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Abstract

In this paper, a new skeleton-based approach is proposed
for 3D hand gesture recognition. Specifically, we exploit
the geometric shape of the hand to extract an effective de-
scriptor from hand skeleton connected joints returned by the
Intel RealSense depth camera. Each descriptor is then en-
coded by a Fisher Vector representation obtained using a
Gaussian Mixture Model. A multi-level representation of
Fisher Vectors and other skeleton-based geometric features
is guaranteed by a temporal pyramid to obtain the final fea-
ture vector, used later to achieve the classification by a lin-
ear SVM classifier.

The proposed approach is evaluated on a challenging
hand gesture dataset containing 14 gestures, performed by
20 participants performing the same gesture with two dif-
ferent numbers of fingers. Experimental results show that
our skeleton-based approach consistently achieves superior
performance over a depth-based approach.

1. Introduction
Among other human body parts, the hand is the most

effective interaction tool in mostly Human-Computer Inter-
action (HCI) applications. To date, the most reliable tools
used to capture the hand gesture are motion capture mag-
netic devices, which employ sensors attached to a glove able
to determine precisely the hand gesture, delivering real-time
measurements of the hand. However, they present several
drawbacks in terms of the naturalness of hand gesture, price,
in addition to their complex calibration setup process.

Recently, thanks to the advence in information technolo-
gies, effective and inexpensive depth sensors, like Microsoft
Kinect or Intel RealSense, are increasingly used in the do-
main of computer vision. The development of theses sen-
sors has brought new opportunities for the hand gesture
recognition area. Compared to 2D cameras, these sensors
are more robust concerning common low-level issues in
RGB imagery like background subtraction and light vari-
ation.

Hand gesture recognition is becoming a central key for

different types of application such as virtual game con-
trol, sign language recognition, human computer interac-
tion, robot control, etc. Consequently, the improvements in
hand gesture interpretation can benefit a wide area of re-
search domains. In this paper, we present a novel hand ges-
ture recognition solution, where the main advantage of our
approach is the use of 3D skeleton-based features. We also
contribute to the community with a new depth and skeleton-
based dynamic hand gesture dataset. The rest of this paper
is structured as follows. Related work on hand gesture in
terms of datasets and recognition approaches are briefly re-
viewed in Section 2. In Section 3, we provide details on our
dynamic hand gesture dataset. Our recognition approach is
described in Section 4. The experimental results are pre-
sented in Section 5 before concluding.

2. Related work
Hand gesture recognition has been an active research

field for the past 20 years, where various different ap-
proaches have been proposed. Over the past six years, ad-
vances in commercial 3D depth sensors have substantially
promoted the search of hand gesture detection and recog-
nition. The most of recent works in human motion analysis
pay more attention to the full-body human poses and actions
[?, 22]. Some other works have focused on the movements
of certain body parts like hands [18]. The approaches re-
viewed mainly focus on 3D hand gesture recognition, which
can be gathered into two main categories so far: static and
dynamic hand gesture recognition.

In most of the static approaches, 3D depth information
can be used to extract hand silhouettes or simply hand ar-
eas and the focus will be on the feature extraction from
segmented hand region. Features are usually based on a
global information as proposed by Kuznetsova et al. [8],
where an ensemble of histograms is computed on random
points in the hand point cloud. Other local descriptors are
expressed as the distribution of points in the divided hand
region into cells [25]. Instead of using the distribution of
points in the region of the hand, Ren et al. [18] represented
the hand shape as time-series curve and used distance met-
ric called Finger-Earth Mover Distance to distinguish hand
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gestures from collected dataset of 10 different gestures. The
time-series curve representation is also used by Cheng et
al. [2], to generate a fingerlet ensemble representing the
hand gesture. Sign language recognition with hand ges-
tures has been widely investigated. Pugeault and Bowden
[17] proposed a method using Gabor filter for hand shape
representation and a Random Forest for gesture classifica-
tion. They applied their method on a collected ASL Finger
Spelling dataset, containing 48000 samples of RGB-D im-
ages labelled following 24 static gestures of the American
Sign Language. Recently, Dong et al. [3] outperformed
the previous results on this database by going more deeply
into the hand representation. They proposed a hierarchical
mode-seeking method to localize hand joint positions un-
der kinematic constraints, segmenting the hand region into
11 natural parts (one for the palm and two for each finger).
A Random Forest classifier is then built to recognize ASL
signs using a feature vector of joint angles. Finally, Marin
et al. [10] released a publicly database of 10 static hand ges-
tures giving the depth image from a Kinect but also informa-
tion about the hand using the hand pose recognition device
LeapMotion. They also proposed a classification algorithm
using fingertips distances, angles and elevations and also
curvature and correlation features on the depth map.

Unlike the static approaches based on hand description
on a single image, dynamic methods exploit the tempo-
ral character of hand motion, by considering the gesture
as a sequence of hand shape. Kurakin et al. [7] presented
the MSR-3D hand gesture database containing 12 dynamic
American Sign Language. They recorded 360 sequences of
depth images from a Kinect. Their recognition algorithm is
based on a hand depth cell occupancy and a silhouette de-
scriptor. They used an action graph to represent the dynamic
part of the gesture. Recently, using a histogram of 3D facets
to encode 3D hand shape information from depth maps,
Zhang et al. [27] outperformed last results on the MSR 3D
gesture dataset using a dynamic programming-based tem-
poral segmentation. One of the track of the Chalearn 2014
[4] consists in using a multimodal database of 4,000 ges-
tures drawn from a vocabulary of 20 dynamic Italian sign
gesture categories. They provided sequences of depth im-
ages of the whole human body and body skeletons. On this
database, Monnier et al. [12] employ both body skeleton-
based and Histogram of Oriented Gradients (HOG) features
on the depth around the hand to perform a gesture classi-
fication using a boosted cascade classifier. Recently, the
use of deep learning has changed the paradigm of many re-
search fields in computer vision. Recognition algorithms
using specific neural network — like Convolutional Neural
Network (ConvNet) – obtain previously unattainable perfor-
mance in many research field. Still on the Chalearn 2014
[4], Neverova et al. [13] used stacked ConvNets on raw
intensity and depth sequences around the hand and neural

network on body skeletons. In order to study real-time hand
gesture recognition for automotive interfaces, Ohn-Bar and
Trivedi [14] made a publicly available database of 19 ges-
tures performed in a car using the Kinect. The initial res-
olution obtained by such a sensor is 640x480 and the final
region of interest is 115x250. Moreover, at some distance
from the camera, with the illumination varying in the car,
the resulting depth is very noisy, making the challenge of
gesture recognition thougher. They compare the accuracy
of gestures recognition using several known features (HOG,
HOG3D, HOG2). Using stacked 3D ConvNets combining
multiple spatial scales, Molchanov et al. [11] recently out-
performed their results.

In contrast to activity and action recognition, we can no-
tice from this brief review a lack of publicly available dy-
namic hand gesture datasets for benchmarking and compar-
ing methods for hand gesture recognition. Even for existing
ones, there is no available dataset that provides both depth
and 3D joint hand with ground-truth. In term of recogni-
tion approaches, there would still appear to be room for im-
provement, especially using recent approaches of hand pose
estimation [24].

3. Dynamic Hand Gesture dataset (DHG-
14/28)

Skeleton-based action recognition approaches have be-
come popular as Shotton et al. [21] proposed a real-time
method to accurately predict the 3-D positions of body
joints from depth images. Hence, several descriptors in
the literature proved how the position, motion, and orien-
tation of joints could be excellent descriptors for human ac-
tions. Collected datasets for action recognition purpose like
[26, 9] provide usually the depth data in addition to the 3D
body skeleton of the person performing the action. How-
ever, in the context of hand gesture recognition, there are no
publicly released dataset of dynamic hand gestures provid-
ing sequences of labelled hand gestures with the depth and
hand skeleton. We present below a Dynamic Hand Gesture
14-28 (DHG) dataset, which provides sequences of hand
skeleton in addition to the depth image. Such a dataset will
facilitate the analysis of hand gestures and open new scien-
tific axes to consider1.

3.1. Overview and protocol

The DHG-14/28 dataset contains 14 gestures performed
in two ways: using one finger and the whole hand (an exam-
ple is shown in Figure 1). Each gesture is performed 5 times
by 20 participants in 2 ways, resulting in 2800 sequences.
Sequences are labelled following their gesture, the number
of fingers used, the performer and the trial. Each frame con-
tains a depth image, the coordinates of 22 joints both in the

1Downloadable at: http://www-rech.telecom-lille.fr/DHGdataset
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Figure 1. Two images of a hand illustrating Grab gesture per-
formed (a) with one finger and (b) with the whole hand.

2D depth image space and in the 3D world space forming
a full hand skeleton. The Intel RealSense short range depth
camera is used to collect our dataset. The depth images and
hand skeletons were captured at 30 frames per second, with
a 640x480 resolution of the depth image. The length of
sample gestures ranges goes from 20 to 50 frames.

Fothergill et al. [6] investigated the problem of the most
appropriate semiotic modalities of instructions for convey-
ing to performers the movements the system developer
needs to perform. They found out that a gesture recogni-
tion algorithm not only must need examples of desired ges-
tures but also in order to cope with a wide array of users,
the dataset must include common desired variants of the
gestures. To achieve a good correctness in our dataset, we
use 2 semiotic modalities to explain what we waited from
our performers. First, the register explains in an abstractive
way the gesture (example for a swipe gesture with one fin-
ger: “You’re going to mime a swipe in the air with only one
finger”), then we were showing them a video of someone
performing the gesture.

In terms of hand pose estimation, much attention has
been received over the last two years in the computer vi-
sion community [24, 20]. The Software Development Kit
(SDK) released for Intel RealSense F200 provides a full 3D
skeleton of the hand corresponding to 22 joints labelled as
shown in Figure 2. However, the sensor still has trouble
to properly recognize the skeleton when the hand is closed,
perpendicular to the camera, without a well initialization or
when the user performs a quick gesture. Our participants
are asked to start each sequence by one or two seconds of
the hand well opened in front of the camera. This may be
necessary for some state-of-the-art hand pose estimation al-
gorithms requiring an initialization, which can be tested on
our depth sequences. For those who do not need initialisa-
tion, we manually labelled the effective beginning and end
of each gesture sequence.

3.2. DHG-14/28 challenges

The list of our gestures proposed can be found in Table
1. Most of them have been chosen to be close to the state-

Figure 2. Depth and hand skeleton of the DHG-14/28 dataset. The
22 joints of the hand skeleton returned by the Intel RealSense cam-
era. The joints include: 1 for the center of the palm, 1 for the po-
sition of the wrist and 4 joints for each finger represent the tip, the
2 articulations and the base. All joints are represented in R3.

of-the-art, like the VIVA challenges dataset [14]. Never-
theless, we removed the differentiation between normal and
scroll swipe as you can find it in our number-of-fingers ap-
proach. The same thing appears with the pair of gesture
Pinch/Expand and Open/Close. In addition, we supplement
this base with the gesture Grab because of its usefulness in
the augmented reality applications, but also for its scientific
challenges related to the high potentially variation among
performers. We also add the gesture Shake, as it can be in-
teresting for recognition algorithm to be able to differentiate
gesture composed of other gestures (a shake gesture can be
seen as a repetition of opposed swipe gestures).

We emphasized our main challenges compared to ex-
isting hand gesture datasets: (1) Study the dynamic hand
gesture recognition using depth and full hand skeleton; (2)
Evaluate the effectiveness of recognition process in terms
of coverage of the hand shape depending on the number of
fingers used. The same movement is performed with one or
more fingers, and the sequence are labelled according to 28
label classes, depending on the gesture represented and the
number of fingers used; (3) Make distinctions between both
fine-grained and coarse-grained gestures. Indeed, dividing
the gesture sequences in two categories: coarse and fine ges-
ture sequences contribute to increasing difficulty facing the
recognition algorithm. Gesture categories are given in Table
1.

4. Feature extraction from 3D skeleton

In order to represent a hand gesture entirely, we pro-
pose to mainly capture the hand shape variation based on
skeleton joints, but also the movement and the rotation of
the hand in space are also computed. The temporal nature
of gestures is encoded using a temporal pyramid and the
classification process is performed by a linear Support Vec-
tor Machines (SVM) classifier. Figure 3 shows a general
overview of the proposed approach.
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Gesture Labelization Tag name
Grab Fine G
Expand Fine E
Pinch Fine P
Rotation CW Fine R-CW
Rotation CCW Fine R-CCW
Tap Coarse T
Swipe Right Coarse S-R
Swipe Left Coarse S-L
Swipe Up Coarse S-U
Swipe Down Coarse S-D
Swipe X Coarse S-X
Swipe V Coarse S-V
Swipe + Coarse S-+
Shake Coarse Sh

Table 1. List of the gestures included in the DHG-14/28 dataset.

Figure 3. Pipeline of our gesture recognition system. A fisher vec-
tor representation is computed from our SoCJ descriptor. The later
is concatenate with histograms of the hand direction and the wrist
orientation. A temporal pyramid is used to take into account the
temporal information and a linear SVM is used for classification.

4.1. Shape of Connected Joints (SoCJ)

To represent the hand shape using a full skeleton, we
propose a new descriptor based on several relevant sets of
joints, denoted as Shape Of Connected Joints (SoCJ).

Hand skeleton returned from sensor consists of 3D coor-
dinates of hand joints, represented in the camera coordinate
system. Therefore, they vary with the rotation and trans-
lation of the hand with respect to the camera. To make
our hand shape descriptor relatively invariant to hand ge-
ometric transformations, we normalize it following 2 steps.
Firstly, we removed the difference of hand size between per-
formers, by estimating the average size of each bone of the
hand skeleton. Then, carefully keeping the angles between
bones, we change their sizes by their mean found previ-
ously. Secondly, we create a fake hand Hf which is open
and in front of the camera with its palm node at [0 0 0]. Let

Figure 4. An example of the SoCJ descriptor. A 5-tuples is
constructed using the thumb joints, T = {x1, x2, x3, x4, x5}
where xi ∈ R3. We compute the displacements from points
to their respective right neighbor resulting in the SoCJ vector{
~d1, ~d2, ~d3, ~d4

}
.

Bf be a set of 2 vectors ∈ R3 defined by the coordinates
in Hf of the vectors going from the palm node and respec-
tively to the wrist node and to the base of the thumb. For
each hand in a sequence, we create the same set of vectors
Bc and we compute the optimal translation and rotation us-
ing a Singular Value Decomposition from Bc to Bf . Once
the optimal translation and rotation are found, we apply this
transformation to all joints of the hand skeleton resulting of
a skeleton centered around [0 0 0] and its palm facing the
camera.

To describe the hand shape, we use nine 5-tuples of joints
according to the hand physical structure on which we will
perform our SoCJ descriptor. Five of these 5-tuples are con-
structed with the 4 joints of each finger plus the palm one.
The 4 remaining concern the 5 tips, the 5 first articulations,
the 5 second articulations and the 5 bases. Notice that the
points of each tuple follow the same order.

Let Tj = {x1, x2, x3, x4, x5} be a 5-tuple and xi a point
in R3 representing one particular joint coordinate. To rep-
resent the shape of the joint connections, we compute the
displacement from one point to its right neighbor:

SoCJ(Tj) = {xi+1 − xi}[i=1...4] (1)

This results in a descriptor in R12. We compute our 9 SoCJs
on each frame and regroup them along the sequence result-
ing in a set Tseq = {Tj}[1≤j≤9N ] where N is the number
of frame in the sequence. Figure 4 shows an example of a
particular SoCJ around a thumb.

4.2. Fisher Vector representation

Fisher Vector (FV) coding method was firstly proposed
for large-scale image classification. It can be considered as
an extension of the Bag-Of-Word (BOW) method by go-
ing beyond count analysis. It encodes additional informa-
tion about the distribution of the descriptors. Its superiority
against BOW has been analysed in the image classification
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[19]. It also has been used over the past years in action
recognition [5, 15].

The FV consists of fitting K parametric models to the
descriptor and then encoding the derivative of each log-
likelihood of the models with respect to their parameters.
The common way to obtain such models is to train a K-
component Gaussian Mixture Model (GMM). We denote
the parameters of a GMM by λ = {πk, µk, σk}[1≤k≤K]

where πk, µk, σk are respectively the prior weight, mean
and covariance of the Gaussian k. After the training pro-
cess, we are able to model any new sequence represented
by its set of SoCJ, Tseq , as follow:

p(Tseq|λ) =

9N∏
j=1

K∑
k=1

πkp(Tj |λk) (2)

Once we have the set of Gaussian Models, we can compute
our FV, which is given by the gradient of the formula of Eq.
(2):

GTseq

λ =
1

9N
∇λ log p(Tseq|λ) (3)

The normalization term 1
9N avoids dependency related to

the size of Tseq . The derivatives in Eq. (3) are computed
separately with respect to mean and standard deviation pa-
rameters, leading to the final Fisher Vector :

Φ(Tseq) = {GTseq
µk

,GTseq
σk
}[1≤k≤K] (4)

Where GTseq
µk and GTseq

σk have the same size as the de-
scriptor used to train the GMM. We also normalize the final
vector with a l2 and power normalization to eliminates the
sparseness of the FV and increase its discriminability. We
refer the reader Sanchez et al. [16] for more details.

We noticed that the final size of a Fisher Vector is 2dK
where d is the size of the descriptor and K the number of
cluster in the classification process. It can be a strong dis-
advantage against BOW, which has a size of K, when ap-
plying on a long descriptor.

4.3. Other relevant features

We chose to characterize the different aspects of the hand
movement independently. To this end, before normalizing
the hand in order to extract its shape information, we com-
puted two other descriptors:

Histogram of hand directions (HoHD): Some gestures
are defined practically only by the way the hand moves into
space (e.g. swipes). To take this information into account,
we first computed a direction vector using the position of
the palm node noted xpalm along the sequence.

d(S) = {xtpalm − xpalmt− L}[L+1≤i≤N ]

where N is the size of the sequence and L a constant cho-
sen by experiment. As the amplitude of the movement

Figure 5. Computing of histogram of hand direction: (a) an ex-
ample of Swipe Right gesture of 5 frames, (b) only the palm joint
of each frame is kept and the direction vectors is computed with
an offset L = 2, (c) each direction vector is then represented in
the spherical coordinate, (d) the 3D space is divided into N bins
allowing to localize each direction vector (e) the resulting N-
dimensional histogram.

may vary from performer to another, we remove the mag-
nitude of each vector using spherical coordinate representa-
tion (ρ, θ, ϕ), letting aside the radial distance ρ. The range
of the features are 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. Inspired by
[23], which previously worked in 2D, the space of θ and ϕ
are respectively divided in nθ and mϕ resulting in a global
partitioning of the 3D space into nθmϕ bins. Each direc-
tion are then localized at a unique bin and used to construct
a histogram of size nθmϕ. Figure 5 shows the construction
of this descriptor.

Histogram of wrist rotations (HoWR): The rotation of
the wrist can also be important for some gestures ( e.g. R-
CW, R-CCW). For each frame, we use the direction vector
from the wrist node to the palm node to get the rotational
information of the hand skeleton. As for the HoHD, we
transpose our vector into the spherical coordinates, divide
the space into nθmϕ bins, localize our vector into a unique
one and construct a histogram.

4.4. Temporal modelling and classification

Our three descriptors SoCJ, HoHD and HoWR allow us
to describe the hand shape and geometric variation inside
the sequence without taking into consideration the tempo-
ral nature of the gesture. Some inversed gestures like Pinch
/ Expand may be confused in this case. To add the tem-
poral information, we use the simple representation called
Temporal Pyramid (TP) which is widely used in action and
hand gestures recognition [5, 27]. The principle of the TP is
to divide the sequence into j sub-sequences at each jth level
of the pyramid (Figure 6). We compute our three descriptors
en each sub-sequence and concatenate them. Adding more
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Figure 6. An example of a temporal pyramid of size 3. We com-
pute each descriptor on each sub-sequence. Notice that a TP of
size 3 multiply the final size of our descriptor by 6.

level to the pyramid allows the results to be more precise,
but increase the size of the final descriptor and the comput-
ing time substantially.

The final size of our descriptor is then (
∑Lpyr

i=1 i) ×
(2kD + 2nθmϕ), where Lpyr is the level of the TP, k is
the number of cluster in the GMM, D is the size of the
SoCJ descriptor and nθmϕ is the number of bins in the rota-
tion and direction histograms. For gesture classification, we
used the supervised learning classifier SVM. We choose the
linear kernel as it easily deal with our high-dimensional rep-
resentation. We employed a one-vs-rest strategy resulting in
G binary classifier, where G is the number of different ges-
tures in the experiment. We make use of the implementation
contained in the LIBSVM package [1].

5. Experiments
First, we evaluate our approach in two cases by consid-

ering 14 and 28 classes of gestures thus taking ac ount of
the number of fingers used. Then, a comparison analysis on
depth-vs-skeleton based descriptors is presented. Finally,
we discuss the impact of taking into account the number of
fingers in the gesture recognition accuracy.

For all following experiments, we use a leave-one-
subject-out cross-validation strategy. The dataset contains
2800 sequences of hand gestures. The depth images and
hand skeletons are provided with some others information
(e.g. timestamp, region of interest of the hand in the depth
images,...). Each sequence is labelled following the gesture
represented, a performer id and the number of fingers used
while performing the gesture. Notice that the sequences are
previously cropped using the effective beginning and end of
the gestures manually labelled by the dataset makers.

5.1. 14-gestures classification

To assess the effectiveness of our algorithm to classify
the gestures of the DHG dataset into 14 classes, we com-

Features fine coarse both
HoHD 39.90% 83.06% 67.64%
HoWR 42.70% 31.67% 35.61%
SoCJ 67.40% 61.00% 63.29%

SoCJ + HoHD 70.70% 88.72% 82.29%
SoCJ + HoHD + HoWR 73.60% 88.33% 83.07%

Table 2. Results of our method for 14 gestures on the DHG dataset
using skeleton data. Fine and Coarse columns are respectively
the mean accuracies of fine and coarse gestures, obtained from the
confusion matrix of Figure 7.

pare the results for each descriptor separately. The Table
2 presents the results of our skeleton-based approach ob-
tained using each of our descriptors independently and by
combining them. The results introduced in this table rep-
resent mean accuracies calculated for each descriptor. For
clarity, we divide the result by coarse and fine gestures ac-
cording to the labels from Table 1, allowing us to analyse
the impact of each descriptor on each category.

Using all skeleton-based descriptors presented in Section
4, the final accuracy of our algorithm on the DHG-14 is
83%. It can reach 88% of recognition for the coarse ges-
tures, but for the fine ones the accuracy is below the 75%.
However, a large difference can be observed between ac-
curacies obtained for the fine and the coarse gestures, re-
spectively 40% and 83% when using only HoHD. These re-
sults attest the interest of the subdivision of our dataset into
2 meaningful sets of gestures where the coarse one can be
more described by the movement of the hand through space.

The analysis of the results obtained using only our SoCJ
descriptor encoded by its FVs, shows that the hand shape is
the most effective feature for the fine gestures with an ac-
curacy of 67%. On the other hand, this result shows that
the hand shape is also a way to describe the coarse gestures
with a not-so-low accuracy of 61%. If the HoWR descriptor
shows a low mean accuracy of 36% , it’s a valuable feature
for pair of alike gestures as R-CW and R-CCW, and exclude
it decreases the accuracy of 3% concerning the fine ges-
tures.

To better understand the behaviour of our approach ac-
cording to the recognition per class, the confusion matrix is
illustrated in Figure 7.

The first observation is that using our approach, 10 ges-
tures out of 14 are more than 85% correctly classified. The
second observation concern a wide confusion between the
gestures Grab and Pinch. By analyzing the sequences, we
observe that they are very similar and hard to distinguish
even for human eyes. The main difference between them is
the amplitude of the hand movement in the space. As our
method doesn’t take this information into account, we let it
for future work and as an open challenge for the community.

As shown in Table 2, combining the descriptors leads to
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Figure 7. The confusion matrix of the proposed approach for
DHG-14

a significant gain in performance (+15%). With a final ac-
curacy of 83% obtained on DHG-14 dataset, we notice that
the recognition of dynamic hand gestures is still challenging
whether in terms of handling the wide difference between
gestures performed by different persons, resulting in a chal-
lenging coverage of the gestures but also by improving the
hand pose estimation or finding more pertinent features and
their temporal representations.

5.2. 28-gestures classification

In order to meet the challenge about gesture recognition
performed with 2 different numbers of fingers, proposed in
Section 3, we consider the sequences of the DHG-14/28
dataset as belonging to 28 classes related to the gesture but
also the way it have been performed (with one finger or the
whole hand). The resulting confusion matrix is shown in
Figure 8. Using our 3 skeleton-based descriptors, we ob-
tain an accuracy of 80%. So, by multiplying the number of
classes by 2, we only loose 3% of accuracy.

5.3. Depth-vs-Skeleton based descriptors

To evaluate the contribution of the skeleton relative to the
depth information, we computed three depth-based descrip-
tors similar to those used in our approach. For the depth-
based HoHD, we computed the center of mass of the region
of interest of the hand in the depth to estimate the palm cen-
ter position. For the depth-based HoWR, we used a Prin-
cipal Component Analysis (PCA) on the hand depth data to
find an approximation of the rotation of the hand in space.

In order to represent the hand shape using the depth im-
ages, we implemented the 2 descriptors proposed by Ku-
rakin et al. [7]. The first consists of dividing the hand image
into several uniform grid (4×4, 8×8 or 16× 16). For each
cell of the grid, we calculate its occupancy (area of the cell
occupied by hand mesh) and the average depth after nor-

Features fine coarse both
HoHD 46.50% 78.72% 67.21%
HoWR 25.10% 38.44% 33.68%

Shape descr. 53.00% 54.28% 53.82%
HoHD + SDV 65.14% 86.51% 77.70%

HoHD+HoWR+SDV 66.90% 85.94% 79.14%

Table 3. Results of our method for 14 gestures on the DHG dataset
using depth-based descriptors.

malization. The second one divides the whole image into a
number of fan-like sectors. For each one, we computed the
average distance from the hand contour in the sector to the
center of mass of the hand depth. We finaly concatecated
the 2 descriptors in a shape descriptor vector. Results ob-
tained using the depth-based descriptors are shown in Table
3. As noticed, depth-based HoHD and HoWR give more
or less the same results as skeleton-based ones. However,
for the hand shape description, the SoCJ gives better result
(63%) compared to the depth-based descriptor (54%). Us-
ing the descriptors computed on the depth images leads in
an overall decrease of the accuracy of 4%, mostly coming
from the misclassification of fine gestures. We also observe
a decrease of accuracy of 5% when going from 14 to 28
classes using depth-based descriptors. Moreover, we point
out that finer depth feature could yield better results.

5.4. Discussion

In order to study the confusion of recognition rates
between same gestures performed with different number
of fingers, we propose to compute a metric, denoted as
Loss of Accuracy when Removing the Finger Differentiation
(LARFD). The LARFD metric assesses if the loss of accu-
racy when passing from 14 to 28 gestures is coming from
the different number of fingers (intra-gesture confusion) or
from the confusion with other gestures (inter-gesture con-
fusion). Below, we use the notationMg andMgf respec-
tively to denote the confusion matrix using 14 and 28 ges-
ture classes (Figures 7 and 8).

E+larfd(Gi) = (Mg(Gi, Gi)−
∑NHF

j=1

∑NHF

k=1 Mgf (Gji , G
k
i )

NHF
)

where Gji is a class gesture i performed with j fingers
in the confusion matrices and NHF the amount of different
number of fingers used in the dataset.

For example, in the case of the R-CCW gesture, an ac-
curacy of 85.5% is obtained when considering 14 classes.
For 28 classes, we see that its score using one finger is 77%
but also that 4% of them are seeing as performed with the
whole hand. So their sum means that 81% of the R-CCW
gesture performed with one finger are well recognized as R-
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Figure 8. The confusion matrix of the proposed approach for DHG-28. The gestures annotated (1) and (2) were respectively performed
using one finger and with the whole hand.

CCW gesture. For the case of the same gesture performed
with the whole hand, we obtained (76+9) 85%. The aver-
age of both is 83%. So, the loss of recognition accuracy
considering 28 classes on the R-CCW gesture (without tak-
ing into account the number of fingers) is equal to (85.5-83)
2, 5%. If we take into account the differentiation between
the numbers of fingers (meaning 77% and 76%), we get a
loss of accuracy of 9%. It means that in the general loss of
accuracy of 9% of the R-CCW gesture, 2.5% of them are
from intra-gestures confusion and the rest are from inter-
gestures confusion.

The average of the LARFD over all gestures, when using
skeleton-based descriptors, is equal to 0.0114. This score
shows that the loss of accuracy when passing from 14 to 28
classes is due more to intra-gestures confusion that inter-
gestures one (because on the 3% of general loss of accuracy,
only 1% is due to inter-gestures confusion). Finally, when
using depth-based descriptors, the obtained LARFD met-
ric is equal to 0.0157. This result shows that intra-gesture
confusion is greater when using the depth information than
the skeleton. This can be explained by the fact that the hand
skeleton provides more informative descriptions of the hand
shape that the depth information.

6. Conclusion

This work suggests the advantage of using 3D hand
skeleton data to describe hand gestures, and points out a
promising direction of performing gesture recognition tasks
using skeleton-like information. We present an approach to
recognize dynamic hand gesture as time series of 3D hand
skeleton returned by the Intel RealSense depth camera. We
take as input a several set of relevant joints inferred from 3D
hand skeleton. We propose a compact representation using
Fisher Vector kernel and on multi-level encoding the tem-
poral nature of gestures. Experimental results, conducted
on enrolled dynamic hand gesture dataset, show the perfor-
mance of our proposed method. Moreover, our approach
achieves a performance accuracy of 83% on a challenging
dataset, which is encouraging.

As future work, skeleton-based features can be combined
with the depth-based features to provide more informative
description and produce algorithms with better recognition
robustness.
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