compares several heuristic approa-
ches for the car sequencing problem. We first study greedy heuristics,
and show that dynamic ones clearly outperform their static counter-
parts. We then describe local search and ant colony optimization (ACO)
approaches, that both integrate greedy heuristics, and experimentally
compare them on benchmark instances. ACO yields the best solution
quality for smaller time limits, and it is comparable to local search for
larger limits. Our best algorithms proved one instance being feasible, for
which it was formerly unknown whether it is satisfiable or not.

1 Introduction

The car sequencing problem involves scheduling cars along an assembly line, in
order to install options (e.g. sun-roof or air-conditioning) on them. Each option
is installed by a different station, designed to handle at most a certain percentage
of the cars passing along the assembly line, and the cars requiring this option
must be spaced such that the capacity of the station is never exceeded.

This problem is NP-complete [5]. It has been formulated as a constraint
satisfaction problem (CSP), and is a classical benchmark for constraint solvers [3,
6, 13]. Most of these CSP solvers use a complete tree-search approach to explore
the search space in a systematic way, until either a solution is found, or the
problem is proven to have no solution. In order to reduce the search space,
this approach is combined with filtering techniques that narrow the variables’
domains. In particular, a dedicated filtering algorithm has been proposed for
handling capacity constraints of the car sequencing problem [9]. This filtering
algorithm is very effective to solve some hardly constrained feasible instances, or
to prove infeasibility of some over-constrained instances. However, on some other
instances, it cannot reduce domains enough to make complete search tractable.

Hence, different incomplete approaches have been proposed, that leave out
exhaustivity, trying to quickly find approximately optimal solutions in an op-
portunistic way, e.g., local search [1, 7, 8], genetic algorithms [14] or ant colony



optimization (ACO) approaches [11]. This paper describes and compares three
incomplete approaches for the car sequencing problem.

Section 2 introduces the car sequencing problem, for which several greedy
heuristics are described and examined in section 3. Section 4 presents a local
search approach, adapted from [8], and section 5 describes an ACO approach
that is an improved version of [11]. Empirical results and comparisons are given
in section 6, followed by the conclusions in section 7.

2 The Car Sequencing Problem

2.1 Formalization

A car sequencing problem is defined by a tuple (C, O, p, q, r), where C={c1, .., cn}
is the set of cars to be produced and O={o1, .., om} is the set of different options.
The two functions p : O → IN and q : O → IN define the capacity constraint
associated with each option oi∈O, i.e. for any sequence of q(oi) consecutive cars
on the line, at most p(oi) of them may require oi. The function r :C×O→{0, 1}
defines options requirements, i.e., for each car ci∈C and for each option oj ∈O,
r(ci, oj) returns 1 if oj must be installed on ci, and 0 otherwise. Note that two
cars may require the same configuration of options. To evaluate the difference of
two cars, we introduce the function d : C × C → IN that returns the number of
different options two cars require, i.e., d(ci, cj) =

∑

ok∈O |r(ci, ok)− r(cj , ok)|.
Solving a car sequencing problem involves finding an arrangement of the cars

in a sequence, defining the order in which they will pass along the assembly line,
such that the capacity constraints are met. We shall use the following notations
to denote and manipulate sequences:

– a sequence, noted π =< ci1 , ci2 , . . . , cik
>, is a succession of cars;

– the length of a sequence π, noted |π|, is the number of cars that it contains;
– the concatenation of 2 sequences π1 and π2, noted π1 · π2, is the sequence

composed of the cars of π1 followed by the cars of π2;
– a sequence πf is a factor of another sequence π, noted πf ⊆ π, if there exists

two (possibly empty) sequences π1 and π2 such that π = π1 · πf · π2;
– the number of cars that require an option oi within a sequence π (resp.

within a set S of cars) is noted r(π, oi) (resp. r(S, oi)) and is defined by
r(π, oi) =

∑

<cl>⊆π r(cl, oi) (resp. r(S, oi) =
∑

cl∈S r(cl, oi));
– the cost of a sequence π is the number of violated capacity constraints, i.e.,

cost(π) =
∑

oi∈O

∑

πk⊆π so that

|πk|=q(oi)

violation(πk , oi)

where violation(πk , oi) =

{

0 if r(πk , oi) ≤ p(oi);
1 otherwise.

We can now define the solution process of a car sequencing problem (C, O, p, q, r)
as the search of a minimal cost sequence composed of the cars to be produced.



2.2 Utilization Rate

The difficulty of an instance depends on the number of cars to be produced and
the number of different options configurations, but also on the utilization rate of
the different options [10]. The utilization rate of an option oi corresponds to the
ratio of the number of cars requiring oi with respect to the maximum number of
cars in a sequence which could have oi while satisfying its capacity constraint,

i.e., utilRate(oi) = r(C,oi)·q(oi)
|C|·p(oi)

. An utilization rate greater than 1 indicates that

the demand is higher than the capacity, so that the capacity of the station will
inevitably be exceeded; an utilization rate close to 0 indicates that the demand
is very low with respect to the capacity of the station.

2.3 Test Suites

All considered instances are available in the benchmark library CSPLib [6]. The
first test suite contains 70 problem instances, used in [1, 7, 11] and grouped into
7 sets of 10 instances per utilization rate 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, and
0.90; e.g. the instances within the group 0.70 are named 70-01, . . ., 70-10, and
we refer to the group as 70-*. All these instances are feasible ones, and have 200
cars to sequence, 5 options, and from 17 to 30 different options configurations.
We also consider a second test suite composed of 9 harder instances, some of
which were used in [9]. These instances have 100 cars to sequence, 5 options, from
18 to 24 different configurations, and high utilization rates, equal to 1 for some
options; some of them are feasible, whereas some others are over-constrained.

3 Greedy Algorithms

3.1 The Basic Idea and Different Heuristics

Given a car sequencing problem, one can build a sequence in a greedy way,
by iteratively choosing the next car to sequence with respect to some given
heuristic function to optimize. Obviously, one should choose, at each step, a car
that introduces the smallest number of new constraint violations, i.e., given a
partial sequence π, the next car is selected within those cars cj that minimize

newViolations(π, cj) =
∑

oi∈O

r(cj , oi) · violation(lastCars(π· < cj >, q(oi)), oi)

where lastCars(π′, k) is the sequence composed of the k last cars of π′ if | π′ |≥ k,
otherwise lastCars(π′, k) = π′. The set of candidate cars that minimize this
newViolations function usually contains more than one car so that we may use
another heuristic to break further ties. We consider different heuristics:

1. Random choice (Rand): choose randomly a car within the set of candidates.



2. Static Highest Utilization Rates (SHU): the idea, introduced in [10], is to
choose first the cars that require the option with highest utilization rate,
and to break ties by choosing cars that require the option with second high-
est utilization rate, and so on. More formally, we choose the car that max-
imizes the heuristic function ηSHU(cj) =

∑

oi∈O r(cj , oi) · weight(oi) where

weight(oi) = 2k if oi is the option with the kth smallest utilization rate.
3. Dynamic Highest Utilization Rates (DHU): the heuristic function ηSHU is

static in the sense that it does not depend on the partial sequence π un-
der construction. We can define a similar function ηDHU that is dynamic,
by updating utilization rates each time a car is added, i.e., the utiliza-
tion rate considered to compute the weight of an option oi is defined by:

dynUtilRate(oi, π) = [r(C,oi)−r(π,oi)]·q(oi)
p(oi)·[|C|−|π|] .

4. Static Sum of Utilization Rates (SSU): instead of ranking utilization rates,
from the highest to the lowest one, we can simply consider the sum of the
required options utilization rates. More formally, we choose the car that
maximizes the heuristic function ηSSU(cj) =

∑

oi∈O r(cj , oi) · utilRate(oi).
5. Dynamic Sum of utilization rates (DSU): we can also make the SSU heuristic

dynamic by considering the sum of dynamic utilization rates, i.e.,
ηDSU(cj , π) =

∑

oi∈O r(cj, oi) · dynUtilRate(oi, π).
6. Dynamic Even Distribution (DED): the four previous heuristics choose cars

that require options with high utilization rates, whereas the idea of this
heuristic is to favor an even distribution of the options. If the average number
of cars that require an option is lower in the sequence under construction π
than in C, the set of cars, then we favor these cars, and vice versa. More
formally, we choose the car that maximizes the heuristic function

ηDED(cj , π) =
∑

oi∈O

(r(cj , oi) = 0) xor

(

r(C, oi)

n
>

r(π, oi)

| π |

)

This heuristic function is not defined for the first car, when |π| = 0. There-
fore, the first car cj is selected randomly among those cars requiring the
maximum number of options.

3.2 Empirical Comparison of Greedy Heuristics

Table 1 displays results obtained on the benchmark instances described in section
2.3. Remark that standard deviations for SHU and DHU are null. Indeed, all runs
on a same instance always construct the same sequence as, at each step, there
is only one car that maximizes the η function. For SSU and DSU, standard
deviations are rather small, and on some instances they are null, as sums of
utilization rates often have different values. For DED, standard deviations are
higher, as the ηDED function can only take |O| different values and in most cases
there is more than one car that maximize it.

When comparing the average costs of the sequences built with the different
heuristics, we observe the dynamic heuristics DSU and DHU obtaining rather



similar results, whereas DSU and DHU always outperform their static coun-
terpart SSU and SHU. DED is better than DSU and DHU on instances with
utilization rates lower than 0.90, whereas on the instances 90-* and the second
test suite it is worse. On the one hand, we perceive the instances from suite 1
as easy since each of them could be solved by at least one heuristic (see table
2). On the other hand, all heuristics failed to find a feasible solution for each
instance from suite 2. Therefore, suite 2 is considered as more difficult.

Table 1. Results for greedy approaches (average costs on 500 runs, standard deviations
in brackets).

Suite No. Rand SSU DSU SHU DHU DED

60-* 20.4 (5.1) 10.2 (0.5) 1.6 (0.0) 10.5 (0.0) 1.4 (0.0) 0.8 (0.9)
65-* 17.0 (5.0) 13.9 (0.3) 2.3 (0.0) 16.4 (0.0) 2.1 (0.0) 0.8 (1.0)
70-* 13.8 (4.9) 17.4 (0.4) 3.0 (0.4) 18.6 (0.0) 3.6 (0.0) 0.7 (0.9)

1 75-* 12.0 (5.0) 18.2 (0.2) 5.6 (0.4) 18.5 (0.0) 6.7 (0.0) 0.9 (1.0)
80-* 17.8 (6.3) 16.6 (1.1) 4.3 (0.6) 17.2 (0.0) 5.0 (0.0) 1.0 (1.1)
85-* 29.4 (7.3) 11.5 (0.6) 4.2 (0.4) 12.4 (0.0) 3.3 (0.0) 1.8 (1.2)
90-* 54.2 (8.3) 5.9 (0.6) 1.2 (0.3) 6.1 (0.0) 1.6 (0.0) 4.3 (1.7)

10-93 59.1 (6.5) 11.0 (0.0) 10.4 (1.6) 11.0 (0.0) 12.0 (0.0) 14.1 (2.5)
16-81 43.3 (5.1) 9.7 (1.2) 7.7 (0.9) 17.0 (0.0) 11.0 (0.0) 9.5 (2.7)
19-71 56.0 (6.7) 13.6 (1.7) 8.5 (1.1) 13.0 (0.0) 7.0 (0.0) 10.3 (2.4)
21-90 49.1 (5.6) 8.0 (0.0) 5.5 (0.7) 9.0 (0.0) 7.0 (0.0) 9.1 (1.9)

2 26-82 40.6 (5.9) 6.0 (0.0) 3.6 (0.9) 7.0 (0.0) 3.0 (0.0) 8.8 (2.2)
36-92 50.4 (6.2) 5.0 (0.0) 8.5 (0.5) 8.0 (0.0) 7.0 (0.0) 12.7 (2.3)
41-66 34.1 (5.8) 4.7 (1.4) 3.7 (0.7) 6.0 (0.0) 2.0 (0.0) 6.5 (2.0)
4-72 46.6 (5.8) 4.7 (0.6) 5.0 (0.0) 4.0 (0.0) 2.0 (0.0) 13.3 (3.2)
6-76 28.1 (4.8) 6.0 (0.0) 6.0 (0.0) 6.0 (0.0) 6.0 (0.0) 9.1 (1.4)

Table 2. Success rates for greedy approaches and suite 1 (500 runs per instance).

No. Rand SSU DSU SHU DHU DED

60-* 0.002 0.002 0.400 0.000 0.500 0.547

65-* 0.002 0.000 0.100 0.100 0.200 0.536

70-* 0.004 0.000 0.000 0.000 0.000 0.580

75-* 0.005 0.000 0.200 0.000 0.100 0.507

80-* 0.001 0.000 0.116 0.000 0.100 0.487

85-* 0.000 0.200 0.218 0.100 0.200 0.251

90-* 0.000 0.300 0.500 0.300 0.500 0.114

4 Local Search

We consider the local search (LS) procedure proposed in [8] for general car
sequencing problems involving several different types of constraints, including
the one that is the subject of this paper. First, the initial solution is generated



randomly – like in [8] – or by some greedy heuristic described in section 3.
This solution is then modified by LS, where each iteration consists of randomly
selecting one move type out of six different types. Then, a randomly chosen move
of the selected type is evaluated regarding the current solution candidate, and
the move is accepted and applied, if it does not deteriorate the solution quality.
Otherwise the move is rejected and another one is tried on the current solution.
The search process is terminated if a feasible solution is found or the evaluation
limit is reached.

Table 3 summarizes the move types in a formal way. Insert moves one car
from its current position to another, and Swap exchanges two cars. A special case
of Swap is SwapS, which exchanges two cars that are similar but not identical
regarding the options they require. SwapT is a transposition, another special
case of Swap exchanging two neighbouring cars. Lin2Opt inverts a factor, which
is defined by invert(<>) =<> and invert(π· < cl >) =< cl > ·invert(π). The
last type, Random, randomly shuffles a factor, formalized by shuffle(<>) =<>
and shuffle(π1· < cl > ·π2) =< cl > ·shuffle(π1 · π2) with probability 1

1+|π1|+|π2|
.

Besides the specific restrictions listed in table 3, the length of a modified
factor is bounded by n/4 for all move types, in order to allow fast evaluations.
Note that in particular SwapS and SwapT can be evaluated quite quickly since
only two neighbouring cars and two options are affected, respectively.

Table 3. Formal description of the move types used within LS.

Type π → π′ Restriction

π1· < cl > ·π2 · π3 → π1 · π2· < cl > ·π3 (forward)
Insert

π1 · π2· < cl > ·π3 → π1· < cl > ·π2 · π3 (backward)
1 ≤ |π2|

Swap π1· < cl1 > ·π2· < cl2 > ·π3 → π1· < cl2 > ·π2 < cl1 > ·π3 1 ≤ d(cl1 , cl2 )

SwapS π1· < cl1 > ·π2· < cl2 > ·π3 → π1· < cl2 > ·π2 < cl1 > ·π3 1 ≤ d(cl1 , cl2 ) ≤ 2

SwapT π1· < cl1 > · < cl2 > ·π2 → π1· < cl2 > · < cl1 > ·π2 1 ≤ d(cl1 , cl2 )

Lin2Opt π1 · π2 · π3 → π1 · invert(π2) · π3 2 ≤ |π2|

Random π1 · π2 · π3 → π1 · shuffle(π2) · π3 2 ≤ |π2|

5 Ant Colony Optimization

The Ant Colony Optimization (ACO) metaheuristic is inspired by the collective
behaviour of real ant colonies, and it has been used to solve many hard combina-
torial optimization problems [4]. In particular, [11] describes an ACO algorithm
for solving permutation CSPs, the goal of which is to find a permutation of n
known values, to be assigned to n variables, under some constraints. This algo-
rithm has been designed to solve any permutation CSP in a generic way, and it
has been illustrated on different problems. We now describe an improved version
of it that is more particularly dedicated to the car sequencing problem. This new
algorithm mainly introduces three new features: first, it uses an elitist strategy,



so that pheromone is used to break the tie between the “best” cars only; second,
it integrates features borrowed from [12] in order to favor exploration; finally, it
uses the heuristic functions introduced in section 3 to guide ants.

Our new algorithm follows the classical ACO scheme: first, pheromone trails
are initialized; then, at each cycle every ant constructs a sequence, and phero-
mone trails are updated; the algorithm stops iterating either when an ant has
found a solution, or when a maximum number of cycles has been performed.

Construction graph and pheromone trails initialization. To build sequences, ants
communicate by laying pheromone on the edges of a complete directed graph
which associates a vertex with each car ci ∈ C. There is an extra vertex, denoted
by cnest 6∈ C, from which ants start constructing sequences (this extra vertex will
be considered as a car that requires no option). The amount of pheromone on an
edge (ci, cj) is noted τ(ci, cj) and represents the learnt desirability of sequencing
cj just after ci.

As proposed in [12], and contrary to our previous ACO algorithm, we explic-
itly impose lower and upper bounds τmin and τmax on pheromone trails (with
0 < τmin < τmax). The goal is to favor a larger exploration of the search space
by preventing the relative differences between pheromone trails from becoming
too extreme during processing. Also, pheromone trails are initialized to τmax,
thus achieving a higher exploration of the search space during the first cycles.

Construction of sequences by ants. The algorithmic scheme of the construction
of a sequence π by an ant is sketched below:

π ←< cnest >

while | π |≤| C | do

cand ← {ck ∈ C−π | ∀cj ∈ C−π, ((d(ck, cj) = 0)⇒ (k ≤ j)) and

newViolations(π, ck) ≤ newViolations(π, cj)}

let ci be the last car sequenced in π (i.e., π = π′· < ci >)

choose cj ∈ cand with probability pcicj
=

[τ(ci,cj)]
α[η(cj ,π)]β

∑

ck∈cand
[τ(ci,ck)]α[η(ck,π)]β

π ← π· < cj >

end while

Remark that, at each iteration, the choice of a car is done within a restricted
set of candidates cand, instead of the set of all non sequenced cars C − π: in
order to break symmetries, we only consider cars that require different options
configurations; in order to introduce an elitist strategy, we select among the best
cars with respect to the number of new constraint violations.

The choice of a car cj in the candidates’ set is done with respect to a proba-
bility that both depends on a pheromone factor τ , and a heuristic factor η. This
heuristic factor can be any of the heuristic functions described in section 3.

Updating pheromone trails. After every ant has constructed a sequence, phe-
romone trails are updated according to ACO. First, all pheromone trails are
decreased in order to simulate evaporation, i.e., for each edge (ci, cj), the quantity



of pheromone τ(ci, cj) is multiplied by an evaporation parameter ρ such that
0 ≤ ρ ≤ 1. Then, the best ants of the cycle deposit pheromone, i.e., for each
sequence π constructed during the cycle, if the cost of π is minimal for this cycle
then, for each couple of consecutive cars < cj , ck >⊆ π, we increment τ(cj , ck)
with 1/cost(π).

6 Experimental comparison of ACO and LS

6.1 Experimental Setup

We consider two ACO variants obtained by setting parameters to different val-
ues. The first variant, called the “Ant” variant, uses α=1, ρ=0.99, τmin=0.01
and τmax=4. The second variant, referred to as “Iter”, ignores pheromone by
using α=0, ρ=1, τmin=τmax=1. This resembles an iterated greedy algorithm that
repeatedly produces solutions by a randomized greedy heuristic. For both vari-
ants, we set β to 6 and the number of ants to 15, and we examine combinations
with the greedy heuristics DHU, DSU and Rand described in section 3.

Regarding LS, two variants are considered that differ in the algorithm produc-
ing the initial solution. The first variant uses a pure random sequence, whereas
the second uses the greedy heuristic DED from section 3.

We use different evaluation limits for ACO and LS, because e.g. on instance
10-93 of suite 2, 15 000 solutions produced by ACO and 200 000 solutions gen-
erated by LS need roughly the same CPU time, 20 seconds on a 300 MHz PC.

6.2 Results for Test Suite 1

Table 4 reports results for the first test suite, limiting the number of cycles of
Ant and Iter to 100, and the number of moves of LS to 20 000. Note that within
100 cycles, pheromone cannot influence ants, so that Iter and Ant obtain similar
results. Actually, instances of this first suite are rather easy ones, so that they
can be very quickly solved by all algorithms, provided they use a good heuristic
(i.e., DSU, DHU, or DED).

When no heuristic is used (Rand variants), LS is still able to solve all in-
stances, for almost all runs, whereas Iter and Ant have much more difficulties,

Table 4. Results for Iter, Ant, and LS on the first test suite instances (average costs
on 100 runs, standard deviations in brackets).

No. IterDSU IterDHU IterRand AntDSU AntDHU AntRand LSRand LSDED

60-* 0.0 (0.0) 0.0 (0.0) 5.4 (1.0) 0.0 (0.0) 0.0 (0.0) 5.2 (0.9) 0.0 (0.1) 0.0 (0.0)

65-* 0.0 (0.0) 0.0 (0.0) 3.0 (0.7) 0.0 (0.0) 0.0 (0.0) 3.0 (0.7) 0.1 (0.1) 0.0 (0.0)

70-* 0.0 (0.0) 0.0 (0.0) 1.4 (0.5) 0.0 (0.0) 0.0 (0.0) 1.4 (0.6) 0.0 (0.1) 0.0 (0.0)

75-* 0.0 (0.0) 0.0 (0.0) 0.6 (0.4) 0.0 (0.0) 0.0 (0.0) 0.6 (0.4) 0.1 (0.2) 0.0 (0.0)

80-* 0.0 (0.0) 0.0 (0.0) 2.0 (0.9) 0.0 (0.0) 0.0 (0.0) 2.0 (0.8) 0.2 (0.3) 0.0 (0.0)

85-* 0.0 (0.0) 0.0 (0.0) 8.3 (1.7) 0.0 (0.0) 0.0 (0.0) 8.2 (1.6) 0.4 (0.6) 0.0 (0.1)

90-* 0.0 (0.0) 0.0 (0.0) 28.1 (2.5) 0.0 (0.0) 0.0 (0.0) 28.1 (2.4) 2.5 (1.2) 0.6 (0.6)



particularly for those with highest utilization rates1. The effect of DED on LS is
rather small compared to the effect of DHU and DSU on Ant and Iter, because
DED is applied only once, whereas the heuristic in Ant and Iter is used for each
generated sequence. Nevertheless, DED is quite helpful because it performs very
well on these instances, as already discussed in section 3.

Finally, note that the results for IterDSU and IterDHU are much better than
those reported for DSU and DHU in table 1, because Iter produces a large set of
solutions and selects the best one, while the greedy approach produces only one
solution for each run. Furthermore, Iter diversifies the search by choosing cars
w.r.t. probabilities, which is beneficial when lots of solutions are generated.

6.3 Results for Test Suite 2

Table 5 presents the results for the second set of instances, the more difficult
ones. The number of cycles of Ant and Iter is limited to 1 000, and the number of
moves of LS to 200 000. Comparing Iter and Ant variants reveals that pheromone
has a positive impact since Ant variants yield a better solution quality. In par-
ticular for Rand, the worst greedy heuristic, the use of pheromone makes a big
difference. Thus, the key success factor of ACO is the employed greedy heuris-
tic, demonstrated by the clear superiority of AntDSU and AntDHU variants. In
addition to the heuristics, pheromone helps to improve solution quality, too.

Regarding the different greedy heuristics, DSU and DHU are comparable. It
is remarkable that IterDSU and IterDHU achieve very good results. Although
they are slightly inferior to their Ant counterparts, the obtained solution quality
is comparable to LS. Using DED for the initial solution in LS is better than
using a pure random sequence, coinciding to the results for the easy instances.
However, LS seems to be slightly inferior to AntDHU and AntDSU. We believe
that LS suffers from local optima, because we did not use mechanisms to escape

1 We also made runs for IterRand and AntRand with 1000 cycles. In this case, on
90-*, the average cost decreases to 23.9 for IterRand, and to 12.9 for AntRand. This
shows that pheromone actually allows ants to improve the solution process, even
though they do not reach LSRand performances.

Table 5. Results for Iter, Ant, and LS on the second test suite instances (average costs
on 100 runs, standard deviations in brackets).

No. IterDSU IterDHU IterRand AntDSU AntDHU AntRand LSRand LSDED

10-93 5.5 (0.6) 6.6 (0.7) 35.4 (1.7) 4.7 (0.5) 4.7 (0.5) 21.9 (1.7) 5.9 (1.1) 5.5 (0.9)

16-81 0.8 (0.4) 2.2 (0.5) 23.1 (1.1) 0.2 (0.4) 0.9 (0.4) 13.0 (1.2) 2.0 (0.8) 1.6 (0.8)

19-71 2.8 (0.4) 3.1 (0.4) 29.9 (1.7) 2.8 (0.4) 2.7 (0.4) 18.1 (1.8) 2.2 (0.4) 2.1 (0.3)

21-90 2.6 (0.5) 2.0 (0.0) 27.1 (1.5) 2.3 (0.5) 2.0 (0.1) 13.4 (1.5) 2.2 (0.4) 2.2 (0.4)

26-82 1.0 (0.2) 0.3 (0.5) 19.3 (1.3) 0.0 (0.0) 0.0 (0.0) 8.9 (1.1) 0.4 (0.5) 0.3 (0.5)

36-92 3.4 (0.6) 2.9 (0.4) 25.9 (1.7) 2.1 (0.3) 2.0 (0.0) 15.7 (1.2) 3.0 (0.5) 2.9 (0.6)

41-66 0.0 (0.0) 0.0 (0.0) 13.3 (1.3) 0.0 (0.0) 0.0 (0.0) 5.2 (0.9) 0.0 (0.2) 0.0 (0.1)

4-72 0.2 (0.4) 1.0 (0.4) 24.1 (1.6) 0.0 (0.0) 0.0 (0.0) 16.3 (1.4) 0.8 (0.6) 0.8 (0.6)

6-76 6.0 (0.0) 6.0 (0.0) 13.1 (0.9) 6.0 (0.0) 6.0 (0.0) 7.6 (0.6) 6.0 (0.0) 6.0 (0.0)



from them. In our previous study for car sequencing problems involving several
different types of constraints [8], we observed that solution quality can be im-
proved significantly when using threshold accepting to escape from local optima.
Thus, we think the gap between the LS variant we consider here and the best Ant
variants could be closed by using an acceptance criterion like threshold accept-
ing. Further, we remark that we have used the local search implementation from
[8], which contains some unnecessary functionality for problems involving other
constraint types. Thus, a specific implementation for the special car sequencing
problem we consider here, is expected to be more efficient.

Three algorithms – IterDHU, AntDHU, and LSDED – are selected for further
experiments regarding the impact of different CPU time limits. We successively
limit Iter and Ant to 100, 500, 1 000, 2 500 and 10 000 cycles, which correspond
to 20 000, 100 000, 200 000, 500 000, 2 000 000 moves for LS, respectively. The
evolution of solutions’ quality is shown in figure 1 for four representative in-
stances. For small limits, LS is inferior to IterDHU and AntDHU. However, LS
and AntDHU achieve quite similar results for the highest limit. Interestingly,
IterDHU is less effective for these high limits. Thus, the pure sampling of iter-
ated greedy is inferior to LS and the pheromone-driven AntDHU, supposed the
latter variants are given enough time.

During all the runs, we found some new best solutions for instances of the
second test suite. Table 6 compares previous results with the outcome of our
experiments for the highest CPU time limit. The instances being reported as
satisfiable have been solved by AntDHU and LSDED. Further, we found a feasi-
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Fig. 1. Results on four representative benchmark instances of the second suite.



ble solution for the instance 26-82, for which it was formerly unknown whether
it is satisfiable or not. The lower bound 2 on the number of constraint violations
proved by Gent [5] for 19-71 is reached by all three algorithms.

Table 6. Comparison with results reported in [5, 6, 9]: The best solution is the best
value we found in all our experiments, and the success rate (SR) measures for each
algorithm the ratio of runs that actually found the best value.

Instance 10-93 16-81 19-71 21-90 26-82 36-92 41-66 4-72 6-76

Satisfiable? no [9] yes [6] no [5, 9] ? ? ? yes [6] yes [9] no [9]

Best solution 3 0 2 2 0 2 0 0 6

SR for IterDHU 0.00 0.00 0.43 1.00 1.00 0.70 1.00 0.65 1.00

SR for AntDHU 0.32 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

SR for LSDED 0.85 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 Conclusion

We evaluated several algorithms on two test suites of car sequencing problems.
The first suite contains relatively easy instances since most of them could be
solved even by greedy algorithms. The second suite contains some harder in-
stances. Our best algorithms found solutions for the feasible ones among them,
reached a lower bound for one infeasible instance, and proved one instance being
feasible, for which it was formerly unknown whether it is satisfiable or not.

Among the greedy algorithms, the dynamic variants clearly outperform their
static counterparts. Iterated greedy is surprisingly good, if good heuristics like
DHU or DSU are employed. These algorithms solved all instances of the first
suite in every run. But, pure sampling is inferior to more intelligent approaches
like pheromone-driven ACO and LS, when more difficult instances of the second
suite are considered and more CPU time is invested.

The best results are obtained by an ACO approach combined with a dynamic
heuristic. The use of good heuristics is crucial and allows solving the first test
suite in every run without using pheromone at all. On the second test suite,
the results are improved when guiding search by pheromone. LS performs quite
well, but it is slightly inferior to the best ACO variant for small CPU time
limits; for larger limits, LS and the ACO approaches yield comparable solution
quality. Although we employed a large neighbourhood, we still believe LS suffers
from getting stuck in local optima. Therefore, we are confident that even better
results can be obtained by using acceptance criteria like threshold accepting, as
reported in [8] for problems involving different types of constraints.

Although the new results are significantly better than those obtained by a
previous ACO algorithm [11], there are other algorithms from literature that
deserve a comparison with our algorithms. In particular, we should compare our
results with other local search approaches, which are using the Swap neighbour-
hood, repair heuristics and adaptive mechanisms to escape from local optima [1,



2, 7], and with genetic local search proposed in [14]. The difficulty is, however,
that different machines, evaluation limits, and benchmarks have been used.

Some other issues are also open and should be the subject of further research.
More specific, we want to check the effects of threshold accepting or restarting
mechanisms on LS on the benchmarks used in this study. Further, it may be
beneficial to integrate local search into the best ACO variant, by applying it
to solutions constructed by ants. Since ACO turned out to be very effective, it
is challenging to extend it such that it can cope with the real-world problems
considered in [8].
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