Modular polynomials on Hilbert surfaces - Archive ouverte HAL
Preprints, Working Papers, ... Year : 2017

Modular polynomials on Hilbert surfaces

Abstract

We describe an evaluation/interpolation approach to compute modular polynomials on a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication. Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular polynomials are much smaller than the ones on the Siegel threefold. We explain how to compute even smaller polynomials by using pullbacks of theta functions to the Hilbert surface, and give an application to the CRT method to construct class polynomials.
Fichier principal
Vignette du fichier
articleHilbert.pdf (666.33 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01520262 , version 1 (10-05-2017)
hal-01520262 , version 2 (09-09-2017)
hal-01520262 , version 3 (09-01-2020)

Identifiers

  • HAL Id : hal-01520262 , version 2

Cite

Enea Milio, Damien Robert. Modular polynomials on Hilbert surfaces. 2017. ⟨hal-01520262v2⟩
632 View
661 Download

Share

More