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Stéphane Derrode∗

École Centrale de Lyon,
LIRIS, CNRS UMR 5205,
36, Av. Guy de Collongue,

69134 Ecully, France.

Emmanuel Monfrini
SAMOVAR, Telecom Sudparis, CNRS,
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Abstract

Statistical smoothing in general non-linear non-Gaussian systems is a challenging problem. A new
smoothing method based on approximating the original system by a recent switching model has
been introduced. Such switching model allows fast and optimal smoothing. The new algorithm is
validated through an application on stochastic volatility and dynamic beta models. Simulation ex-
periments indicate its remarkable performances and low processing cost. In practice, the proposed
approach can overcome the limitations of particle smoothing methods and may apply where their
usage is discarded.
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Highlights

• Derivation of an exact statistical smoother for a sub-class of switching models;

• Any stationary dynamical system may be approximated by a switching one in which exact
smoothing is available;

• Numerical examples related to the stochastic volatility and dynamic beta models.
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1. Introduction

Let us consider two random sequences XN
1 = (X1, . . . ,XN) and YN

1 = (Y1, . . . ,YN). XN
1 are

hidden, while YN
1 are observable. For all n ∈ {1, . . . ,N}, Xn and Yn respectively take their values

in Ra and Rb.
We deal with computing E

[
Xn

∣∣∣yN
1

]
and E

[
XnXᵀ

n

∣∣∣yN
1

]
for all n ∈ {1, . . . ,N} and we propose a

method that applies when (XN
1 ,Y

N
1 ) is a general stationary hidden Markov model (HMM), which

can possibly be neither Gaussian nor linear. In fact, it works even in a more general framework
called pairwise Markov models (PMMs) for which p

(
xN

1 , y
N
1

)
is defined by p (x1, y1) and the re-

cursion
(Xn+1,Yn+1) = f (Xn,Yn,Wn+1) , (1)

where W1, . . . WN are appropriate independent variables. Fast exact filtering and smoothing are
generally not computationally feasible in such general models and various approximation methods
are used. Among them, the particle filters and smoothers [1, 2] are often used in practice [3, 4, 5].
However, they are particularly CPU intensive.

We remind that the distribution p
(
xn+1

n , yn+1
n

)
resulting from (1) do not depend on n because

the PMM is assumed to be stationary. Therefore, the whole distribution p
(
xN

1 , y
N
1

)
derives from

p
(
x2

1, y
2
1

)
.

Following [6, 7], we propose to approximate the latter distribution by a Gaussian mixture of
K2 components

p
(
x2

1, y
2
1

)
≈

∑
1≤i, j,≤K

ci j pi j(x2
1, y

2
1), (2)

knowing that such an approximation can be made under mild conditions and with an arbitrarily
high precision if K is sufficiently large. Let us interpret ci j as a discrete probability distribution of
pair (R1,R2) : ci j = p(R1 = i,R2 = j). Then p

(
x2

1, y
2
1

)
can be seen as a marginal distribution of

p
(
x2

1, r
2
1, y

2
1

)
= p

(
r2

1

)
p
(
x2

1, y
2
1

∣∣∣r2
1

)
, (3)

and p
(
x2

1, y
2
1

)
=

∑
1≤r1,r2,≤K p

(
r2

1

)
p
(
x2

1, y
2
1

∣∣∣r2
1

)
suggests to set, using (2), p

(
x2

1, y
2
1

∣∣∣r2
1 = (i, j)

)
=

pi j(x2
1, y

2
1).

Let RN
1 = (R1, . . . ,RN) be a stationary discrete random sequence, Rn taking its values in the

set of classes Ω = {1, . . . ,K}. We remind that (3) entirely defines the distribution of the stationary
Markov triplet TN

1 = (XN
1 ,R

N
1 ,Y

N
1 ). Now, exact filtering and smoothing are computable in partic-

ular stationary Markov triplet models called “stationary conditionally Gaussian observed Markov
switching models” (SCGOMSMs) (see e.g. [7, 8]). Indeed, SCGOMSMs are particular “condi-
tionally Markov switching models” (CMSHLMs) in which fast filtering is feasible [9], and we
show in the paper that fast smoothing also is. The interest of using (2) to approximate the general
model (1) has already been demonstrated for filtering (c.f. [10, 7]) and the aim of our paper is to
show its interest for smoothing.

How to find the approximation (2)? The core idea is to sample realizations using (1), consider
them as being produced by a SCGOMSM, and to use an “expectation-maximization” (EM) method
to estimate the SCGOMSM’s parameters. Indeed, considering SCGOMSM as a classic hidden
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Markov chain, with RN
1 = (R1, . . . ,RN) hidden and (XN

1 ,Y
N
1 ) observed, one can use the sample

obtained with (1) to estimate all SCGOMSM parameters with some general method like EM.
Our method was applied to three recent dynamical non-Gaussian systems. Reported experi-

ments results show its effectiveness.
Organization of the paper is the following. We show in Section 2 that fast exact smoothing is

feasible in the general CMSHLM model. We recall in Section 3 the SCGOMSM model, specifying
why it is a particular CMSHLM. SCGOMSM is then used as an approximation of (1), as specified
in Section 4. Some experimental results within the context of stochastic volatility [11, 12, 13,
14, 15, 16, 17, 18, 19] and the dynamic beta regression [20] are presented in Section 5. The last
Section exposes conclusions and perspectives.

2. Exact Smoothing in Conditionnaly Markov Switching Hidden Linear Models

This section is devoted to our original framework for filtering and smoothing.

Definition (“Model 1”). Let XN
1 , RN

1 and YN
1 be random sequences as specified above. The triplet

TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) is said to be a “Conditionally Markov switching hidden linear model” if it

verifies

TN
1 is Markov with p (rn+1, yn+1 |xn, rn, yn ) = p (rn+1, yn+1 |rn, yn ) ;

Xn+1 = Fn+1(Rn+1
n ,Yn+1

n )Xn + Gn+1(Rn+1
n ,Yn+1

n )Wn+1 + Hn+1(Rn+1
n ,Yn+1

n ),
(4)

with Fn+1(Rn+1
n ,Yn+1

n ), Gn+1(Rn+1
n ,Yn+1

n ) matrices of appropriate dimensions, WN
1 is a white noise

and Hn+1(Rn+1
n ,Yn+1

n ) vectors of appropriate dimension.

Figure 1 (a) presents the dependency graph of the Model 1.
We can state the following result, which is an achievement of our prior works:

Proposition 1. Let TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) be from the Model 1. Then, for each n = 1, . . . ,N,

E
[
Xn

∣∣∣yN
1

]
=

∑
rn

p
(
rn

∣∣∣yN
1

)
E

[
Xn

∣∣∣rn, yn
1

]
; (5)

E
[
XnXᵀ

n

∣∣∣yN
1

]
=

∑
rn

p
(
rn

∣∣∣yN
1

)
E

[
XnXᵀ

n

∣∣∣rn, yn
1

]
, (6)

both expectations being computable with a complexity linear in N.

Proof. Let us show (5) and (6). By hypothesis (4), for all n in {1, . . . ,N − 1}, the variables Xn

and Yn+1 are independent conditionally on (Rn,Yn) = (rn, yn). It follows that the variables Xn

and (RN
n+1,Y

N
n+1) are also independent conditionally on (Rn,Yn) = (rn, yn). Thus, p

(
xn

∣∣∣rn, yN
n

)
=

p (xn |rn, yn ). Since p
(
xn

∣∣∣yN
1

)
=

∑
rn

p
(
rn

∣∣∣yN
1

)
p
(
xn

∣∣∣rn, yN
1

)
, we have (5) and (6).

Let us show that the complexity is linear in N. Since for all n in {1, . . . ,N − 1},

E
[
Xn+1

∣∣∣rn+1, yn+1
1

]
=

∑
rn

p
(
rn

∣∣∣rn+1, yn+1
1

)(
Fn+1(rn+1

n , yn+1
n )E

[
Xn

∣∣∣rn, yn
1

]
+ Hn+1(rn+1

n , yn+1
n )

)
(7)
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and

E
[
Xn+1Xᵀ

n+1

∣∣∣rn+1, yn+1
1

]
=

∑
rn

p
(
rn

∣∣∣rn+1, yn+1
1

)(
Fn+1(rn+1

n , yn+1
n )E

[
XnXᵀ

n

∣∣∣rn, yn
1

]
Fᵀ

n+1(rn+1
n , yn+1

n )

+ Fn+1(rn+1
n , yn+1

n )E
[
Xn

∣∣∣rn, yn
1

]
Hᵀ

n+1(rn+1
n , yn+1

n ) + Hn+1(rn+1
n , yn+1

n )E
[
Xᵀ

n

∣∣∣rn, yn
1

]
Fᵀ

n+1(rn+1
n , yn+1

n )

+ Gn+1(rn+1
n , yn+1

n )Gᵀ
n+1(rn+1

n , yn+1
n ) + Hn+1(rn+1

n , yn+1
n )Hᵀ

n+1(rn+1
n , yn+1

n )
)
,

(8)
E

[
Xn

∣∣∣rn, yn
1

]
in (5) and E

[
XnXᵀ

n

∣∣∣rn, yn
1

]
in (6) can be computed recursively.

Besides, it follows from hypothesis (4) that VN
1 = (RN

1 ,Y
N
1 ) is Markovian. We can there-

fore calculate the needed probabilities p
(
rn

∣∣∣rn+1, yn+1
1

)
=

p(rn+1,yn+1 |rn,yn )p(rn|yn
1 )∑

r∗n

p
(
rn+1, yn+1

∣∣∣r∗n, yn

)
p
(
r∗n

∣∣∣yn
1

) since

p (rn+1, yn+1 |rn, yn ) are known and p
(
rn

∣∣∣yn
1

)
, p

(
rn

∣∣∣yN
1

)
can be computed by using the classical

“forward” and “backward” probabilities αn(rn) = p
(
rn, yn

1

)
, βn(rn) = p

(
yN

n+1 |vn

)
. More precisely,

we have:

α1(r1) = p (v1) ;

αn+1(rn+1) =
∑
rn∈Ω

αn(rn)p (vn+1 |vn ); (9)

βN(rN) = 1;

βn(rn) =
∑

rn+1∈Ω

βn+1(rn+1)p (vn+1 |vn ). (10)

Then
p
(
rn

∣∣∣yn
1

)
=

αn(rn)∑
r∗n∈Ω

αn(r∗n)
, (11)

and
p
(
rn

∣∣∣yN
1

)
=

αn(rn)βn(rn)∑
r∗n∈Ω

αn(r∗n)βn(r∗n)
. (12)

Remark 1. There is no particular assumption on the marginal distribution of WN
1 . Besides, ma-

trices Gn+1(Rn+1
n ,Yn+1

n ) are not necessary to compute the smoother; they are only necessary to
compute its variance.

Remark 2. The fact that the variables Xn and (RN
n+1,Y

N
n+1) are independent given (Rn,Yn) =

(rn, yn) could appear as somewhat limiting. However, this kind of assumptions is widespread.
For example, in the very classic hidden Markov chain (RN

1 ,Y
N
1 ) the variables Rn and Yn+1 are

independent conditionally on Rn+1 = rn+1, but they are not independent without this conditioning
and it is well known that YN

n+1 can bring a large deal of information about Rn.
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Remark 3. Let us consider a general stationary Markov triplet TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ). Its distribu-

tion is defined by p(x2
1, r

2
1, y

2
1), which is defined by the distribution p(r2

1, y
2
1) and the distributions

p(x2
1|r

2
1, y

2
1). In the Model 1, the distribution p(r2

1, y
2
1) can be of any kind; in particular, it can be

defined in a very general framework by using copulas [21]. In such a general context one may
obtain a Model 1 by taking p(x2

1|r
2
1, y

2
1) Gaussian such that p(x1|r2

1, y
2
1) = p(x1|r1, y1).

3. Stationnary Conditionnaly Gaussian Observed Markov Switching Models

Let us consider a stationary Model 1 TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) such that p(x2

1, y
2
1|r

2
1) (which is equal

to p(xn+1
n , yn+1

n |rn+1
n ) for all n in {1, . . . ,N − 1} by the stationarity assumption) is Gaussian. Let

Zn = (Xᵀ
n ,Yᵀ

n)ᵀ. Let us assume that the mean vectors and the covariance matrices of multivariate
normal distributions

p(x2
1, y

2
1|r

2
1) = N

(
(z1, z2) ;Υ(r2

1),Ξ(r2
1)
)

(13)

have a particular structure:

Υ(r2
1) =

[
E [Z1 |r1 ]
E [Z2 |r2 ]

]
=

[
M(r1)
M(r2)

]
(14)

Ξ(r2
1) =

[
S(r1) Σ(r2

1)
Σᵀ(r2

1) S(r2)

]
. (15)

Remark 4. According to (13) - (15) we may state that for all n in {1, . . . ,N − 1}, p (xn, yn |rn, rn+1 ) =

p (xn, yn |rn ), and thus p (rn+1 |xn, rn, yn ) = p (rn+1 |rn ). This ensures that in the subcase of the Model
1 we consider the chain RN

1 is Markovian.

Definition (“Model 2”). A stationary Model 1 TN
1 = (XN

1 ,R
N
1 ,Y

N
1 ) will be said “stationary condi-

tionally Gaussian observed Markov switching model” (SCGOMSMs, or Model 2) if it verifies (13)
- (15), and if it has the following property:

p
(
y2

∣∣∣x1, r2
1, y1

)
= p

(
y2

∣∣∣r2
1, y1

)
. (16)

Figure 1 (b) presents the dependency graph of the Model 2. In contrast with the dependency
graph of the Model 1, we have p (rn+1 |rn, yn ) = p (rn+1 |rn ), what removes the line between Yn and
Rn+1.

To apply the exact smoothing algorithm previously described to a Model 2 defined by (13)-
(15), let us remind the link among the matrices from equation (4), i.e. Fn+1(rn+1

n , yn+1
n ), Gn+1(rn+1

n , yn+1
n ),

Hn+1(rn+1
n , yn+1

n ), the Model 2 matrices Ξ(rn+1
n ), Υ(rn+1

n ), and the observed variables yN
1 . For each n

in {1, . . . ,N − 1} and rn+1
n in {1, . . . ,K}2, let

A(rn+1
n ) =Σᵀ(rn+1

n ) S−1(rn), (17)

Q(rn+1
n ) =S(rn+1) − Σᵀ(rn+1

n )S−1(rn)Σ(rn+1
n ) . (18)

Let us set:

Q(rn+1
n ) =

[
Q1(rn+1

n ) Q2(rn+1
n )

Q3(rn+1
n ) Q4(rn+1

n )

]
.
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X1 

Y1 

X2 X3 X4 

R4 

Y2 Y3 Y4 

n R1 

(a) Model 1

X1 

Y1 

X2 X3 X4 

R4 

Y2 Y3 Y4 

n R1 

(b) Model 2

Figure 1: Dependency graphs of Models 1 and 2. XN
1 , RN

1 and YN
1 are represented by blue, green and gray dots

respectively.

Since Q(rn+1
n ) is a positive-definite matrix, Q(rn+1

n ) = B(rn+1
n )Bᵀ(rn+1

n ), for some matrix B(rn+1
n ).

Thus, the discrete time process ZN
1 satisfies the following recursion equation

Zn+1 = A(Rn+1
n )(Zn −M(Rn)) + B(Rn+1

n )Wn+1 + M(rn+1),

where W1, . . . ,WN are independent standard Gaussian vectors. Condition (16) implies that the
matrix A(rn+1

n ) is of the form

A(rn+1
n ) =

[
A1(rn+1

n ) A2(rn+1
n )

0 A4(rn+1
n )

]
, (19)

with matrices A1(rn+1
n ) ∈ Ra×a, A2(rn+1

n ) ∈ Ra×b and A4(rn+1
n ) ∈ Rb×b. The distribution

p
(
xn+1, yn+1

∣∣∣xn, rn+1
n , yn

)
is then a multivariate normal probability density function with covariance matrix Q(rn+1

n ) and mean
vector

A(rn+1
n )

[
xn

yn

]
+

[
N1(rn+1

n )
N2(rn+1

n )

]
=

[
A1(rn+1

n )xn + A2(rn+1
n )yn + N1(rn+1

n )
A4(rn+1

n )yn + N2(rn+1
n )

]
,

where we set N1(rn+1
n ) = M1(rn+1) − A1(rn+1

n )M1(rn) − A2(rn+1
n )M2(rn) and N2(rn+1

n ) = M2(rn+1) −
A4(rn+1

n )M2(rn) with M1(rn) = E [Xn |rn ] and M2(rn) = E [Yn |rn ].
Using the classic Gaussian conditioning rule, the distribution p

(
xn+1, yn+1

∣∣∣xn, rn+1
n , yn

)
gives

then the distribution p
(
xn+1

∣∣∣xn, rn+1
n , yn+1

n

)
, which is a normal distribution with mean vector

Q2(rn+1
n )Q−1

4 (rn+1
n )(yn+1 − A4(rn+1

n )yn − N2(rn+1
n )) + A1(rn+1

n )xn + A2(rn+1
n )yn + N1(rn+1

n ),

and covariance matrix

Q1(rn+1
n ) −Q2(rn+1

n )Q−1
4 (rn+1

n )Q3(rn+1
n ). (20)
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Thus the corresponding matrices Fn+1(rn+1
n , yn+1

n ), Hn+1(rn+1
n , yn+1

n ) and Gn+1(rn+1
n , yn+1

n ), are:

Fn+1(rn+1
n , yn+1

n ) = A1(rn+1
n ); (21)

Hn+1(rn+1
n , yn+1

n ) = N1(rn+1
n ) + A2(rn+1

n )yn +

Q2(rn+1
n )Q−1

4 (rn+1
n )(yn+1 − A4(rn+1

n )yn − N2(rn+1
n )), (22)

Gn+1(rn+1
n , yn+1

n )GT
n+1(rn+1

n , yn+1
n ) = Q1(rn+1

n ) −Q2(rn+1
n )Q−1

4 (rn+1
n )Q3(rn+1

n ). (23)

They do not depend on n due to the stationarity assumption.
We can therefore make use of Proposition 1 to set up a fast exact smoother for Model 2.

Remark 5. One can use Model 2 as an alternative to the classic “conditionally Gaussian linear
state-space models” (CGLSSMs), in which fast Bayesian smoothing is not computationally feasi-
ble [22]. More precisely, any stationary CGLSSM is given by p(r2

1), p(x2
1|r

2
1) and p(y1|r1). If these

distributions are the only information about some physical system, then a Model 2 can capture
them as well [23]. Specifically, p(r2

1), p(x2
1|r

2
1) and p(y2

1|r
2
1) would be the same in CGLSSM and

Model 2, and only p(x2, y1|r2
1) would differ. Of course, by the stationarity assumption, the last

statement remains valid if we replace, for all n in {1, . . . ,N − 1}, 1 by n and 2 by n + 1.

4. Approximating non-linear non-Gaussian Models

Since we have shown the computational interest of approximating the process (1) by a Model
2 in order to run an efficient smoothing procedure, we should now explain how to obtain an ap-
proximation (2). In other words, how can we find the parameters

(
ci j,Υi j,Ξi j

)
1≤i, j≤K

, for a given
K. To this end, our method requires to be able to simulate realizations of the PMM process (1) in
order to generate a training sample (x′M1 , y′M1 ) to learn the parameters of the Model 2. In practice,
the feasibility of a random sampling within the PMM framework is not a restrictive assumption,
e.g. in the case of (1), it would be enough to be able to sample WN

1 .
Regarding the time consumed during parameters’ inference, the number of parameters of the

Gaussian mixture increases quadratically with K. Specifically, we have K mean vectors M(i) ∈
R(a+b), K variance matrices S(i) ∈ R(a+b)×(a+b), K2 cross-covariance matrices Σ(i, j) ∈ R(a+b)×(a+b)

and
(
K2 − 1

)
mixture weight scalars ci j.

The complexity of the smoothing procedure is also quadratic in K. Hence, the value of K trades
off between quality and time burden. However, we show in next Section that a good smoothing
performance is achievable with low values of K, namely four or five.

We suggest to use a variant of the EM algorithm described in [7] to achieve the inference.
The EM algorithm usually performs well in conditionally Gaussian switching models. The idea
proposed in [10] is to consider an artificial sample (x′M1 , y′M1 ) generated by the model (1) and
then to consider it as a sample issued from a Model 2

(
XN

1 ,R
N
1 ,Y

N
1

)
, which is then considered

as a hidden Markov chain with latent RN
1 . The EM algorithm is a great way to estimate the

parameters of interest
(
ci j,Υi j,Ξi j

)
1≤i, j≤K

, however any alternative parameter estimation scheme
may be used instead. Besides, for practical purposes, our original EM implementation proposed
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in [7] estimates directly A(rn+1
n ), Q(rn+1

n ), F(rn+1
n ), H(rn+1

n ) and G(rn+1
n ) for each value of pair rn+1

n

instead of
(
ci j,Υi j,Ξi j

)
1≤i, j≤K

.
Let us sum up our new smoothing method by the following algorithm, which thus contains two

stages: parameter estimation (or identification of the Model 2) stage, and smoothing stage. Let us
insist on the fact that Model 2 identification stage is independent from the data to be smoothed and
depends only on the general model (1).

Algorithm 1. Model 2 smoothing algorithm

• Given model (1), Model 2 identification stage:

1. Simulate a training sample (x′M1 , y′M1 ) within the PMM (1) framework;
2. Apply the EM algorithm to (x′M1 , y′M1 ) in order to estimate parameters A(rn+1

n ), Q(rn+1
n ),

F(rn+1
n ), H(rn+1

n ) and G(rn+1
n ) for each value of pair rn+1

n ;

• Given input data yN
1 , smoothing stage:

1. Compute recursively p
(
rn

∣∣∣yn
1

)
, E

[
Xn

∣∣∣rn, yn
1

]
, and E

[
XnXT

n

∣∣∣rn, yn
1

]
using (11), (7), (8);

2. Compute ∀n ∈ {1, . . . ,N}, p
(
rn

∣∣∣yN
1

)
using (12);

3. Compute the smoothed output using (5) and (6).

Remark 6. From Section 3 (see also [7]), we know that the Model 2 may be alternatively repre-
sented as:

Yn+1 = D(rn+1
n )Yn + H(rn+1

n ) + Λ(rn+1
n )Vn+1;

Xn+1 = A(rn+1
n )Xn + B(rn+1

n )Yn + C(rn+1
n )Yn+1 + F(rn+1

n ) +Π(rn+1
n )Un+1,

for some parameters D(rn+1
n ), H(rn+1

n ), Λ(rn+1
n ), A(rn+1

n ), B(rn+1
n ), C(rn+1

n ), F(rn+1
n ), Π(rn+1

n ) and
standard Gaussian vectors U1,V1, . . . ,UN ,VN . In fact, the EM algorithm in [7] estimates a par-
ticular autoregression coefficients for the pair (XN

1 ,Y
N
1 ) in the Markov-switching context. Thus, the

structure imposed by the Model 2 does not result in any difficulties in the M-step of the algorithm,
and we still obtain updates in closed form.

Remark 7. The Model 2 identification stage is the most time-consuming one since the number of
elementary operations is proportional to M × Q × K2 where Q is the number of iterations of EM.
However, these operations do not require the real-world flow yN

1 and they can be accomplished in
advance. The smoothing stage has a complexity linear in N and thus is very fast.

A Matlab implementation of our smoothing algorithm is downloadable at http://www-public.
it-sudparis.eu/~igorynin/SCGOMSMs). An implementation of the corresponding EM algo-
rithm is also available.

5. Experiments

In this Section, we consider three sets of experiments related to the smoothing in various non-
linear non-Gaussian systems.
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5.1. Dynamic beta models
The dynamic beta regression allows modeling monthly unemployment rate [20]. More pre-

cisely, let Yn be the unemployment rate at time n, the dynamic beta model for Yn is (c.f. [24]):

Yn ∼ Beta
(

1
c(1 + exp(Xn))

,
exp(Xn)

c(1 + exp(Xn))

)
;

Xn+1 = µ + φ(Xn − µ) + σUn+1,

(25)

where µ, φ, σ and c are fixed and U1, . . . ,UN are independent standard Gaussian vectors. We recall
that for two positives reals α and β, Beta(α, β) denotes the beta distribution:

Beta(x;α, β) =

 xα−1(1−x)β−1Γ(α+β)
Γ(α)Γ(β) if x ∈ [0, 1]

0 otherwise
, (26)

where Γ denotes the Gamma function Γ(x) =
∞∫
0

tx−1 exp(−t)dt.

If |φ| < 1 and X1 ∼ N(µ, σ2

1−φ2 ), then the autoregressive process of X1, . . . ,XN is stationary
c.f. [25], as well as (X1Y1), . . . , (XN ,YN). Therefore, we define σ0 = σ√

1−φ2
.

The conditional distribution of Yn is generally skewed. Besides, we have:

E [Yn |Xn ] =
1

1 + exp(Xn)
; (27)

Var [Yn |Xn ] =
exp(Xn)

(1 + exp(Xn))2

(
1 −

1
c + 1

)
, (28)

which means that one can see c as a “noise level” of the observation of Xn made through Yn. When
c = 0, Yn is a deterministic bijective function of Xn, and when c tends to infinity, the conditional
variance of Yn tends to its maximum. See Figure 2 for an illustration.

The parameter φ is the lag-one autocorrelation of the latent process.
The dynamic beta regression is a particular case of the dynamic generalized linear model [24,

26], where the latent process is Gaussian autoregressive and the observational distribution belongs
to the exponential family.

The state estimation in model (25) is an established part of econometric and social analyses.
We calibrated this model to a real-world data1. The rounded values of the parameters are µ =

−2.82, φ = 0.95, σ0 = 0.17 and c = 0.005. In order to test the robustness of Model 2 smoothing
algorithm in the case of model (25), we consider estimating X1, . . . ,XN from Y1, . . . ,YN when
observed variables arise from (25) for various values of c and φ.

We use our method with different number of states K to estimate the latent variables from
the N = 1000 observable ones, and we report our results in terms of relative mean square error

1United States monthly unemployment rate from March 2002 to December 2015, available from the Bureau of
Labor Statistics at http://data.bls.gov/timeseries/LNS14000000
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Figure 2: Distribution of Yn given xn = −2.82, for different values of the “noise level” c. The vertical red line locates
the common mean of both distributions.

(RMSE) for the mean of 100 independent experiments. The RMSE is relative to the variance of
the marginal distribution of Xn which is σ2

0. The results are in Table 1.
The dimensions of the latent variables and the observable ones are a = b = 1, the training

sample size is M = 20000, and Q = 100 is the number of EM iterations. For comparison pur-
pose, a similar outcome using a particle smoother (PS) and particle filter (PF) with m = 1500
particles (c.f. [3, 4, 5]) is also given. We use a fixed-lag particle smoother [27], which computes
E

[
Xn

∣∣∣Yn+T
1

]
for T = 5. We find out that using greater values of T needs more particles to cope

with the degeneracy phenomenon, but does not change the RMSE value. We thus consider that
E

[
Xn

∣∣∣Yn+T
1

]
is a good approximation of E

[
Xn

∣∣∣YN
1

]
.

We observe that for moderate values of K (e.g., K = 5), the accuracy of the Model 2 smoother
is satisfactory. When the latent process is highly persistent (φ close to 1) and when the “noise level”
c is significant, one needs a greater number of states to estimate the latent process accurately.

Remark 8. The complexity of the particle smoother is N × m × T while the complexity of our
method is N × K2. In practice, the computation time of our method is quite the same as the one
consumed by a particle smoother using K2 particles, which is rather a small number of particles.
As a consequence, one may use a large value of K if needed.
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Table 1: The RMSE of smoothing in model (25) with µ = −2.82, σ0 = 0.17 and four different values of lag-one
autocorrelation φ and noise level c coefficients. The RMSE values for asymptotically optimal particle filter (PF) and
particle smoother (PS) are present as a reference.

K

φ c 2 3 5 7 PS PF

1 0.95 0.005 0.38 0.32 0.31 0.29 0.29 0.41
2 0.95 0.01 0.54 0.43 0.39 0.38 0.38 0.50
3 0.99 0.005 0.40 0.21 0.16 0.16 0.16 0.22
4 0.99 0.01 0.42 0.37 0.31 0.24 0.23 0.28

5.2. Asymmetric stochastic volatility (ASV) model
The Model 2 smoothing algorithm has been successfully applied (c.f. [6]) in the context of the

classic Stochastic Volatility (SV) model (see [11, 12]) which is the root of more advanced models.
The classic SV model assumes that the stock log-return process evolves according to

Yn+1 = β exp (Xn+1/2)Vn+1, (29)

with the log-variance process verifying

Xn+1 = µ + φ(Xn − µ) + σUn+1, (30)

where µ, φ, σ and β are fixed and U1,V1, . . . ,UN ,VN are independent standard Gaussian vectors.
The SV model is thus a hidden Markov model, specified by a state equation and a measurement
equation

Xn+1 = g(Xn,Un+1) and Yn+1 = h(Xn+1,Vn+1), (31)

which is a particular case of (1).
In the asymmetric stochastic volatility (ASV) model (see [14, 15, 16]), we have:

Xn+1 = µ + φ(Xn − µ) + σ (ρVn + λUn+1) ; (32)
Yn+1 = β exp (Xn+1/2)Vn+1, (33)

where µ, φ, σ, λ, ρ and β are fixed and U1,V1, . . . ,UN ,VN are independent standard Gaussian vec-
tors. Since p (xn+1 |xn, yn ) , p (xn+1 |xn ), ASV model is not of the form (31) and thus is not a
classic HMM. However, (1) is still verified and it is possible to generate a training sample which
is required by our method. The results are presented in Table 2, on the same methodology basis as
previously.

5.3. Markov-switching stochastic volatility (MSSV) model
The Markov switching stochastic volatility (MSSV) model (see [17, 18, 19]) reads as follows:

Xn+1 = γ1 +

q∑
j=2

γ j1l[ j;+∞] (Sn+1) + φXn + σUn+1; (34)

Yn+1 = exp (Xn+1/2)Vn+1, (35)
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Table 2: The MSE of smoothing in the ASV model with µ = 0.5, β = 0.5, φ = 0.5 and five different values of λ2 and
ρ such that λ2 + ρ2 = 1 for a unitary unconditional variance of x.

K

ρ λ2 2 3 5 7 PS

1 -0.90 0.19 0.23 0.21 0.20 0.20 0.19
2 -0.80 0.36 0.36 0.34 0.32 0.32 0.32
3 -0.50 0.75 0.57 0.55 0.55 0.55 0.54
4 -0.30 0.91 0.65 0.63 0.62 0.62 0.62
5 -0.00 1.00 0.70 0.67 0.66 0.66 0.66

Table 3: MSE of smoothing in the MSSV model with k = 2, γ1 = −5.0, γ2 = −3.0, σ2 = 0.1, φ = 0.5 and three
different values of p11 and p22.

K

p11 p22 2 3 5 7 PS SPS

1 0.99 0.985 0.02 0.02 0.02 0.02 0.66 0.02
2 0.85 0.25 0.71 0.38 0.38 0.38 0.75 0.38
3 0.5 0.5 0.45 0.42 0.42 0 42 0.82 0.42

where 1lA(.) is the indicator function of the set A, SN
1 is a stationary discrete Markov chain with

q states, p
(
sn+1

∣∣∣xn
1, y

n
1, s

n
1

)
= p (sn+1 |sn ) and γ1, . . . , γq, φ, σ are fixed and U1,V1, . . . ,UN ,VN are

independent standard Gaussian vectors. Following the simulation study in [19], we set q = 2,
p11 = p (sn+1 = 1 |sn = 1) and p22 = p (sn+1 = 2 |sn = 2). As a random sampling is straightforward
within the framework of MSSV [17], our smoothing algorithm remains applicable. Table 3 shows
its results for the MSSV parameters given in [19].

Since PS (for which (34) is approximated by (30) identifying respective ergodic means of Xn)
fails for MSSV model, we propose to compare our method to a switching variant, SPS, of PS
which also computes E

[
Xn

∣∣∣Yn+T
1

]
for T = 5 with m = 1500 particles (c.f. [19]).

In all cases, we note that if K is large enough, the smoothed output of our method is as good
as the statistically optimal one, produced by the PS (or SPS). Our smoothing procedure is riskless
from the weight degeneracy phenomenon frequently encountered in particle methods (see [1, 2])
and seems to be robust even in the case of the switching models.

6. Conclusion

We presented a new method to estimate the latent variables in non-linear and non-Gaussian
systems. Our method is very general, works under slight conditions and produces an outcome
quite close to the optimal one, as illustrated in our experiments. Once the Model 2 is identified,
our smoothing procedure is as fast as the classic Kalman smoothing in Gaussian systems.
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To conclude, let us mention two perspectives. The first one is to consider different and more
complex stochastic volatility models [5, 14, 15, 16]; the second one is to consider more advanced
families of switching models allowing fast exact smoothing.
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[1] O. Cappé, E. Moulines, T. Rydén, Inference in Hidden Markov Models, Springer-Verlag, 2005.
[2] A. Doucet, A. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, Eds. London, U.K.,

Oxford Univ. Press, 2011.
[3] D. Duffie, J. Pan, K. J. Singleton, Transform analysis and asset pricing for affine jump diffusions, Econometrica

68 (6) (2000) 1343–1376.
[4] B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, The Journal

of Finance 59 (2004) 1367–1404.
[5] C.-J. Kim, C. R. Nelson, State-space models with regime switching, MIT Press, 1999.
[6] I. Gorynin, S. Derrode, E. Monfrini, W. Pieczynski, Exact fast smoothing in switching models with application

to stochastic volatility model, in: Proc. of the EUSIPCO’15, Nice, France, 924–928, 2015.
[7] I. Gorynin, S. Derrode, E. Monfrini, W. Pieczynski, Fast filtering in switching approximations of nonlinear

Markov systems with applications to stochastic volatility, IEEE Transactions on Automatic Control 62 (2) (2017)
853–862.

[8] N. Abbassi, D. Benboudjema, S. Derrode, W. Pieczynski, Optimal filter approximations in conditionally Gaus-
sian pairwise Markov switching models, IEEE Transactions on Automatic Control 60 (4) (2015) 1104 – 1109.

[9] W. Pieczynski, Exact filtering in conditionally Markov switching hidden linear models, Comptes Rendus
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