Quasilinear and Hessian Lane-Emden type systems with measure data - Archive ouverte HAL
Article Dans Une Revue Potential Analysis Année : 2020

Quasilinear and Hessian Lane-Emden type systems with measure data

Résumé

We study nonlinear systems of the form $-\Delta_pu=v^{q_1}+\mu,\; -\Delta_pv=u^{q_2}+\eta$ and $F_k[-u]=v^{s_1}+\mu,\; F_k[-v]=u^{s_2}+\eta$ in a bounded domain $\Omega$ or in $\mathbb{R}^N$ where $\mu$ and $\eta$ are nonnegative Radon measures, $\Delta_p$ and $F_k$ are respectively the $p$-Laplacian and the $k$-Hessian operators and $q_1$, $q_2$, $s_1$ and $s_2$ positive numbers. We give necessary and sufficient conditions for existence expressed in terms of Riesz or Bessel capacities.
Fichier principal
Vignette du fichier
VeronNguye6.pdf (448.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01525487 , version 1 (21-05-2017)
hal-01525487 , version 2 (25-05-2017)
hal-01525487 , version 3 (15-12-2018)

Identifiants

Citer

Marie-Françoise Bidaut-Véron, Quoc-Hung Nguyen, Laurent Véron. Quasilinear and Hessian Lane-Emden type systems with measure data. Potential Analysis, 2020, 52, pp.615-643. ⟨10.1007/s11118-018-9753-z⟩. ⟨hal-01525487v3⟩
509 Consultations
159 Téléchargements

Altmetric

Partager

More