Fast smoothing in switching approximations of non-linear and non-Gaussian models - Archive ouverte HAL
Article Dans Une Revue Computational Statistics and Data Analysis Année : 2017

Fast smoothing in switching approximations of non-linear and non-Gaussian models

Résumé

Statistical smoothing in general non-linear non-Gaussian systems is a challenging problem. A new smoothing method based on approximating the original system by a recent switching model has been introduced. Such switching model allows fast and optimal smoothing. The new algorithm is validated through an application on stochastic volatility and dynamic beta models. Simulation experiments indicate its remarkable performances and low processing cost. In practice, the proposed approach can overcome the limitations of particle smoothing methods and may apply where their usage is discarded.
Fichier principal
Vignette du fichier
CSDA2017.pdf (502.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01540474 , version 1 (16-06-2017)

Identifiants

Citer

Ivan Gorynin, Stéphane Derrode, Emmanuel Monfrini, Wojciech Pieczynski. Fast smoothing in switching approximations of non-linear and non-Gaussian models. Computational Statistics and Data Analysis, 2017, 114, pp.38 - 46. ⟨10.1016/j.csda.2017.04.007⟩. ⟨hal-01540474⟩
304 Consultations
237 Téléchargements

Altmetric

Partager

More