Skeleton-Based Dynamic Hand Gesture Recognition
Résumé
In this paper, a new skeleton-based approach is proposed for 3D hand gesture recognition. Specifically, we exploit the geometric shape of the hand to extract an effective de-scriptor from hand skeleton connected joints returned by the Intel RealSense depth camera. Each descriptor is then encoded by a Fisher Vector representation obtained using a Gaussian Mixture Model. A multi-level representation of Fisher Vectors and other skeleton-based geometric features is guaranteed by a temporal pyramid to obtain the final feature vector, used later to achieve the classification by a linear SVM classifier. The proposed approach is evaluated on a challenging hand gesture dataset containing 14 gestures, performed by 20 participants performing the same gesture with two different numbers of fingers. Experimental results show that our skeleton-based approach consistently achieves superior performance over a depth-based approach.
Origine | Fichiers produits par l'(les) auteur(s) |
---|