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Abstract

We describe an evaluation/interpolation approach to compute modular polynomials on
a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication.
Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular
polynomials are much smaller than the ones on the Siegel threefold. We explain how to
compute even smaller polynomials by using pullbacks of theta functions to the Hilbert
surface, and give an application to the CRT method to construct class polynomials.

1 Introduction

1.1 Context

Isogenies play an important role in elliptic curve cryptography. They allow to transfert the
DLP from one curve to a possibly weaker one | ; |; they are used by the SEA
point counting algorithm | ; ; |, but also by the CRT algorithms to compute
class polynomials | : | and modular polynomials | ]. Splitting the multiplication
using isogenies can improve the arithmetic | ; ], taking isogenies reduce the impact
of side channel attacks | ], and they allow to construct normal basis of a finite field | ].
They have also been used to construct hash functions | | or to build cryptosystems | ;

].

In dimension 1, the /-modular polynomials ¢, parametrize couple of elliptic curves Fq and
FE5 that are f-isogenous over the algebraic closure. They can be computed in quasi-linear
time | ] by the evaluation/interpolation method. More precisely the classical modular
polynomials parametrize the elliptic curves from their j-invariants, so that F; and Fy are /-
isogenous whenever ¢;(j(E1), j(E2)) = 0. Other modular invariants have been proposed which
yield smaller polynomials | ]

Principally polarized complex abelian surfaces (which are generically Jacobians of hyperel-
liptic curves) are parametrized by the Siegel threefold $),/Sp,(Z) (with g = 2) where $), is the
Siegel space of symmetric g X g complex matrices with totally positive imaginary part. The
Siegel threefold is an algebraic variety birationally equivalent to the three dimensional alge-
braic space, and is parametrized by the three Igusa invariants | ; ]. One can then
generalize modular polynomials to this setting: the f-modular polynomials classify couple of
principally polarized abelian surfaces (A, B) which admit an ¢-isogeny A — B. More precisely
the £-modular polynomials evaluated on the three Igusa invariants of A describe a dimension 0
subvariety of the Siegel threefold of degree ¢3 4+ ¢ + ¢ + 1 whose geometric points correspond
to the three Igusa invariants of the f-isogenous abelian surfaces B. Alternatively, these mod-
ular polynomials describe the image of X(¢) inside Xo(1) x Xo(1) where Xo(¢) = $,/T°(0).
These polynomials have been studied in | ; | and computed for £ = 2 in | ].
A generalization of these modular polynomials using smaller Siegel modular invariants have
more recently been computed in | ].

Unfortunately even using a quasi-linear algorithm computing them is hard due to their size.
Indeed compared to dimension 1 where modular polynomials describe a curve X¢ (¢) inside the
plane X}(1) x X}(1), and where the degree of the projection is £ + 1, in dimension 2 they
describe the threefold X((¢) inside a dimension six space and the degree of the projection is
03402474 1. Already these polynomials for £ = 7 takes 29GB to write (even using the smaller
theta invariants), so it seems hard to go much further. But having them only up to £ = 7 is
not enough for most of the applications mentioned.



Another problem is that restricting to f-isogenies does not allow one to explore the full
isogeny graph of principally polarized abelian surfaces. In the CRT method to compute class
polynomials, one key step of the algorithm is to take an abelian surface in the right isogeny
graph, and then use isogenies to find an abelian surface with maximal complex multiplication
[ ; ]. But this is not always possible using only ¢-isogenies.

We recall that an f-isogeny f corresponds to a kernel V' = Ker f which is maximal isotropic
for the Weil pairing ey on the ¢-torsion A[¢]. The kernel of an ¢-isogeny is then an abelian group
of type (¢,£). One can also consider cyclic isogenies, where the kernel is a cyclic subgroup of
the (-torsion. However, if A is principally polarized and V is cyclic in A[¢], then A/V is not
principally polarized in general. The isogenous abelian surface admits a principal polarization
if and only if there exists a real totally positive endomorphism 3 € End* "+ (A) of norm ¢ such
that V' C Ker 8 (since V is cyclic it is automatically isotropic for the -Weil pairing). We call
such an isogeny a [-isogeny, and one is naturally led to try to define S-modular polynomials
parametrizing couple of [-isogenous abelian surfaces (A, B). Generically, a complex abelian
surface A has no real endomorphisms, so to define S-modular polynomials we need to restrict
to a sublocus of abelian surfaces with specific real multiplication.

Let Ok be a maximal real quadratic order of discriminant Ag. The Hilbert moduli space
is a surface parametrizing isomorphism classes of principally polarized abelian surfaces A with
End**tt(A) C Ok. Let 8 € Ok be a totally positive element of norm £. In this article,
we define S-modular polynomials on this Hilbert modular surface and we explain how to
compute them by evaluation/interpolation. We use the forgetful map from the Hilbert modular
surface to the Siegel space, or more precisely, to an Humbert surface, and use the tools already
known there, especially those described in [ ; | for the computation of ¢-modular
polynomials.

1.2 Outline

We study several parametrizations of the Humbert surfaces. The Siegel moduli threefold is
parametrized by the three Igusa functions, and in | ] a cover of the Siegel space given by
level 2 theta constant is also used to give smaller modular polynomials.

Pulling back the Igusa functions to the Humbert surface gives rational coordinates which
can be used to define modular polynomials. Likewise pulling back the theta functions give
coordinates on a cover of the Humbert surface. Some Humbert surfaces are rational and can
be parametrized by two invariants instead of the three defined above. In this paper we look in
particular at the case of Humbert surfaces of discriminant 5 and 8 which can be parametrized
by two Gundlach invariants.

We describe in Section 2.3 an algorithm which, given a period matrix 7 € HY compute the
above invariants in quasi-linear time. We also give an algorithm, which given the value of the
above invariants, compute the corresponding period matrix 7 € HY in time quasi-linear. (See
Theorem 3.4). For the modular polynomials computations, these algorithms are crucial for
the evaluation (resp the interpolation) step, but they have independent interest. For instance
the fast evaluation would speed up the algorithms described in [ : | for computing
class polynomials via Gundlach invariants. The idea is to translate back and forth between the
Hilbert moduli space and the Siegel moduli space where in the latter space both algorithms
have been developed by Dupont in | ].

The main result of the paper is the computation of modular polynomials on the Hilbert
(or Humbert) surface. When 8 € O is a totally positive prime, we define (-isogenies and



B-modular polynomial in Section 4.1. There are two cases:

e When the norm of 3 is a prime number ¢, then the §-isogenies correspond to isogenies
with cyclic kernel V' C A[B] C A[f]. All -isogenies then preserve real multiplication
and the g-modular polynomials parametrize all couple of principally polarized abelian
surfaces with maximal real multiplication and admitting a cyclic isogeny of degree /;

e Otherwise § is an inert prime number ¢ € Z. In this case the f~-modular polynomials
(on the Hilbert moduli space) parametrize f-isogenies between abelian surfaces with
maximal real multiplication. By contrast to the Siegel /-modular polynomials which
given A parametrize all £3 + ¢2 + ¢ + 1 abelian surfaces B = A/V where V C A[/] is
maximal isotropic for the Weil pairing, the Hilbert ¢-modular polynomials parametrize
all 2 + 1 abelian surfaces B = A/V where V is furthermore stable under the action of
the real multiplication.

We give in Theorem 4.15 a quasi-linear algorithm for computing S-modular polynomials
for a large class of invariants, like Gundlach invariants (for Q(v/2) and Q(v/5)), pullbacks of
Igusa invariants and pullbacks of theta constants (for all real quadratic field). In the latter
two cases we have three invariants for a moduli space of dimension 2 so we need to adapt
the evaluation/interpolation algorithm to handle the fact that these three invariants have to
satisfy a relation.

Theorem 4.15 is itself a particular case of Theorem 3.13 which gives an evaluation/inter-
polation algorithm to compute covers of Hilbert surfaces. Adapting this Theorem to the cover
parametrizing S-isogenies then yields Theorem 4.15.

The corresponding algorithms have been implemented in Pari/GP, and we give some ex-
amples of S-modular polynomials. We mainly give examples on the case where K = Q(\/i)
and Q(+/5) since this allows us to compare different kind of invariants.

Finally Martindale and Streng have also independently described an algorithm to compute
modular polynomials on Hilbert moduli space. While we use evaluation/interpolation, they
use linear algebra on the Fourier coefficients of the Hilbert modular form. The advantage of
their method is that it works in any dimension and for any modular invariant (provided one
can compute its Fourier coefficients). By contrast our evaluation/interpolation approach needs
fast evaluation of modular invariants (for the complexity) and we need for the interpolation to
be able to recover the period matrix from the values of the modular coefficients. We only know
how to do that efficiently in dimension 2 (and 1) when the invariants are derived from theta
constant (as mentioned by translating back and forth to the Siegel space and using [ D).
In particular our algorithm can not be extended to higher dimension as long as the work of
Dupont on the generalization of the AGM is not extended to dimension greater than 2. Work
in this direction has been done in | ; ]. However in dimension 2 we do obtain a quasi-
linear algorithm which is much faster than the linear algebra approach used by Martindale and
Streng.

The remainder of this article is organized as follows. In Section 2, we define the Siegel (in
Section 2.1) and the Hilbert spaces (in Section 2.2) and describe the corresponding moduli
data. We also give generators for the fields of modular functions on these spaces. Then in
Section 2.3, we analyze the forgetful map from the Hilbert modular surface to the Siegel space.
In Section 2.4, we focus on the Humbert surfaces, which is the image of the previous map. We
conclude this Section by looking at covers of the Humbert surface in Section 2.5.



Section 3 is concerned with invariants of Hilbert surfaces. In Section 3.2 we explain how to
efficiently evaluate a large class of Hilbert invariants. In Section 3.3 we give an interpolation
algorithm, which work even when we have relations between our invariants. In Section 3.4 we
apply the previous Section to explain how to interpolate with Gundlach invariants and pull-
backs of the Igusa and theta functions. Lastly we conclude the Section by giving in Section 3.5
an algorithm to compute covers of Hilbert surface.

Section 4 is concerned with modular polynomials on Hilbert surfaces. First in Section 4.1,
we define the isogenies preserving real multiplication and give some applications in Section 4.2.
In Section 4.3, we define the modular polynomials depending on these isogenies, explain some
of their properties and give an algorithm to compute them in quasi-linear time.

Finally in Section 5, we describe some polynomials we have computed. In particular Sec-
tion 5.4 look in more details the denominators of Hilbert modular polynomials, which describe
very interesting modular curves.

Thanks We thank Pierre-Jean Spaenlehauer to have succesfully done the Grobner basis
expressing the Gundlach invariants in term of the Igusa invariants for D = 2. We thank David
Kohel which suggested us to look at | | to get invariants for more Humbert or Hilbert
surfaces. We thank Ernst Kani for helpfull discussions regarding his results in [[<an] and John
Boxall for pointing us to the results of Ernst Kani.

2 Hilbert and Siegel modular spaces

2.1 Siegel modular space

The Siegel upper half-space in dimension 2 is the set Ho = {Q € M3(C) | © is symmetric and

3(2) > 0}. It is a moduli space for principally polarized abelian surfaces: such a surface is a
torus C2/(Z* + QZ*) for some Q € Ha (see | 1), and the principal polarization is induced

by the Hermitian form given by $(Q) .

We define the symplectic group Spy(Z) as {y € GL4(Z) | &yJy = J} where J = (_012 102)
and I,, is the identity matrix of size n. It acts on Hy by (4 B)-Q = (AQ + B)(CQ+ D)~*
(it is a left action). The Siegel modular threefold is the (Baily-Borel) compactification of the
quotient space Spy(Z)\Hz. It is a moduli space for isomorphism classes of principally polarized
abelian surfaces.

Let I" be a finite subgroup of Sp,(Z) and k € Z. A Siegel modular form of weight k for
T is a holomorphic function f : Hy — C such that for all v = (4 B) € Sp,(Z) and Q € Ho,
f(¥Q)) = det(CQ + D)k £(Q2). The quotient of two Siegel modular forms for the same weight
and group I is called a Siegel modular function.

Let a,b € {0,1}2. The classical theta constant with characteristic (a, ) is

0141 (Q) = Z exp(im(n 4+ a)Q(n + a) + 2i7 (n + a)b).

nez9

To simplify the notation we define for all @ = (39) and b = (g?) in {0,1}?

Obo-+2b1 +4a0-+8a1 (2) 1= 0 [‘ZZ} (€2).



Of the 16 theta constants, 6 are identically zero and we denote P = {0,1,2,3,4,6,8,9,12,15}
the subscripts of the even theta constants (the non-zero ones). The following functions h; are
Siegel modular forms of weight 4 for the symplectic group Sp,(Z)

hy=> 05, hg= > +(0:0,01,)",

i€P 60 triples (i,j,k)eP?
hio=[]67, M= > (0:0,01,0,0,0,)"
i€P 15 tuples (4,5,k,l,m,n)eP6
(see for example | ; ; ] for the exact definition).

We define the Eisenstein serie 1, of even weight k > 4 by

Pr(Q) =Y det (CQ+ D)7,
C,D

where the sum is taken over the set of matrices (4 B) in Spy(Z) up to left multiplication by
SL(Z). Let
x10 = —27 1237957277 1537143867 (¢4rbs — 110)  and

xi2 = 27133775 7377233771131 - 593(3%7%¢3 + 2 - 5342 — 691¢12)

be two Siegel modular cusps forms of weight 10 and 12 respectively. These series can be written
in terms of theta constants. Indeed we have ¢y = 27 2hy4, s = 2 2hg, x10 = —2 *hip and
x12 = 271737 h15. The graded ring of holomorphic Siegel modular forms for Sp,(Z) is the
polynomial ring of ¢4, ¥, x10 and x12. We define the Igusa invariants from these last modular
forms:

5 3 2 3
=232, 2*3331/’471<12 and  jg =273 (W"’;” n 223¢4f12) C)
X10 X10 X10 X10

The field of Siegel modular functions for Sp,(Z) is C(j1,j2,)3). Generically, two principally
polarized abelian surfaces are isomorphic if and only if they have the same Igusa invariants

(see [Igu60; D

Remark 2.1. For practical computations we use different invariants introduced by Streng in
his thesis [ ] whose denominators are respectively x10, X320, X530 and hence give smaller
modular polynomials (see | ).

Let I'(2) = {(A B) € Spy(Z) : (A B) = Iy mod 2}. 1t is a normal subgroup of Sp,(Z) of
index 720. The three following functions

_ 0367 _ 0305,

r o2,
— 1292 2 = =
0303 030%;

and ry = 5202 (2)

1

are Siegel modular functions for I'(2) called the Rosenhain invariants. They are generators for
the field of modular functions belonging to I'(2) ([ ])-

Let ['(2,4) = {(AB) € Spy(Z) : (4 5) = Iy mod 2 and By = Cy = 0 mod 4}, where X,
denotes the vector composed of the diagonals elements of X. It is a normal subgroup of Sp,(Z)
of index 11520. The quotients of theta functions b;(2) = 6;(2/2)/60(2/2) for i = 1,2,3 are
Siegel modular functions for I'(2,4) and they are generators for the field of modular functions
belonging to I'(2,4) (see | ; ).



2.2 Hilbert modular space

We refer to | : : : : ] for more details on Hilbert modular forms
and Hilbert surfaces.

Let D be a square-free integer and K = Q(v/D) be a real quadratic field. Its discriminant
Ag is D if D = 1mod4 and 4D if D = 2,3 mod 4. Consider O the ring of integers of
K. We have that O = Z + wZ where w = 1%5 if D =1mod4 and w = v/D otherwise.
Denote by @ the conjugate of a in Ox. We consider K C R and vD > 0. We then have
o+ ,6’\/5 = — B\/E

The set H{ = {z € C : 3(z) > 0} is the Poincaré half-plane. We will often denote it as
H1 to not surcharge the notations. Let H; = —H . The group SL2(Of) acts on the left on

HExHy by (¢8) - (11,72) = (%, %)' The Baily-Borel compactification of the quotient

space SLo(Ox)\H{ x Hy is the Hilbert modular surface. It parametrizes principally polarized
abelian surfaces (A,#) with real multiplication by the maximal order O, with an explicit

embedding p : Og — End(A) (see | ; D).
Let SLy(Ox ®05") = {(2}) € SLo(K) : a,d € Ok, b € 05" and ¢ € Ik }. As K = Q(VD),
we have that 0y = VAKOg and 8;(1 = ﬁ@K. The isomorphisms ¢+ : SLa(Ox) —

SLQ(OK@&I_(I), (28) — (c\/aAiK b/\/dﬂ) and ¢4 : H xH] — H3, (11, 12) = (nVAK, —T2VAK)
induce an isomorphism between the group action of SLy(Oj) on H{ x H] and the group action
of SLa (O @ 0x') on H3 ([ , Section 3]).

If 7 = (11, 72) € H2, the corresponding abelian surface is given by the torus C?/(®(Ox) @

(701 7(_)2 )@(8;(1)) where ® : K — C? is given by the two real embeddings, and the polarization
is induced by the symplectic form E on the lattice: E(z)+ 2T, y1+y27) = trK/Q(mlyg —T2y1).
From the definition of 8121 we get indeed that E induces a principal polarization.

Since SL2(Ok) is generated by the matrices (1), (§4), (¥ 3!), the group SLa(Ox @ 0x')
is generated by the matrices (é 1/V1AK ), (é W/VlAK) and (\/27 _1/0” Ax )
K
For A € K and 7 = (11, 72) € H3, we denote

AT = (A1, A2), N(t) =772 and tr(r) =11 + 72.

We define o to be the involution o : (11, 72) € H} +— (72, 71) € H}. We let o act by conjugation
on SLy(Ok & 9') via oo = (gg) € SLy(Ok ® 9), for v = (1) € SLy(Ok @ 0xt). Tt
is straightforward to check that this is compatible with the action on H?. We call the group

SLy (O @ 0x') x (o) the symmetric Hilbert modular group. For a function f : H? — C and
v € SLy(Ok @ d5") x (o) we denote f7(7) = f(v.7).

Definition 2.2. Let I be a subgroup of SLg(K') commensurable with SLa(Of ). A holomorphic
function f on H? is called a Hilbert modular form of weight k for the subgroup T if it satisfies
forany v = (2%) € T'and 7 = (11, 72) € H7 the condition f(y7) = N(ct+d)* f(7). If moreover
it verifies f(o(7)) = f(7) for all 7 € H?, then we say that this form is symmetric. A Hilbert
modular function is the quotient of Hilbert modular forms of the same weight and for the same
group. We say it is symmetric when the forms are.

Remark 2.3. Note that a modular form f is then automatically holomorphic at the cusps
SLQ(OK)\]P)l (K) >~ Cl(OK)



Theorem 2.4. The Hilbert modular surface is rational for D = 2,3,5,6,7,13,15,17,21, 33.
Proof. See | , Theorem 2] O

For the study of Humbert surfaces in Section 2.4 we will be interested in symmetric Hilbert
modular forms and functions. For the simplicity of the exposition, we now assume that the
fundamental unit € has norm —1 and € > 0. Let a = diag(1, —VfK) Then ¢g : 7 € H? —

\/ngT € H? and ¢g : v € SL2(Ok) — aya~! € SLy(Ox @ 8;(1) are bijections which induce an

isomorphism between the action of SLa(Ox @ dx') on H? and the action of SLa(Ox) on H3.

Note that when € > 0 has norm —1, then € < 0 so that \/37 is totally positive and ¢o(7) € H3.

Let {e1,e2} be a Z-basis of Ok and ¢; = e2im(ee;n—e€j ) /VAK for j =1,2.

Proposition 2.5. Let g be a holomorphic Hilbert modular form for SLy(Ok) of weight k.
Then it has Fourier expansion

g(r) =ag0)+ > ag(t)aig.

t:aelerEQEO;;Jr
Proof. See | , Proposition 3.2]. O

We denote by Az(SL2(Ok))x the Z-module of symmetric Hilbert modular forms of even
weight & with rational integral Fourier coefficients and put As(SL2(Ok)) = @ Az(SLa(Ok) )k
Define the Eisenstein series of even weight £k > 2:

Ge(r) =1+ > be(t) gl b,

t=aei+bes 60;+

where
be(t) =rk Y, |Ok/uOk[*!
tOx CuOk
and kg = (k)1 (2m)2% ((k — D)) 2A2F (by | , Equation (1.5))).

Lemma 2.6.
o IfK =Q(V2), lete =14++/2. Then ky = 2*-3, kg = 2°-3-5-1171 and kg = 2*-32.7-197%;
o IfK=Q(V5), let =55 Then kg =2%-3-5 kg =2-3-5r5=2%-32-5.7-67""
and k19 = 23-3-52-11-41275171.
Proof. See | , Lemma 1.1]. O

The Eisenstein series are symmetric Hilbert modular forms for SLo(Ok) with coefficients
in Q. We focus now on the cases D = 2,5 and we fix the basis {1,€}, which gives a nice
expression of ¢; and g2. We have

Theorem 2.7. In the case K = Q(v/2), we put

—5-7° 11-59 192
Fy=2"5.32.11(G3 -G d Fs= G G2Gy — =G
1 (G2 = Ga) and By = 5eaa G+ Segap 130201~ g5 1306
Then Ga, Fy and Fg are in Az(SLa(Ok))k for k = 2,4,6 respectively. Furthermore, they form
a minimal set of generators of Az(SL2(Ok)) over Z.




Proof. See | , Theorem 1]. O

Theorem 2.8. In the case K = Q(\/2), the field of symmetric meromorphic Hilbert modular
functions for SLy(Ok) are rational functions of

_ G3 GoFg

Jl_ﬁ and J2: Ff

We call J; and Jo the Gundlach invariants for K.
Proof. A proof of this theorem will be given later in page 14. O

Theorem 2.9. In the case K = Q(\/5), we put

67

_ 3
Fe = W(Cﬁ - Gé),

Fio = 271937557577 1(412751G9 — 5 - 67 - 2293G3G6 + 223 - 7 - 4231G3),
and F12 == 2_2(F62 - GQFl()).

The four modular forms Ga, Fs, Fio and Fia are in Az(SL2(Ok))x for k = 2,6,10 and 12
respectively. Furthermore, they form a minimal set of generators of Az(SLa(Ok)) over Z.

Proof. See | ] or [ , Theorem 2]. O

Theorem 2.10. In the case K = Q(\/5), the field of symmetric meromorphic Hilbert modular
functions for SLa(Ok) are rational functions of

G5 FsG3
J === d Jo= .
" R o 2 Fio

We call J1 and Jy the Gundlach invariants for K.

Proof. See | ] or the proof in page 14.
5
Note that it is usual to take the invariants %20 and %. We have substituted the last

2
one by the product of the two. As explained in Section 4.3 these invariants will give smaller
modular polynomials. Indeed we will see that the denominators of the invariants determine
the denominators of the modular polynomials so that it is better to have fewer factors. O

2.3 From Hilbert to Siegel

Let 7= (11,72) € H}, z € K and v = (2Y) € SLy(K). We denote 7* = (78 g), z* = (%Y)

and v* = (g: (b; ). Fix {e1,e2} a Z-basis of Ox and define the matrices R = (g &) and

€1 ez
S = ( téz qu) and the maps

¢617e2: ’H% — Ho and ¢61,62: SLQ(K) — Sp4(Q)
T — RT*R 0% = Sy*ST1L

Recall that SLo(Ox ®95") = {(¢ ) € SLy(K) : a,d € Ok, b € 1//AgOk and ¢ € VAKOk}.

Proposition 2.11. The map ¢, ¢, satisfy:



o &2, (Spa(Z)) = SLy(Ok @ 0)");

b ¢€1,€2 (7 ) T) = ¢61,62 (’7) : ¢€1,62 (T) for all Y€ SLQ(OK D 8;{1) and T € /H%,

o If f1, fo is another Z-basis of Ok, then there exists some v € Spy(Z) such that for all
TE /H%; ¢61,€2 (T) =7 ¢f1,f2(7-);

o There exists some v € Spy(Z) such that ¢e, e, (0(T)) =7 - ¢ey,e0(T). We denote M, this
v, and this allows us to extend ¢e, ¢, to SLa(Ox @ ") x (o).

Proof. See | , Proposition 3.1]. O

Thus, the map ¢, ¢, gives a holomorphic map from SLy(Ox @® 0" )\H? to Spy(Z)\Ha
which is independent of the choice of the basis of Ok. It also sends 7 and o(7) to the same
point of Sp,(Z)\Ha. Since ¢, ., allows us to identify SLy(Ox © dx') and < o > as subgroups
of Sp4(Z), we will often note SLa(Ox ® ') USLa (O ® 5o the group SLa (O ") x (7).

We will often work with the basis e; = 1 and ea = w. We will denote ¢ instead of ¢1,. We
have then ¢(7) = ( TitT2 Tt ) = (g; gi) € Hs and it verifies

TIW+T2wW le2 +Tg§2

%Ql—l—Qg—Qg =0, if D=1mod4;

D —Q3 =0, if D=2,3mod 4. (3)
Moreover, set
1000
sore e if D =1 mod 4;
00 0-—1
My = (4)
1000
oty s if D = 2,3 mod 4.
00 0-1
The matrix M, satisfies
¢(o(1)) = Mo - &(7). (5)
Consider now v = (\/Ai;(‘ifc,w) (b%:li)d/,w” AK) € SLy (O @ 8[_(1). Then
a a v b+b
D=1y bl b ( D3y
LA )| iD= 1mod 4;
4 4
/ d/ d d/
o(v) = © - (6)
a a'b b ,
(gggggg) if D=2,3mod 4.
c cd d

For D = 2,5, the fundamental unit has norm —1 and it can be more convenient to work
with the basis {1, €}, which was used to define the Fourier coefficients of the symmetric Hilbert
modular forms in Section 2.2. Let ¢1 := ¢1 ¢z and ¢, := ¢10¢g where ¢y denote the isomorphisms
introduced in Section 2.2. The map ¢, verifies similar equalities as in Proposition 2.11 between
the action of SLo(Ok) on H? and the action of Sp,(Z) on Ha.

For a basis {e;,ea}, we give now the relation between the Fourier coefficients of a Siegel
modular form f and the coefficients of its pullback ¢ . f, which is a symmetric Hilbert
modular form.

*
€1,€2
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Proposition 2.12. Let

F(Q) = ay(0) + > ag(T)q"

TeSymao(Z)V-++

be a holomorphic Siegel modular form for Spy(Z) of weight k. Then its pullback g = ¢7, ., f is
a symmetric Hilbert modular form with the following Fourier expansion:

9(7) = [(@er,ex(T)) = ag(()) + Z ag(t)qtllqgv
t:ae1+be:2€(9j{<+
with ay(0) = af(0) and
ag(t) = > ap(D).

TeSyma(Z)V- T+
Qr(e1,e2)=t

Here, Qr(x1,x2) = (x1,22)T (L) is the positive definite quadratic form associated to T and

Sme(Z)v = {T = (Tl ém) tmy,m € Z}

5M M2

is the dual of Syma(Z). Finally, 7 = e2mt(T9),
Proof. See | , Proposition 3.2]. -

We are interested in the pullbacks of the Igusa invariants (defined in Equation (1)). They
are already known in the case D = 5.

Theorem 2.13. For K = Q(v/5) we have

¢y = G
s = —32G3+ 5Gs = G — 2933 F;
—4¢ixi0 = Fio;
12¢:X12 = 3F62 — 2G2F10.
Proof. See | , Theorem 1]. O

Corollary 2.14. One has

51 = 8J1(3J2)J1 — 2)5;
Yo = 3J1(3J3/J1 —2)3
Y3 = 273J1(3J2)J1 — 2)%(4J3 )1 + 23205/ )1 — 3).

Proof. See also | , Proposition 4.5]. O

Using Proposition 2.12 and comparing the different Fourier series (as done in | ] in
the case D = 5) we have found

Theorem 2.15. For K = Q(v/2) we have

oYy = G3+ 144Fy;

d*bg = G5 — 648F,Goy — 1728F;
X0 = —1FiFg;

(ﬁlez = %G2F4F6 + Ff + F62

11



Corollary 2.16. One has

P 8J7 [ J2(1 412/ Ja 4+ 122/ J1)°;
Ofia = J2/Ja/2(Jy + 144)(1 + 12/ + 1205/ J1)3;
dfis = 1/8(1+12/Jy+ 12J5/J1)?
(J3/Jo +16J2 + 16J3/J2 4 2304J2 ) J3 + 4082/ Jo + 2880.J1 ).

2.4 Humbert surfaces

Let ) = (8; gi) € Ho and a, b, c,d, e € Z. We call an equation of the form:

afly + by + Q3 + d(Q% — 9193) +e=0

a singular relation. If ged (a, b, c,d, e) = 1, we say that this relation is primitive. Moreover, we
define the discriminant of a singular relation to be A = b? — 4ac — 4de.

Theorem 2.17 (Humbert’s Lemma). Let Q2 = (g; 8?) satisfying the singular relation:

an + bQQ + CQ3 + d(Q% — Q193) +e=0

of discriminant A = b* — dac — 4de. Then there exists a matriz v € Spy(Z) such that v - Q =

Q Qf . . . . .
(Q} Q?) satisfies a unique normalized singular relation of the form:
2 3

k) +4Q5 — Q5 =0 (7)
where k and ¢ are determined uniquely by A = 4k + ¢ and ¢ € {0,1}.
Proof. See | ; ; ]. O
Remark 2.18.
e Equations (3) and (7) are of the same type;

e Let Q € Hs be a matrix equivalent to a matrix satisfying (7). Then  satisfy necessarily
a singular relation of discriminant A;

e Let ) € Hy satisfying a singular relation of discriminant A. A constructive algorithm to
find v as in the Humbert’s Lemma can be found in | ; ].

Proposition 2.19. For any A =0 or 1 mod 4, A > 0, the set Hxn := {Q € Spy(Z)\Ha : Q
satisfies a primitive singular relation of discriminant A} is a surface which we call a Humbert
surface of discriminant A.

Proof. See | , Corollary 4.6 and Proposition 4.7] or | , Proposition 2.11]. O

Proposition 2.20. Let Aq be the principally polarized abelian surface associated to € € Ho.
Let also A # A be non-square discriminants. Then:

o Aq is simple if and only if Q@ & U,,~0 Hpn2;:

e Q € Hp, if and only if End(Aq) ® Q contains Q(v/A), if and only if there exists a

symmetric endomorphism of discriminant A on Aq;

12



e if Q € Ha N Hps, then either Aq is simple and End(Aq) @ Q is a totally indefinite
quaternion algebra over Q, or Aq is isogenous to B X E, where I is an elliptic curve.

Proof. See | , Proposition 4.9] or | , Corollary 2.10, Proposition 2.15]. O

We denote now T'(1) = SLy(Ox @® 9%'). Proposition 2.11 and Equations (3), (4) and
(5) say that the images by ¢ of H? and of (I'(1) UT'(1)0)\H#} are in the Humbert surface of
discriminant Ag. This is also true for any ¢, ., because the images of 7 by ¢ and by ¢, e,
are equivalent modulo the action of Sp,(Z) (which means that these maps send 7 to the same
point of the Humbert surface). Similarly, ¢, also maps to the Humbert surface because it is
the composition of ¢1¢ with an automorphism of the Humbert surface. More precisely, the
Hilbert surface maps onto the Humbert surface:

Proposition 2.21. The following diagram is commutative:

P(1)\H2 2 v Hs

| |
(F(1) UP())\HE = 5, (Z)\ My

where 1 is either ¢e, ¢, 0T ¢, ™ is a map of degree 2 and p is a map generically of degree 1
onto the Humbert surface Ha, .

Proof. See | ]. The fact that 7 is of degree 2 is obvious. It remains to see that pox
is generically of degree 2. But Ha, is the locus of principally polarized abelian surfaces
(A, 0) with real multiplication by Ok, and the preimages correspond to explicit embeddings
u: Og — End(A). Generically there are only two such embeddings which differ by the real
conjugation, which corresponds to the action of o. O

The analytic quotient space (I'(1)UL'(1)0)\H7 is called a symmetric Hilbert modular surface.

Lemma 2.22. Let X be a subvariety of Y, with both X and Y irreducible and defined over
a field F. Then the restriction map (which is not defined everywhere) on the functions fields
F(Y) -— F(X) is surjective.

Proof. Since X is a subvariety of Y, it is a closed variety of an open locus U of Y. The inclusion
t : X — U then yields an epimorphism of sheaves +* : Oy — Ox. Looking at the stalks of the
generic points we deduce that the map F(Y) — F(X) (defined for functions f € F(Y') which
are defined on the generic point of X) is surjective. O

Corollary 2.23. The pullbacks by p of the Igusa invariants to the symmetric Hilbert modular
surface (D(1) UT(1)o)\H3 generate the function field of symmetric Hilbert modular functions.
(These pullbacks can also be seen as the restriction of the Igusa invariants to the Humbert
surface).

Proof. By the theory of Shimura varieties, both (I'(1)UT(1)o)\H? and Sp,(Z)\Hs are algebraic,
and so is p.

Proposition 2.21 says that the map from the Symmetric Hilbert modular surface (I'(1) U
['(1)0)\H3 to the Siegel space is birational to its image, the Humbert surface Ha . Its field
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of functions are the symmetric Hilbert modular functions. So, by Lemma 2.22, any symmetric
Hilbert modular function (seen by birationality as a rational function on the Humbert surface)
can be lifted to a Siegel modular function. Since the Igusa invariants generate the field of the
Siegel modular functions, it suffices to check that the restriction of these invariants to Ha
is well defined (on an open set). But the denominators of these functions is (up to a scalar
multiple) x10 whose locus is exactly Hj, the set of abelian surfaces isomorphic to a product of
elliptic curves. By Proposition 2.20 the intersection of Hy and Ha, is a (union of) curves, so
the Igusa invariants are well defined on Ha, \ Hi. O

Proof of Theorems 2.8 and 2.10. By Corollary 2.23, any symmetric Hilbert modular function
is a rational fraction with complex coefficients in the pullbacks of the Igusa invariants. By
Corollaries 2.16 and 2.14, the pullbacks of the Igusa invariants can be expressed in terms of
the Gundlach invariants for Q(v/2) and Q(v/5) respectively. Thus each symmetric Hilbert
modular function can be expressed in terms of the Gundlach invariants. ]

2.5 Symmetric and non symmetric covers of the Humbert surface

We study here the covers of the Hilbert modular surface SLa (O kD) \H? given by a subgroup
[ of finite index in SLa(Ox @ dx1).

Remark 2.24. By | ] a group I of finite index in SL2~((9K P (’9;(1) is necessarily a level
subgroup, meaning that it contains a congruence subgroup I'(n) (see Definition 2.28).

Lemma 2.25. Let G be a subgroup of SLa(Ox @ 0x') x (o) of finite index. If o & G then
G C SLy(Ok @ 0"). Otherwise G =T x (o) for a subgroup T C SLy(Ox @ 05 of finite index
and normalized by o (meaning that I is stable under the real conjugation).

In the latter case we say that G is symmetric.

Proof. Indeed as a set it is easy to see that if o € G, then § = I UTo for a subgroup
I' C SLy(Ox @ 8;(1). It remains to check that ¢ normalize I'. But since G is a group,

defl:fcg,sof:f‘. O
Definition 2.26. We denote by Cg the field of meromorphic functions of H? invariant under
the action of G. It is the function field of the Hilbert surface Hg = G\H?2.

Remark 2.27. Hg admits a (Baily-Borel) compactification, which in turn admits a smooth
birational model. In this article we only work with invariants of the Hilbert modular function
field, so only up to birational equivalence, so we don’t distinguish between these models.

When I' = SLy(Z), the subgroups I'(n), T°(¢) and I'(2, 4) are standard, and of main interest
for modular polynomials of elliptic curves. We want to generalize these notations to the Hilbert
modular group. It is easier to define them first in the model of SLy(Of) acting on Ht x H~
and then transport them to the model of SLy(Ox @ 9') action on H? via the automorphism
¢+ of Section 2.2.

Definition 2.28. Let

I(n)={(2%) €SLy(Ok):a=d=1modn, b=c=0modn}. (8)
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Define then for D =1 mod 4 and D = 2,3 mod 4

(2,4)={(25) eT(2):
4 {(Cﬁzw “’*””)eﬂ

O

d4}
' =¢ 50m0d4}

v
SN

respectively.
By abuse of notation, we use the same notation for their image by ¢:

f’(n):{(\/A‘LKCb/VdAK) € SLy(Ox @ 9%') : a=d = 1mod n, bECEOmOdn}. (10)

Define then for D =1 mod 4 and D = 2,3 mod 4

12,4 ={( o "VP<)eT(2):b=c=0mod4},

- K o VAR L (11)
I'(2,4) = A (et w) f ) el(2): ¥ = =0mod 4}

respectively. Note the subtlety in the definition of T'(2,4) for D = 2,3 mod 4, this will be
explained below.

Consider now I' a subgroup of Sp,(Z) of finite index. The projection 7 : I'\Ha — Spy(Z)\H2
is a finite map. Recall that if Ak is the discriminant of Ok, we denote by Ha, the Humbert
surface of discriminant Ag. An irreducible component of HgK =11 (Ha, ) in I'\H2 is called
a Humbert surface component.

Let G = ¢ 1(I") and T' = G N SLy(O ® 9'). If the matrix M, is not in T, then G =T,
otherwise G = T'UT'¢. By Proposition 2.21 we get that the following diagram is commutative:

2 Hy
G\H2 —L= T\

where p is a map generically of degree 1 onto its image, which is a Humbert surface component
g

HY
Proposition 2.29. Suppose that by, ... by are modular functions for I' which generate the
function field C(T") and that the restriction of by,..., by is well defined on the component
HZK (on an open set). Then p*by,...,p*by generate the function field Cg of Hilbert modular
functions.

In particular if My € T', the pullbacks generate the symmetric Hilbert modular functions
for I'; while if My & T the pullbacks generate the full function field Cy of Hilbert modular
functions for I'.

Proof. This is identical to the proof of Corollary 2.23. 0

We have seen that by Corollary 2.23 we can take j, = ¢*jy, for k = 1,2, 3, as invariants on
the symmetric Hilbert modular surface. These functions are algebraically dependent. Similarly,
we want to apply Proposition 2.29 to the functions by = ¢*by, and 7, = ¢*ry for k = 1,2, 3.

Theorem 2.30. The functions 7y and by for k =1,2,3 are generators for the field of Hilbert
modular functions invariants by I'(2) and I'(2,4), if D = 1 mod 4, and by I'(2) UT'(2)o and
'(2,4) UT(2,4)0, if D = 2,3 mod 4, respectively.
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Proof. By Equation (6), we have that ¢~1(T'(2,4)) N SLe(Ox @ 95') = T(2,4). Thus, the
functions by, are modular for f(2,4). Moreover, if D = 2,3 mod 4, then these functions are
also modular for I'(2,4)0, as the matrix M, of Equation (4) belongs to I'(2,4). Similarly,
¢~ H(T'(2)) N SL2(Ok @ 0x') = ['(2) and the 7, are modular for T'(2) and also by T'(2)o when
D = 2,3 mod 4. We conclude using Proposition 2.29 and the fact that the b; (resp. r;) are
generators for the field of Siegel modular functions invariants by I'(2,4) (resp. I'(2)). The
pullbacks are indeed well defined because the denominators of these invariants divide y1g, so
the locus of the denominators are components above the Humbert surface Hj. ]

Proposition 2.31. The subgroups I'(2) and T'(2,4) of T'(1) are of index

36 and 576, if D=1modS§;
60 and 960, if D=5 modS§;
48 and 192, if D =2,3 mod 4.

Proof. We do the proof for I'(2,4) as the other one is similar. Note that T'(1)/I'(4) ~
SL2(Ok /40k). We have then that Ok /40 is isomorphic to

o 7/AZ x Z/AZ when 2 is split, namely when D = 1 mod 8;
e 7Z/4Z[X]/(X?+ X + 1) when 2 is inert, namely when D = 5 mod 8;
e 7Z/AZ[X]/(X?) when 2 is ramified, namely when D = 2,3 mod 4.

The cardinality of SLa (O /4O ) is then 482, 3840 and 3072 respectively. Moreover, the index
of the subgroup I'(4) of T'(2,4) is 4 when D = 1 mod 4 and 16 when D = 2,3 mod 4. As these
two sets are normal subgroups of f(l), the third isomorphism theorem of groups gives us the
desired results. O

Proposition 2.32. The number of Humbert surfaces components for I'(2) and for T'(2,4) is
respectively

10 4 D =1mod 8 10 f D=1mod8
6 if D=>5mod8 and 6 if D=>5mod8
15 4f D =2,3mod 4 60 if D =2,3mod4
Proof. See | ]. An heuristic argument for I'(2,4) is that given P(by,ba,bs), the Hum-

bert component HgK which is the image of ¢ and Q = ¢(7) € Ha, then for any v €
Sp4(Z)/T'(2,4), we have that P(b;(792)) = 0 only for the matrices v which come from the
image of ¢(I'(1)/T(2,4)) and of ¢(I'(1)/T'(2,4)0) in Sp,(Z)/T'(2,4). The number of compo-
nents corresponds to the number

v(D) - [Spa(Z)/T(2,4)|/IT(1)/T(2,4)],

where v(D) is 1 if D = 2,3 mod 4 and § if D = 1 mod 4. This argument works also for I'(2).

This is easier to see via the modular interpretation. Let I' = T'(2) (respectively I'(2,4)).
Then an element of I"\ Hy corresponds to a principally polarized abelian surface with a sym-
plectic basis of the 2-torsion (resp. a symmetric theta structure of level 2). The cover
I'\H2 — Spy(Z)\H2 corresponds to forgetting this extra structure, and the fibers form a
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torsor under the isomorphisms of this extra structure, which are equal to Sp,(Z)/I'(2) (resp.
Sp(Z)/T(2, 4)). o

The same is true for the map HgK ~ G\H] — HgK ~T(1)UT'(1)o\H? and the action of
['(1)UT(1)0 /G on the fibers, where G is I'(2) (resp. I'(2,4)) when D = 1 mod 4 and I'(2)UT(2)o
(resp. I'(2,4) UT'(2,4)0) when if D = 2,3 mod 4. Except that here the extra structure has
to be compatible with the action of Ok. (For instance a symmetric theta structure of level 2
is induced by a symplectic basis of the 2-torsion and a compatible symplectic decomposition
of the 4-torsion into maximal isotropic subgroups. For this symmetric theta structure to be
compatible with the action of O, these maximal isotropic subgroups have to be stable under
the action of Ok.)

In particular on the Humbert component HY .+ then the action of (1) UT'(1)o/G per-
mute the fibers. Since this quotient is 1som0rphlc to ¢(I'(1) UT(1)0)(2)/T(2) (resp. to
H(T(1) UT(1)0)I'(2,4)/T(2,4)) this means that the action of Sp,(Z)/ (gb(f( U F(I)U)T(Q))
(resp. Spy(Z)/p(T(1) UT(1)0)T'(2,4)), which is not compatible with O, permutes the com-
ponents. ]

We give the equations of the Humbert component corresponding to the image of ¢ for
I'(2,4) and D =2,3,5

by — §(b5 4+ b3) = O;
—b} — b3 — 4b% — 20362 + 4b1by + 4b1bab3 = 0; (12)
SEOZi b 4 300 Yz (bibs)*) + bibobs(1 4 32, bF — bibabs) = 0

and similarly for I'(2) and D = 2 only

(1673 — 1673)r3 + (—1673 + 167«3)7«2)r§L + ((=1673 + 1673)7r3 + (—1673 + 1673)7r3+
(1673 — 167«3)7«2)7{’ +(—r (16r3 — 1673 + 2)r3 + (—1473 + 14rg — 1)r3+
(—16T§ + 147”3 +2r3)ro + (— 7‘3 + 27“3 — 7“3))7”1 (27“37“2 (—167“3 + 14r3 — 27“3)7"%4—
(14r3 — 12r3)r2 + (2r3 — 27“3)7“2)7“1 + (- 7“31"2 + 2r§r2 - r3r2) 0.

(13)

For D = 3, the equations are too big to be put in the paper. The computation of these
equations is explained in [ |, where the equations for many discriminants can be found.
We managed to directly recompute the equations for the small discriminants by evaluating the
invariants at many matrices and by solving a linear algebra system.

3 Invariants of Hilbert surfaces

3.1 Generators of the field of Hilbert modular functions

Let T' C SLy(Ok @ ') be a subgroup of finite index. We note Hp = I\'H? the correspond-
ing Hilbert modular surface, and Hy . = (I' UTl'c)\H? the corresponding symmetric Hilbert

modular surface. We let G = I in the first case, and G = ' UT'o in the second one.

Proposition 3.1. Let Hg be a Hilbert surface as above. Then Cg) = C(iy,i9,13) where i
and iy are symmetric Hilbert modular functions for SLa(Ox @ 8;(1) and i3 s algebraic over
C(i1,i2). Moreover iz is symmetric if and only if Hg is symmetric.
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Proof. Since Hg is a surface, the field of Hilbert modular functions Cg is of transcendence
degree 2. By the primitive element theorem, Cg is generated by two transcendental func-
tions 1,4y (called primary invariants) and a third one i3 algebraic over C(i1,i2) (called a
secondary invariant). Since Cg is algebraic over CSLQ(OK@a;(l)uSLg(OK@algl)a? we can take
11,19 € CSLQ(OK@a;(l)USLQ(OK@agl)a' They are then symmetric, so Hg is symmetric if and only
if 43 is symmetric. O

Usually working with symmetric Hilbert modular surface yields invariants easier to com-
pute. For instance while Hf(1) is not often a rational surface according to Theorem 2.4, from
[ | we have that Hppy 5 isa rational surface for every fundamental discriminent Ax < 100.
Hence for these surfaces we need only two birational primary invariants to define the modular
polynomials. The drawback of symmetric modular surfaces is that they can not be used for
all the applications of isogenies as we will see in Section 4.1.

Note that by the general theory of Shimura varieties Hg has a (birational) model defined
over an algebraic number field F'. In fact by [ , Section X.4], the Hilbert surface can be
defined over QQ, and its connected components over an abelian extension of Q. In particular if
the invariants i1, i3, i3 come from this model defined over F', the equation E(i1,2,i3) = 0 will
have coefficients in ¢, € F(X1, X5) where E = 3 ¢y (i1, 42)i5.

But it is important to know in practice when the Hilbert invariants we work with are defined
over a number field F: it is when their Fourier coefficients have value in F. In practice the
invariants we use for computation (pullbacks of Igusa invariants, pullbacks of theta functions,
Gundlach invariants) even have Fourier coefficients in Q.

Lemma 3.2. Let iy,...1, be Hilbert modular functions generating the Hilbert modular field
Cg, and let £ be the ideal of equations among the iy, and Hg the corresponding birational model
of Hg. Then if the Fourier coefficients of each iy are in F, then the ideal £ is generated by
equations with coefficients in F', so Hg has a model in F.

Proof. The proof uses a similar argument as | , Theorem 5.2]. If we fix a monomial
ordering, the generators of £ are uniquely determined when they form a Grobner basis. This
Grobner basis induces a set of linear relations on the Fourier coeflicients of the ¢; from which
its coefficients (as unknown) are the unique solution. But since the Fourier coefficients lie in
F, this linear system is defined over F', so the solution is defined over F. O

Remark 3.3. The condition on the Fourier coefficients is a sufficient condition, but far from a
necessary condition. In general the field of definition of the cusps will be larger than the field
of definition of the Hilbert surface, so to know if the equations among the Hilbert functions i
will lie in a subfield of F', one needs to look at the Galois action on the Fourier coefficients.

3.2 Fast evaluation of Hilbert modular functions

We will compute modular polynomials using an evaluation/interpolation approach. To be able
to compute these polynomials in time quasi linear in their size, we need two properties for the
invariants used:

e For the evaluation, given 7 = (71, 72) € G\H? we need to be able to compute the invariants
(i1(7),i2(7),i3(7)) € C? in time quasi-linear in the required precision;
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e For the interpolation, given the value of (i1(7),i2(7),i3(7)) € C3 we need to be able to
recover the matrix 7 € G\'H? in time quasi-linear in the required precision.

Theorem 3.4. Assume thatT D T(2,4), G =T or G = TUT'o, and iy, 9, i3 such that F(Hg) =
F(i1,i2,13), where F is the field of definition of Hg. Assume that we are given the Fourier
coefficients of the invariants iy, is, i3. Then both the map G\H3 — C3, 7+ (i1(7),42(7), i3(7))
and its inverse can be computed in time quasi-linear in the precision.

Proof. We first do the symmetric case. According to Theorem 2.30 the functions by for k =
1,2,3 are generators for the function field F'(Hj 1)) when D =1 mod 4 and F'(Hpy 4,1 (2,4)5)
when D = 2,3 mod 4. In both case this means that the invariants i, can be expressed as
rational functions in the by: ix, = Ry (b1, bs, 53).

Computing these rational functions is just a pre-computation step and can be done by linear
algebra on the Fourier coefficients, or by linear algebra on the evaluation of these modular
functions at several period matrices 7 (where the evaluation uses the slow summation series
given by the Fourier coefficients).

By | ; | given a Siegel matrix Q € Ha, evaluating the by (€2) can be done in time
quasi-linear in the precision. Given a period matrix 7 € ’H%, one can use the map ¢ from
Section 2.3 to get Q = ¢(7) € Ha, the values of by () = b(¢(7)) in time quasi-linear, and then
the values of iy (1) = Ry (b1 (1), ba(7), b3(7)).

For the converse, the (restriction of the) Igusa invariants j1,72,73 can also be expressed as
rational functions in the invariants i1,43,73. From the values of these three invariants, one
can then compute the values of the Igusa invariants, and thus recover using [ ; ]a
matrix {2 € Hy giving these values in time quasi-linear.

The matrix € lies in the Humbert surface of discriminant Ag, so it satisfies a singular
relation. By Section 2.4 there is a constructive algorithm to find v € Sp,(Z) such that ~.Q
satisfy a normalized singular relation. By Section 2.3, +.€) is in the image of ¢, so one can
compute 7 = ¢ 1(7.Q) € H3. It then only remains to compute all classes of 7 under the
action of the finite group SLa(Ox @ 95')/G to find a 7’ such that (i1(7'),i2(7'),i3(7)) has the
required values.

For the non symmetric case, recovering 7 from the values of the invariants uses the same
algorithm. The only difficulty is for the evaluation in the case D = 2,3 mod 4 because in this
case the by are symmetric while i3 is not, and can not be expressed as a rational function in
the b,. However, since ¢ = i3 + o(i3) and n = i30(i3) are symmetric, one can evaluate ¢(7) and
n(7) in time quasi-linear using the techniques above for the symmetric case. Thus i3(7) is a
root of X2 —t(7)X +n(7). The two roots can be computed in quasi-linear time, and choosing
the correct one only require an evaluation with small precision of ¢3 using its Fourier series. [

Remark 3.5. In practice, while the pre-computation step does not affect the asymptotic
complexity, it is important to optimize the computation of the invariants ij, as rational functions
of the by, to be able to do concrete computations. Rather than using linear algebra, one can use
an interpolation approach as outlined in Section 3.3. Indeed since we know by | ; ]
how to obtain a period matrix €2 from the values of the by, it is possible to use fast algorithms
for the interpolation. We note that this method requires the equation P(b1,by,b3) = 0 of the
Humbert component described by the by, (we refer to Section 3.3 for more details).

Likewise, to recover 7, rather than expressing the Igusa invariants j, in terms of the
Hilbert invariants iz, one could simply use Newton’s method to invert the equations i, =
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Ry (b1, bo,b3), P(b1, b, b3) = 0 for k = 1,2,3 to recover the values of the by hence the matrix
), hence the matrix 7.

3.3 Interpolation by Hilbert modular functions

For the interpolation approach of the computation of modular polynomials, we will interpo-
late the coefficients of these polynomials as rational functions in term of the chosen modular
invariants il, ig, ’i3.

Let Hg be a Hilbert surface defined over F' of level G = T or g = ru f‘a, and ¢ a Hilbert
modular function in F'(Hg). We assume that the invariants ii,1i2,i3 are such that the map
T € G\H? — (i1(7),i2(7),43(7)) can be inverted in time quasi-linear (see Theorem 3.4).

We explain how to get a fast interpolation algorithm to express ¢ as a rational function in
i1,12,13. (Without the above property, one can still do linear algebra on the Fourier coefficients
or the evaluations, which gives a slow interpolation algorithm).

We first handle the case where Hg is a rational surface, hence F(Hg) can be written as
F(J1, J2), using only two primary invariants. For the interpolation step we write

A(J J ) Zd§l d§2 JmJn Ed§1 (J )Jm

B
B ) S b T S b ().
Let 2, form = 1,...,d4+d%+2, where T designes the total degree, such that (J1(zm), J2(zm))
is of the form (uy,, vu,,) for a fixed v € C. Interpolate to find the univariate rational fraction
c(Ji,vJ1) and write the fraction such that the coefficient of degree 0 of the denominator is 1.
Compute in this way the fractions ¢(Jy,vpJ1) for n = 1,..., max (df};, d%) + 1. Interpolate
the polynomials a,, and b, to obtain ¢(Ji, J1J2) and substitute Jo by J2/J; to obtain c. Note
that we have to consider the total degree to interpolate correctly the fractions. More details
can be found in | , Section 2], in particular a complexity analysis.

In practice for the modular polynomials the coefficients of the bivariate rational fractions
will be defined over Q. So the computations are done at precision N which has to be large
enough so that we can recognize the coefficients of the bivariate rational fractions as algebraic
numbers in Q using a continuous fraction algorithm. We do not usually know any bounds for
the precision so that in practice we double the precision until we manage to find a sufficient
precision to compute the modular polynomials. The complexity of the interpolation of a
bivariate rational fraction is O(drdz,N), where d7 = max (d4,d%) and dj, = max (d‘}‘Q, d5).

We now describe the general case, where we have three invariants ¢1,i9,43 where ¢; and 49
are primary, and i3 is a secondary invariant, so there is an equation E(i1,i2,i3) = 0 describing
the surface Hg. Like before we would like to work with values z; with the property that
(11(25),92(25),13(%4)) is of the form (um, Vntm, W,y ), where the subscripts m, n and r vary
from 1 to the maximal degree the variables iy, io and i3 appear. But this is not possible
because of the equation E that i1,12,43 have to satisfy, so that for fixed i; and is, the values
i3 can take are determined (moreover, they will not be of the form w,u,, and the number
of values will be inferior to the degree in i3). A solution to this problem consists to remark
that F(i1,i2,13)/(E) = F(i1,12)[is]/(E). Thus the modular function ¢ can be written as
(i, ig,i3) = Zf;ol ci(i1,i2)i%, where d is the degree in which the variable i3 appears in E and
c; € F(il,iQ).

The interpolation is done as follows. For sufficiently many values u,, and v,, compute the
d roots wy of By, vptum,z). For r =1,...,d, find 2. € H? such that (i1(z.),i2(2),i3(2:)) =
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(U, UnUm, wy) and evaluate ¢(z,) = Z?:_ol i (U, VU )wE. Since w, = i3(2,), we first inter-
polate ¢ as a univariate polynomial in i3 by interpoling on the d values w, to recover the d
coefficients ¢;(um,, Unum) It remains to do the interpolation of the coefficients ¢; to recover them
as rational functions in i1, 75 as was outlined above.

We summarize this discussion by the theorem

Theorem 3.6. Let G be a subgroup of finite index in SLy(Ox @ 0i') U SLy (O @ 9y )o. Let
i1, 19,13 generating Cg be such that the evaluation map T € G\H? — (i1(7),i2(7),i3(7)) can be
inverted in time quasi-linear in the precision.

Let E(i1,i2,13) the equation describing the Hilbert surface Hg, and d the degree deg;,(E)
of i3 in E.

Let ¢ a Hilbert modular function in Cg, then ¢ can be written as ¢ = Zi;é ci (i1, d2)i%.
We let dp be the mazximal total degree of all the coefficients c, (where the degree of a rational
function is the mazimal of the degree of its numerator and denominator), and d;, the maximal
degree in iy of the coefficients cy,.

Then if ¢ can be evaluated in time quasi-linear in the precision, then the coefficients ci can
be computed in precision N in time O(ddpd;, N).

Assume furthermore that the ci lie in a number field F'. Let N be the mazximal height of
the rational coefficients of each ci. Then the coefficients ¢ can be recovered exactly in time
O(ddrd;,N).

In the case that Hg is a rational surface so that we only need two primary invariants iy
and i, then ¢ can be interpolated in time O(drdy,N).

Proof. Indeed the evaluation of ¢ will be executed O(ddrd;,) times and we will interpolate
O(d) bivariate rational fractions and do O(drd;,) interpolations of an univariate polynomial.
The complexity is then

O(ddrd;y) + O(d)O(drdi, N) + O(drd;,)O(dN) C O(ddrd;,N). (14)

Given a coefficient ¢ € C computed at precision O(N), if ¢ lie in a number field F' then
one can use the LLL algorithm | | to recover ¢, € F. Using fast version of LLL this
reconstruction step can be done in time O(N) (See | D).

In the case that Hg is a rational surface, the evaluation step will be executed O(drd;,)
times and we will interpolate 1 bivariate rational fraction. The complexity is then

O(d7d;s,)O(N) + O(drds,N) € O(drdi,N). (15)
O

More generally a similar technique could be used if we had several secondary invariants
13,144, - - - tg. There is no unique expression of ¢ in terms of the i due to the equations among
the invariants 7. But for the interpolation to work we need to interpolate the same rational
function expression. A solution is to fix a monomial ordering, since this defines a unique
rational function expressing ¢ modulo the corresponding Grébner basis. As long as the partial
evaluation of the Grobner basis corresponds to the Groébner basis of the partial evaluation of
the equation (see | : ]), the interpolation step will interpolate the correct expression
of the rational function.

21



3.4 Example of invariants
3.4.1 Gundlach invariants

We first illustrate Theorem 3.4 for the Gundlach invariants .J1, Jo defined for Q(+/2) and Q(v/5)
in Theorem 2.8 and 2.10. The only small difference is that for convenience we will use the
map ¢, defined in Section 2.3 rather than the map ¢ to map Hilbert matrices 7 € ’H% to Siegel
matrices ) € Hs.

In this case we have already seen how to express the pullbacks of the Igusa invariants in
terms of the Gundlach invariants in Section 2.3 (see Corollaries 2.16 and 2.14). The expres-
sion is easier than the method outlined in Theorem 3.4 because the Gundlach invariants are
expressed in terms of symmetric Hilbert modular forms whose relation to the pullbacks of the
Siegel modular form defining the Igusa invariants are very simple (see Theorems 2.15 and 2.13).

We outline the algorithm (Algorithm 3.7) to find 7 € H? from the values J;(7) and Ja(7).

Algorithm 3.7: 7 from (J1(7), J2(7))

Data: The values Ji(7) and Ja2(7), the working precision N
Result: 7 modulo SLy(Ok) U SL2(Ok)o

1 Compute j1(92), j2(£2), j3(€2), where Q € Hz such that Q = ¢.(7);
2 Deduce the period matrix 2 (modulo Sp,(Z)) from the three Igusa invariants;
3 Find some v € Sp,(Z) such that ¢.(7) = vQ and deduce T;

The first step can be done using Corollary 2.14 or 2.16. The second is explained in [ ;
] and can be done in O(N) (under some conjecture | , Conjecture 9.1], the com-
putation is simplified because we do not need to compute low precision theta functions to get
the correct sign in the Borchardt mean). For the third step, remark that for D = 5, if 7 € H2,
then ¢.(7) = (g; 82) € Ho verifies by definition Q1 + 9 — Q3 = 0. The second step provides
Q' € Ho which is more precisely in the Humbert surface Hs. Thus by Humbert Lemma we
know there exists a matrix v € Sp,(Z) such that Q" =~ = (gg gg) verifies Qf +Q5 — Q4 =0
(see Remark 2.18 for the computation of v). We have then 7* = ((ﬁ)*)_1 ‘R71Q"R™. For
D =2, ¢.(7) verifies 1 + 205 — Q3 = 0 and we can adapt the algorithm to find the matrix ~.
Thus

Corollary 3.8. Given Ji(7) and Jo(7), where Ji and Ja are the Gundlach invariants for
D=2 or5 and T € H3, then we can find 7 € (SL2(Ok) U SLy(Ok)a)\H3 in O(N) time.

For the evaluation of the Gundlach invariants, using their definition as Fourier series would
not give a good enough complexity. Instead Theorem 3.4 suggests to express J; and Js in
term of the by. Here, since the Gundlach invariants are invariants for the full modular group
SLy(Ok @ 95"), we can also express them directly in terms of the (pullbacks of the) Igusa in-
variants ji, jo,j3. Rather than doing an interpolation using Section 3.3, the relations expressing
the Igusa invariants in term of the Gundlach invariants are sufficiently simple to be inverted
by a Grobner basis.

In the case D = 5 we have found:

Jo/ v = (1/6912¢711¢% )2 — 1/2304¢"11¢"j5 — 1/3359232¢"16")3 + 1/373248¢%11¢*13¢" 13-+
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1/864¢%)10%i3 — 1/124416¢0%)1 0" i20"2 + 1/124416¢*i16%55 + 1/3359232¢%j3—
1/11197446™56%i3) /(611675 + 1/1944¢%j3 — 1/648¢*i5¢"}s);

J1 = —(45349632¢%i3¢* i3 — 2584929024 /5¢* i3 *i3¢% i3 — 499571546112 /5013 ¢*i5+

11019960576 /5¢*13 ¢*i2¢*j3 + 1410554953728 /5015 *15¢* 13 — 20815481088 /5¢*i3d*j2¢*i5+
14693280768 /5013 ¢*i3 — 1866246*13 %15 4 16236288 /5¢* 13¢50 i3 — 12380449536 /5¢*i16*)5—
23514624012 ¢*i5p"3 + 146887458048 /54*13 0% 50" i3 + 31972578951168 /5¢* 16" )5+
90699264012 ¢*i5p*i3 — 651402114048 /54*i3¢%i3¢*i2 — 90275517038592/5¢* 116" j3¢*i3—
196515072012 ¢*i2p* )3 + 1279948013568 /5¢*12¢* 2015 + 22674816003 ¢*jod*i5—
940369969152/5¢*i7¢* a3 — 544195584 /56 179"55 + 192¢")1¢*j5 — 22464 /56")1¢"i50" 13—
18289152/5¢*j14™5+229824 /5¢*j10%15¢*i24+260527104/56*j10*15¢*i3+30051689472 /56*)1 ¢*i5 —

1342656 /5¢*11¢*i5¢™)3 — 1482541056 /54*)1¢*i56% 15 — 171240210432/5¢*j16*15¢ i3+
9797T764™)1 ¢ i5d* )3 + 4212476928 /5¢*j10% 150" i3 + 243799621632/5¢* 116" j30™ i3 —
2286144¢*j10%30*i5 — 5976073728 /50116 i30*i3 + 16656192/5¢%1 0% i34 15+
3386105856 /5¢*110* i35035 — 13856832/56%j10%20*i% 4+ 5038848 /56*j10%i5 — 320013+
55680%15¢% )3 — 1555206%15 — 403200%)5¢*3 + 4572288 /56*156* )3 + 3869835264 /5¢*i1+
1555200*i56%13 — 6718464 /5¢0%15¢*i2 — 336960¢%i50*i3 + 388800¢*i36*i5 — 186624¢*i56*S)/
(6735 — 42/5¢*j5¢" i3 — TT76/5¢"i5 + 117/5¢*i56"}3 — 108/5¢"36"}3);
In the case D = 2, the equations are too large to be included in the paper.
We then have the following algorithm:

Algorithm 3.9: Evaluation of J1(7) and Jo(7), for 7 € H?

Data: 7 € H? and a working precision N
Result: J;(7) and Ja(7)

1 Compute = ¢.(7) at precision N;
> Compute j1(52), jo(2) and js(2);
3 Deduce Ji(7) and Ja(7) from the Igusa invariants;

For the first step we only have to use the definition of ¢.. For the second, we refer to
[ ]. The evaluation of the Igusa invariants can be done in O(N) by [ ]. For the third,
we use the equations above.

Corollary 3.10. We can evaluate the Gundlach invariants Ji(7) and Jo(7) for D =2 or'5 at
any point T € H? with a complexity in O(N) time.
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3.4.2 Pullbacks of theta functions

We now outline efficient procedures for the computation of the b;(7) at any 7 € H3} and for
finding some 7 € M} from the b;(7). The first one is similar to Algorithm 3.9, the third
step being trivial as b; = ¢*b;, and has the same complexity. For the second procedure,
we also proceed as in Algorithm 3.7, the first step being also trivial. For the second, it is
possible to find Q modulo T'(2,4) in O(N) time (see | ]). The difficulty is in the third
step. Indeed, we are able to find « such that ¢(7) = 72, but v is not necessarily in I'(2,4) so
that we only find 7 modulo T'(1) UT(1)o (T(1) = SL2(Ok @ 9%') here) instead of 7 modulo
['(2,4), if D = 1 mod 4, or modulo I'(2,4) UT'(2,4)0, if D = 2,3 mod 4. A solution consists
to compute beforehand all the classes of I'(1)/I'(2,4) and of T'(1)/T(2,4)0 and see how they
are sent to the classes of Sp,(Z)/T'(2,4). It suffices to find in which class of Sp,(Z)/I'(2,4) ~
belongs to to find a corresponding matrix 4 in T'(1)/I'(2,4) or in I'(1)/T'(2,4)0. Then we have

(37 17) = p(3 Hp(7) = v 1402 = Q. Thus

Corollary 3.11. We can evaluate the three bi(1) for T € H? in O(N) time and we can find T
modulo I'(2,4), or modulo I'(2,4) UT'(2,4)0 according to the cases, from the values b;(T) with
this same complexity.

Note that when we use the function b; to define modular polynomials, for the interpolation
step we need the equations of the Humbert component defined by the b;, as explained in
Section 3.3. We refer to Equation 12 for the equations for D = 2,3, 5 and to [ | for larger
discriminants.

3.4.3 Non symmetric invariants

By [ ], non-symmetric Gundlach invariants for Q(1/5) can be obtained considering the
Hilbert modular forms

Fis = 16(5°Ffy — 5°G3FsFfy /2 + GSFL /21 + 3252 GoFy Fio /2 — G Fg Fio/2° — 2 - 3°F) + G3F§ /2),

F? = Fy

and by defining the modular function J3 = Fj5/F3. To use interpolation to compute non-
symmetric Hilbert modular polynomials for Ji, Jo and J3, we need the equation of the Hilbert
modular surface, which is given by

J2 = (J} + (=2J2 — 1000J5 4+ 50000).J7 + (J3 + 1800.J3).J; — 864.J5)/(16.J32). (16)

We cannot directly efficiently evaluate J3. However we can use Equation (16) to compute
J2 and the correct square root is determined by the precomputed Fourier serie of J3. The

polynomials obtained are smaller than the symmetric ones. We refer to | ; ] for
more details on the polynomials coming from these invariants.
The paper | ] contains a lot of other invariants. For instance, still for Q(v/5), the

authors prove that the Humbert surface Hs is birational to IP’; 5, and that a birational model
over Q of the non symmetric Hilbert modular surface is given by the double cover of IP;h

22 = 2(6250h% — 45009%h — 1350gh — 108h — 972¢° — 324¢* — 274°).
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As this surface is also rational, a parametrization is obtained, given by the modular functions
m and n. We have

m = —(5g2+3¢g/2—125h/9+3/25)/(g> +139/30+1/25),  n = z/(18(¢> +139/30+1/25))

and
g=(m?—5n%—9)/30, k=3m(10g+ 3)(15g + 2)/6250,
h =k + 9(250% + 759 + 6)/6250, = = 3n(10g + 3)(15g + 2)/25.
(See | , Section 6]). Using these equations, we have found the relations g = —J;/(6J3),
h=J2/J35 and z = —F3F5/(2F]) from which we can compute m,n explicitly. The functions

g and h are easy to evaluate from the Gundlach invariants, for z we use the equation of the
double cover given above in a similar strategy as the one for Js.

More generally in [ ] equations are given for every quadratic field Q(v/D) for all thirty
fundamental discriminants D with 1 < D < 100. We can then use invariants for other fields
than Q(v/5). The difficulty residing in the optimization of these invariants: for instance for
computing modular polynomials it is better that they have the same denominator.

3.5 Equations for covers of Hilbert surfaces

Let Go C G1 C SLa(Ok @ 9x') USLe (O @ 0')o be level subgroups. Then Hg, — Hg, is a
covering. Let i1,1i2,i3 be Hilbert modular functions such that Cg, = C(i1,1i2,i3) and ji, jo2, j3
be Hilbert modular functions such that Cg, = C(j1, j2,j3)-

To describe the cover Hg, — Hg, we need to give the full set of relations between
i1,19,1%3, j1,J2,J3. Lo be more precise, as always in this text we work up to birational equiva-
lence, and 41, 2, i3 only give an embedding of an open subset of Hg,, and similarly for ji, jo, j3.
To describe the full cover we would potentially need to give the relations between more modular
functions invariant by G; (respectively Gs), but the same tool as described below will apply.

Let i1, 12,13 be generators of the Hilbert modular field Cg, such that the evaluation and its
inverse can be computed in time quasi-linear (see for instance Theorem 3.4).

Let j be a generator of the field extension Cg,/Cg,. Such a generator always exists by
the primitive element theorem. The cover Hg, — Hg, is then (up to birationality) uniquely
described by

e The minimal polynomial ®; € Cg, [X] of j over Cg;
e And the polynomials Qi € Cg, [X] such that ji = Qx(j).

In practice it is more convenient to use the polynomial ¥, € Cg, [X] defined such that jk@"j (j) =
Uy (j). The polynomial Wy is called the Hecke representation of ji and is more convenient for
computations than @ because it has smaller coefficients [ , Section 3].

Lemma 3.12. ¥y (X) =", cq, /0, ;X)) (X —57).

Proof. Let M/K be a finite Galoisian extension of Galois group G, and for f € M and v € G
note f7 the action v.f of vy on f. Let G C G1 C G and let Ky = M%2 K| = M©1. Let j be
a generator of Ko/K7; then its minimal polynomial is ®(X) = [ eq, /q, (X — J7).

Let J € Ky, then there exists Q € K;[X] such that J = Q(j). The Hecke representation is
given by a polynomial ¥ € K[X] such that J®'(j) = ¥(j).
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Since J7 = Q(j"), the polynomial @ can be computed by a Lagrange interpolation. Indeed,
evaluating 3 s, /ay Jo [y 25(X —3%Y/(j% — 4%) at j7 gives J7. Now, this expression is equal
t0 Ysea jas J° ares(X — 3°)/®'(5°) = Tsea jay J°@(X) /(X — j7)®'(j°)) and we deduce
that taking U(X) = > s5cq/m JO®(X)/(X — j9), we have the property JY®'(j7) = ¥(57).

We apply this to the extension Cf(n)/(CSLQ(OK@();{I)USLQ(OK@a;(l)a where I'(n) is a level

subgroup included in Go. Indeed this is a Galoisian extension of Galois group (SLa(O KEB@;&) U
SLy(Ox @ 9')o)/T(n), and we apply the result above to G1 = G1/T'(n) and G = Go/T'(n)
with the notations of the Lemma. O

Theorem 3.13. Assume that we are given

o Cg, = C(iy,i2,13) for invariants on which the inversion of the evaluation can be computed
in time quasi-linear in the precision;

e the equation E(i1,i2,i3) = 0 of the surface birational to Hea, described by i1,12,13, and d
the degree deg;, (E) of i3 in E;

o Cg, = Cg,(j) for a Hilbert modular function j which admits a fast evaluation algorithm;

o Cg, = C(41,72,743) for Hilbert modular functions ji, j2,j3 which admit a fast evaluation
algorithm;

e and assume that all the modular functions i1,12,13, 7, J1, j2,j3 have Fourier coefficients

in an algebraic number field FF C C.
Let ®(X,iy,iz,43) = [lyeq, /(X — 47) = XP + S0 Z( em(ir,in, is) X™ be the minimal
polynomial of j over Cg,, where D = #G1/Ga. Let Wy, € Cg,[X] be the polynomial defined by
Lemma 3.12 for ji. A birational model of the cover Hg, — Hg, is described by the equations

(j) =0, 1P () =T1(j), 522'(j)=T2(j), 5P'()=Vs5()) (17)

The coefficients ¢, of the polynomial ® can be written as ¢, = Zfl;% Cmn(i1,12)15, and
similarly for V. We have cpy, € F(i1,i2).

We let dp be the mazimal total degree of all these coefficients ¢y, (where the degree of a
rational function is the mazximal of the degree of its numerator and denominator), and d;, the
degree in ia of the coefficients cpy. Let N be the mazimal height (over F') of the coefficients
of each rational function ¢y € F(i1,12).

Then ® and the ¥y, can ben computed in time O(ddrd;, DN).

In the case that Cg, is a rational surface so that we only need two primary invariants i,
and is, the computation can be done in time ON(deiQDN).

Proof. As i1,19,13,j have Fourier coefficients in F'; the same argument as in Lemma 3.2 or
[ , Theorem 5.2] shows that ¢,, € F(i1,i2,73). Moreover by the same argument the equa-
tion E is defined over F', so we can also write ¢, € F(i1,12).

To compute the polynomial ®, we take several (well chosen) 7 € H? and evaluate ®(j(7)) =
H7€g1/g2 (X - j(’YT))

Computing each value j(v.7) in precision N can be done with a complexity in DO(N)
time. Using a subproduct tree (see | , Section 10.1]), ®(j(7)) can be obtained in O(DN)
time.
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Separating the coefficients according to powers of X gives the values ¢, (i1(7), i2(7), i3(7)).
This is a procedure to obtain the evaluation of the functions ¢, € F(i1,i2,i3) at any point
7 € H3?. We can thus recover the c,, by interpolation. By Section 3.3 and Theorem 3.6, to
recover ®, the evaluation step will be executed O(ddrd;,) times and we will interpolate O(dD)
bivariate rational fractions and do O(Ddrd;, ) interpolation of an univariate polynomial. Recall
that given the coefficient ¢, € C computed at precision O(N), using the LLL algorithm to
recover ¢, € F' can be done in time O(N) (] D).

The final complexity is then

O(ddrd;,)O(DN) + O(dD)O(drdi, N) + O(Ddrd;,)O(dN) C O(ddrd;, DN).  (18)

The same algorithm work for the Wy, where at the evaluation step, Wy (j(7)) is computed
via a double subproduct tree on ¥; and &.

In the case that Cg, is a rational surface, then to compute ®, the evaluation step will be
executed O(drd;,) times and we will interpolate D bivariate rational fractions. The complexity
is then

O(drd;,)O(DN) + DO(drdi,N) C O(drdi,DN). (19)

O]

4 Modular polynomials

4.1 TIsogenies preserving real multiplication

The main goal of this paper is to define modular polynomials, which parametrizes isogenies
between principally polarized abelian surfaces with real multiplication by Og.

We first give more details on isogenies preserving the real multiplication and their applica-
tions.

Let (A,04) be a principally polarized abelian surface, with real multiplication given by
w:Og — End(A). Let f: A — B be an isogeny with kernel V. Then it is easy to see that B
has real multiplication by Ok (compatible with f) if and only if V' is stable under the action

of n(Ok).
It remains to see whenever B admits a principal polarization. If g is such a principal
polarization, then § = f*fp is a polarization on A. By | , Proposition 5.2.1 and Theorem

5.2.4], the Neron-Severi group of A is isomorphic to the group of totally positive elements
of End®(A), where we denote by End®(A) the endomorphisms commuting with the Rosati
involution induced by 4. When End®*(A) = Ok (which is the case generically for an element
of the Hilbert surface), then 6 comes from a totally positive element 8 € O ". Furthermore it
is easy to check that V' is a totally isotropic subgroup for the Weil pairing eg on A[f]. Looking
at degrees, we also get that #V = Ng /o(8).

Conversely, let 8 € Of" and note 67 the polarization induced from 64 by 8, and V C A[f]
a maximal isotropic subgroup for the Weil pairing eg. Then by descent theory, 68 descends
to a polarization g on B = A/V | and since V' is maximal, 6 is principal. To emphasize the
role of 3, we call the isogeny f induced by V a (-isogeny.

Remark 4.1. The notation #° comes from the fact that if 6 is induced by a symmetric line
bundle £ and § = ¢ € N, then 6 is induced by the symmetric line bundle £°.
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For more details we refer to | ; ; |]. We are mainly interested with cyclic
isogenies of prime degree ¢, these are induced by 3 of norm £. We sum up the discussion above
by the following

Proposition 4.2. Let (A, ) be a principally polarized abelian surface lying on the Humbert
surface Ha, . Then there exists cyclic isogenies of degree £ (possibly defined over an extension
of the field of definition of (A,0)) if there exists a totally positive element B € O of norm
L. And conversely if the abelian surfaces lying on the Humbert surface admit cyclic isogenies
of degree £ generically, then there exists such an [3.

We will apply this when g = £ € Z is a prime number, and when § is a totally positive
element of Ok of norm ¢. When 3 = ¢, the Weil pairing is the usual pairing ey on A[(], and the
corresponding /-isogenies come from isotropic kernels of degree ¢2. Over the splitting field of
A[f] over the field of definition of A, it is easy to see that there are £3 + ¢? 4 £+ 1 such isogenies
(this is the size of the quotient Sp,(Z)/T°(¢)). The computation of the corresponding modular
polynomials is described in [ ]. On the Hilbert side of things, not all such isogenies stay
on the Humbert surface. Indeed this is the case if and only if the kernel is stable under the
real multiplication by Og. Since the Weil pairing is compatible with endomorphisms, as a
Ok module A[{] is given by a symplectic basis ej,e2. To such a basis one can associate the
subgroup V = Oge; which is maximal isotropic for the Weil pairing and stable under the real
multiplication by Og. All other such kernels are obtained in a similar way via the action of
SLa(Ok)/TO(¢) on the symplectic basis (e1, ez).

Proposition 4.3.
o If (0 is inert in O then there are £*> + 1 (-isogenies stable under the real multiplication;
e If ¢ is split in Ok then there are (£ + 1)? {-isogenies stable under the real multiplication;

o If( is ramified in Ok then there are (> +{ (-isogenies stable under the real multiplication.

Proof. Tf £ is inert, then SLa(Ox)/T°(¢) is given by the matrices (} %) for 2 € O /lOf and
(% &), which yields £2 4+ 1 matrices. One way to see that is to remark that SLa(O)/TO(f) is a
quotient of SLy(Of)/T'(€) = SLy(Of /O ) = SLy(F2) and count the matrices in T0(¢)/I'(¢).

If £ splits as (£) = £14o, then #SLo(Of)/TO(¢) = #SLo(Ox ) /TO(£1) x #SLa(Ox) /T (£s) s0
we get (£ 4 1) elements. Again one way to see it is that SLa(Ox /€Ok) ~ SLa(Ok /{10k) x
SLQ(OK/EQOK) ~ SLQ(F[)2.

Lastly if ¢ is ramified, then SLy(Og /€Ok) ~ SLa(F/[z]/2?) is of size £6 — ¢* and counting
matrices in T0(¢) /T'(£) we get that there are £2(£2 —¢) of them so #SLy (O )/T0(¢) = (2 +¢. O

Next suppose that we have 8 € (’)[J?L totally positive of norm ¢. In this case either ¢ is
ramified in O and there is only one kind of cyclic isogenies of degree ¢, the S-isogenies, or
¢ splits as £ = BB and A[f] = A[B] ® A[B] and there are two kind of cyclic isogenies: the
B-isogenies and the [-isogenies.

Proposition 4.4. Let § be a totally positive element of norm £. There are £ + 1 B-isogenies.
They correspond to cyclic kernels of size ¢ in A[B], which are stable by O .
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Proof. We have seen that [-isogenies correspond to maximally isotropic kernels of size £ in
A[B]. Since A[B] is of size £2, such kernels are exactly the cyclic kernels of size £. Since
Ok /BOk ~ Fy, the elements of Ok act by scalar multiplication on A[f] so they stabilize
all the cyclic subgroups. And indeed since SLa(Ok)/I'(8) ~ SLa(F) it is easy to check that
SL2(Ok)/T(B) is of size £ + 1 and a set of representatives is given by the matrices (§ %) for
z€{0,....,0—1}and (2 }).

Indeed since O /BOk ~ Z/I7Z, we have that SL2(Ox)/T%(B) ~ SLy(Z)/T°(¢) whose set
of representatives is well known. ]

Furthermore it is easy to see that the composition of a (-isogeny and a [-isogeny is an
(-isogeny (preserving real multiplication). Conversely a counting argument shows that any
(-isogeny preserving real multiplication split as a B-isogeny and a [-isogeny (which may be
defined over an extension of greater degree). So in the split case we only need to compute /3
and 3 Hilbert modular polynomials.

Lemma 4.5. Let { = 3B be a splitting of £ into totally positive ideals. Let V' C A[B] be the
kernel of a [B-isogeny.

Let € € Oj be a unit, so that €2 is totally positive and we have another splitting of ¢
as £ = (28)(2B). Then ¢ (V) is the kernel of an €3 isogeny, and the isogenous variety
A/e (V) is isomorphic to AV (as principally polarized abelian varieties).

Proof. Let € be any endomorphism of A and 6 a principal polarization. Then the pullback €*0
is induced by the real endomorphism ée where * denote the Rosati involuation. More generally,
if 3 is totally positive, then e*6% = 9P

In particular, if f: A — B is an (-isogeny, then f o€ is an €8¢ isogeny. It suffices to apply
this to e € O (so that é =€) and f : A — B the isogeny with kernel V. If 6 is the principal
polarization induced by the descent of #°, then the descent of (A,6%) induced by e (V) is
(B,05 ") and e ' : B = A/V — A/e1(V) induces the required isomorphism of principally
polarized abelian varieties. O

From this Lemma we deduce that the €?4-modular polynomial will be the same as the
B-modular polynomial.

Remark 4.6. For simplicity of the exposition we work with the maximal real order Ok.
However everything outlined above still work with a real order O that is only locally maximal
at £. Also Section 3 to compute invariants on the corresponding Hilbert surfaces can also be
generalized to this case, and so are the computation of the modular polynomials for O.

4.2 Applications of isogenies and modular polynomials

There are a lot of applications to isogenies, here we only describe one of them. The CM
method allows one to generate abelian surfaces with a prescribed number of points (depending
on the CM field F'). This is particularly important for pairings applications of cryptography
since this is the only way to control the embedding degree. The output of the CM method are
polynomials Pr describing the (invariants of) locus of all abelian surfaces with CM by Op; it is
a remarkable fact of Complex Multiplication theory that these polynomials give the equations
of the class field of the reflex field of F' corresponding to the Shimura class group.

One method to compute these polynomials described in [ | is the CRT approach which
compute all abelian surfaces with multiplication by O over several primes p (carefully chosen
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so that they split completely in the class field), and then use the Chinese Reminder Theorem
to recover the polynomials Pp (which are defined over the real field of the reflex field of F).

To speed up this method, a key step is to first find an abelian surface in the correct isogeny
class. Its endomorphism ring is then an order in F. Then one computes isogenies increasing
the endomorphism ring until we get to Op. It is not the purpose of this article to describe
the very rich structure of the isogeny graph (which is layered under the real multiplication
orders, the top layer being composed of the product of several volcanoes). We refer to | ;

] for more details.

We just remark that it is easy to see that when O is a real order which is not maximal
in ¢, then there are no cyclic isogenies (see Proposition 4.2). But there are still ¢-isogenies,
and there is always one which can decrease the f-adic valuation of the conductor of the real
multiplication order. Taking ¢-isogenies, we can then go up to maximal real multiplication (at
least locally in £), where we can now use Hilbert modular polynomials to stay with maximal
real endomorphism and increase the size of the endomorphism ring (even if for simplicity we
restrict to the maximal real order Ok, everything is easily generalized to an order maximal at
¢ as we remarked above).

If ¢ = aa@ splits into principal ideals generated by totally positive elements, the only way
to be sure to go up the isogeny graph to find an abelian surface with real multiplication by Op
is to be able to compute a-modular polynomials and @-modular polynomial (which each form
a volcano by [ ]). If £ is inert, then this time we need Hilbert {-modular polynomial (the
f-isogeny graph preserving real multiplication also forming a volcano in this case, by an easy
adaptation of the arguments of [ D).

But climbing a volcano can be done using modular polynomials as in the case of elliptic
curves | .

4.3 Computing modular polynomials

We let 8 € O}"F be a prime element of norm L. So L = ¢ if £ € Z is a prime number which
splits or ramifies in O, and L = ¢2 if ¢ stays inert. Let T' C SLa(Ox @ 8;(1) be a level
subgroup containing f(n) for a n prime to L. We want to apply the results of Section 3.5 to
the extension Cfo(ﬂ)mf/Cf.

We first want to give an explicit set of representatives of T'/T?(3) NT. Recall that there in
an isomorphism ¢ : SLa(Of) — SLa(Ox @ '), so that by looking at the preimage by ¢+
we can assume here that I' € SLo(Op) (this is more convenient to study the quotient). Recall
that in this model, T%(8) = {(24) € SLa2(Ok) : B|b}.

Lemma 4.7. Let N be an integer. Then the map SLo(Ok) — SLa(Ox /NOf) is surjective.

Proof. This is an application of Strong approximation theory. In this case an elementary
proof is also given in Bourbaki, Algebre Commutative, VII, §2, n.4: since SL,,(Ox/NOk)
is a product of local rings, it is generated by elementary matrices, so it suffices to lift these
matrices. O

Lemma 4.8. The quotient I'/T NT%(B) is of cardinality L + 1.

Proof. f‘/f: NI%B) ~ TTO(B)/T%(B) so by Propositions 4.3 and 4.4 it suffices to prove that

ITY(B) = T'(1). So it suffices to prove that I'(n)I'(L) = I'(1), which is obvious by the Chinese
reminder theorem.
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Indeed by Lemma 4.7 it suffices to check that 7 : SLo(Ok) — SLao(Ok /nLOk) is surjective
on T'(n)I'(L) (since this group contains the kernel). But since n is prime to L, SLa(Ox /nLOk) ~
SLy(Ok /nOk) x SLy(Ok /LOK) and 7(I'(L)) contains the left factor while 7(I'(n)) contains
the right factor. O

Example 4.9. We describe in more details the important case I’ = SL2(Ok). The group
[ is generated by the three matrices S = (97!), T = ({1) and R = (}¥). Note that
T(149)T = —S so that it will be sometimes more convenient to use the matrix (4 {) instead
of S.

By Lemma 4.8, the subgroup I (8) of [ is of index L + 1 and the set of matrices
Cp={S,T,i € {0,...,L —1}} is a set of representatives of the classes of I'/T°(8).

We can give a different proof using the matrices R, S and T the L 4 1 matrices of Cz are
clearly in differents classes of the quotient I'/T°(3). Remark that ‘T = ST-15~! € T%(8) and
‘R =SR'S~!1 € T9(B) and that I is generated by S, T and ‘R. For all i € {0,...,L}, ‘TT"
and 'RT? are in the class of T while TS and RS are in the class of S. Moreover, ST" is in
the class of S and SS = —I5 which shows that there can not be more than the L + 1 classes

that we already know.

Example 4.10. Another important example is the case I' = f(2, 4). By the above Lemma,
the subgroup I'(2,4) NT9(B) of T'(2,4) is of index L + 1.

If v € T(1)/T°(B) then there exists an element 4/ € I'°(3) such that 'y € T'(2,4). For
applications it is useful to have a constructive definition of 7.

We look at 4 such that 7'y = 0 mod 4, namely such that 4/ = v~! mod 4, and such that
7 = (#9) mod ¢. By the Chinese remainder theorem, these conditions modulo 4 and /¢ gives
a matrix " which must satisfy conditions modulo 4¢ and by Lemma 4.7, 7" can be lifted to a
matrix in T.

Now we go back to the usual model T' € SLa(Ox @ ). Let G be either T or T UTo. We
have G NT0(8) = T NTY(B). In the case that o € G, we recall that by Lemma 2.25 T is stable
under the real conjugation.

Let 1,142, 13 be generators of the Hilbert modular field Cg. (Later we will assume that they
are chosen such that the evaluation and its inverse can be computed in time quasi-linear, like
in Theorem 3.4.)

Let j be a generator of the field extension Cg o (8) /Cg. Such a generator always exists by
the primitive element theorem. In fact it is easy to find such a generator:

Proposition 4.11. Let i1, 2,3 be generators of the Hilbert modular field Cy. Let j be a Hilbert
modular function invariant by T NT9(3) but not by I'. Then Cfmfo(ﬂ) = C(i1,142,13,7)-

Let G =T UTo. Letiy,is, iz be generators of the symmetric Hilbert modular field Cg. Let
j be a Hilbert modular function invariant by T NT%(3) but not by T'. Then if j is symmetric,
then C(fﬂfo(ﬂ))x(a) = C(i1,142,13,7), otherwise (Cfme(B) = C(i1,12,13,7)-

Proof. Since the symmetric case is easily deduced from the non symmetric case, we only do the
case G = I'. We have seen in the proof of Lemma 3.12 that the extension CF(Ln)/CFQ)uf(l)a
is Galoisian of Galois group (I'(1) UT(1)0)/T(Ln). Let K1 = Cz(j) = C(i1,42,i3,5) and

_ bnro(8)/T(Ln)
Ky = Cf(Ln) A o
theory, the subfields between K and Ky correspond to subgroups of I' containing I' N T'9(3).

= Cfme( 3)- Then K7 C K9 and we want to prove the equality. By Galois

31



If we show that the group I' N T9(3) is maximal in T, then we would deduce that K; = Cy
or K1 = Ky. By assumption, only the last possibility can be true. Since the quotient is
isomorphic to I'(1)/T°(3) by Lemma 4.8 it suffice to prove this for I' = I'(1).

Let 7 : I' — SLo(Og/lOk). If  is of norm L = ¢ prime (so that ) is split, then
SLy(Ok JlOK) ~ SLo(Z/¢Z)? and 7(T°(B)) = {( ) x(**)}. By | , Theorem 4.1], the set
of triangular matrices of SLy(Z/¢Z) is maximal and thus (I'°($3)) is maximal in SLy(Z/(Z)?.
As 7 is surjective, we deduce that T'°(8) is maximal in T'.

If 3 = ( is inert, then the image of 7(T'(8)) is given by triangular matrices of SLa(Fy2) so
it is also maximal.

If ¢ is ramified, then SLy(Ox /(Ok) ~ SLy((Z/0Z)[X]/(X?)) and 7(I'°(3)) is the set of
matrices of the form (**X) for any x € Z/fZ. Let G be a group which contains strictly

ko ok

7([°(B)). Then there exists some matrix (4 2) € G, whith B(0) # 0. If A is invertible

(namely A(0) # 0) then (_1}‘0(1))<A61191) = ((1)‘47113> € G and (A7'B)(0) # 0 so that

A7'B = x¢ + 21X with 2y # 0. Finally we have ((1) x0+1“31X) ((1) _xllX) = ((1) o) from which
we deduce that (§}) € G. As this last matrix and the matrices (1 ¢) and (} ) are all
in G and are generators for SLo(Of), we deduce that G is «(I'), that 7(I'°(8)) is maximal
and thus by surjectivity that I'°(j3) is also maximal. If A is not invertible but D is, the proof
proceeds similarly. Otherwise, if both A and D are not invertible, then B and C are. Moreover,

(A5)19) = (éiIB) g) and (A + B)(0) # 0, which ends the proof. O

We want to compute modular polynomials classifying all S-isogenies from an abelian surface
with real multiplication by Og. Geometrically, a point in Hfo(ﬁ) corresponds to a triple
(A,0,V) with a principally polarized abelian surface (A4, 6) and V the kernel of a [-isogeny
(equivalently V' is maximally isotropic for the eg Weil pairing on A[3]). We note 7 : (A,6,V) —
(A,0) x (A/V,6") where ¢ is the polarization induced on A/V by #°. This defines an algebraic
map (a modular correspondence) Hf( g — Hf(1) X Hf“(1)‘ The S-modular polynomials describe
the algebraic relations giving the image of this map.

Concretely, if i1, 19,13 generate (C(f‘(l)), the S-modular polynomials for the invariants iy
describe the locus of the modular points ((i1(2),i2(2),3(2)), (i1(2/5), i2(z/5),i3(z/B)) for z €
H2. In particular the S-modular polynomials classify the S-isogenies. Indeed if z € f’\?—l%,
the (-isogenous varieties are %'y -z for v € T'/T%(B). Furthermore since o1'%(3)o = I'%(F), the
B-isogenous varieties are given by %fy -z, for v € T/T°(B3).

More generally, for a group I' containing a level subgroup I'(n) with n prime to L, we would
like to define S-modular polynomials describing the image of a map (a modular correspondence)
Hpnpg) — Hp X Hp. A point in Hpep ) correspond to a triple (A4,60,V) as above together
with an extra level structure G defined by I'. To define the modular correspondence we need
for G to induce a unique extra level structure G’ on (A/V,#).

Definition 4.12. Let v € T9(8) = (24). We denote v5 = (:B bgﬂ) cT(1).

Lemma 4.13. Let i be a meromorphic function H3 — C, and define ig(z) = i(z/B). Recall
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that, for v € T(1) UT(1)o, i7(2) = i(y - 2) and define iy(2) = z(%’y -2). Then for v € T°(B),

) = i(57-2) = il (32) = 77(52)

. 1 o e
R =ilg02) =iloTs (52) = 77(52)

Corollary 4.14. Let i be a Hilbert modular function for T C SLy(Ox ® 8;(1). Let f’g ={y¢€
SLy (O @ 0x) | vp € T} C T(B). Then ig is modular for Tg. Furthermore if i is symmetric
and B = B, then ig s symmetric.

Assume that for every v € TNTY(B), v5 €T, so

rnroB)=TnNTs. (20)
Then if i is a Hilbert modular function for T, then ig is a Hilbert modular function for rnro (B).

If T satisfy Equation (20) (such is the case when I' = I'(n) is a congruence subgroup), one
can then define the modular correspondence as Hy 5 — Hp X Hp, 2 = ((i1(2), i2(2), i3(2)),
(i1(2/B), i2(2/B), is(z/B))) for z € H} and iy, i2,i3 generating Cy.

Theorem 4.15. Non symmetric case: let I' be a level subgroup such that f(2,42 - I c
SLQ((?K 698;(1). Let 5 € O}+ be a prime of norm L, and assume that for every vy € I NTY(B),
v €T o

Let C be a set of representatives of I'/T NT(B).

Let i1, 12,13 modular functions generating Cy and with Fourier coefficients in a number field
F.

Define the modular polynomials:

q)g(X,Zl,Zz, 7,3) = H (X — Z?B), and \I/kﬂ(X,Zl,Zg,Zg) = Z Zzﬁw
b b J— /l/
veCps veCps 1,5
for k =2,3. They lie in F(i1,i2,13)[X].

Then after a precomputation step described in Theorem 3.J (which does not depend on f3,
only on i1,i2,13), and under the heuristics of [ , Theorem 34, the modular polynomials
can be computed in quasi-linear time in their size.

Symmetric case: Let G = f‘NUNfJ.~ If B = B we let Cg be a set of representatives of
G/(TNIO(B)u(NIB))o) ~T/I'NI(B), otherwise we let Cs be a set of representatives of

G/(GNIY(B)) ~ (f‘/f N f‘o(ﬁ)> U (f‘/f N fo(ﬁ)) o. Then the same definition as in Equation 21
applies and the corresponding modular polynomials can be computed in quasi-linear time.

(21)

Proof. This is Theorem 3.13, applied to (in the notations of the Theorem) j; = i1 g, jo = i2.,
Jj3 = i3,3. We only detail the non symmetric case, the adaptations to the symmetric case are
obvious. Since I' # ' N fo(,B), one of the iy g is not invariant by I so by Proposition 4.11 ik
generates the field extension (Cfmfo (8) / Cy. Then in the notations of Theorem 3.13 we can use
Jj =irg. (In Theorem 4.15 we assume k = 1).

It remains to check that the iy g can be evaluated in time quasi-linear in the precision, but
this is obvious from their definition and the fact that the i; can due to Theorem 3.4. (]
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Definition 4.16. The polynomials ®5(X,1,12,13) and Uy, g( X, i1,142,43) for k = 2,3 defined
in Theorem 4.15 are called the g-modular polynomials for iy, 19, i3.

Example 4.17.

e If 3 = (is an inert prime. Then ®, has degree ¢?+1 and Wy, ¢ has degree 2If i1, 12,13 are
symmetric, then i1 ¢, 42 4,43 also, hence they are invariant under ('NIY(¢))U(I'NI%(¢))o.

e If 8 has norm ¢, so £ = (35 is split. Then if G = I is not symmetric, ® 5 has degree £+ 1
and ¥, g has degree /.

However if o € G, so that G = I’ x (o), then since the ir,3 are not symmetric, ®3 has
degree 2¢ + 2 and ¥j g has degree 2¢ + 1. Since I is stable under the real conjugation,
we can make explicit the action of o as follows: if we let Uz be a set of representative of
['/T NTY(3) the modular polynomials are given by

(X, i1, in,03) = [[ X =i} (X —i1%) = [] (X—qﬁ)(x—qg) and
’YECB ’YECB
(X, i1,12,13) n 0 Pg(X, i1, 12,13)

S ~ Pp
Ui p(X,i1,02,08) = D ] g X — 4] kA X )
veCp 1,8 veCg 1,8

In this case the S-modular polynomials parametrize both 8 and [-isogenies (so they
are equal to the B-modular polynomials). This is the drawback for the applications of
Section 4.2, hence the interest to also have non symmetric invariants, even if they are
harder to compute.

Remark 4.18 (Changing 8 when T' = SLy(Ox @ 9%') U SLa(Ok @ 0%')o). Recall that we
denote by € the fundamental unit of Og. Let € € (’)[X(’++, then there are also € 3-isogenies.
(We only consider totally positive units € to guarantee the fact that €'z € H?).

If there exists n € Z such that ¢ = €2, then the matrix v = (65 69") isinI and v-z = ¢z.

Thus, in this case, ix(¢'z) = igx(z), and, in particular, a S-isogeny is also a €’[3-isogeny. (For a
more intrinsic proof see Lemma 4.5.)

When D = 2 or 5, the fundamental unit € has norm —1 while € € (QIX(’Jr has norm 1, so
that the latter can always been written as an even power of e. Thus, the choice of the splitting
of ¢ does not matter.

Remark 4.19 (General modular polynomials). For a group I' C SLy(Ox @ 0%') that does
not satisfy Equation 20, then this means that from a level structure G associated to a triple
(A,0,V) correspond several level structure G’ on (A/V,0').

From Corollary 4.14 the modular functions i 3 are modular for the group 1:‘/3 ={y €
SLy(Ox @ 0%') | 75 € T} € T9(B). So we can define modular polynomials in a similar way
as in Theorem 4.15 except that we act by f/f N fg. The fibers correspond to [-isogenies
together with an extra structure determined by the action of T N T°(8)/T NT4. So we loose
the corresponding factor in the degree of the modular polynomials. A possible solution would
be to replace iy g by its trace under the action of I' NT%(3)/T N T4 to get a modular function
invariant by T N T%(5).

Also, if T' does not contain a level subgroup I'(n) of level n prime to ¢, then I'/T N T%(5)
may not be isomorphic to I'(1)/I%(8), but only isomorphic to a subgroup. We can still com-
pute modular polynomials, but they will not parametrize all 5-isogenies, only those who are
compatible with the structure induced by T.
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Finally if 8 € O}+ is totally positive but not prime, it is easy to adapt Theorem 4.15 (if
we suppose that i; is not invariant by I' N T'%(3) for strict divisors ideal J of (£)). The only
difference is on the degree of the polynomials, ®z will not be of degree the norm of 3. Rather
the degree depends on the factorization of () into prime ideals.

(Of course this whole discussion is easily extended to the symmetric case.)

Remark 4.20 (Denominators). We would like to understand the denominators of the mod-
ular polynomials corresponding to invariants ii,4s,43. Heuristically if there are no random
cancellation, the denominators are due to three factors (we let D be a common denominator):

® i1,i9,13 are not defined everywhere;

e Even if 41,10, i3 are defined they may not define a local embedding of the Hilbert surface.
For instance in the Siegel threefold, the three Igusa invariants defined by Streng are not
defined when x19 = 0, and they do not define a local embedding when x4 = 0. To get an
embedding of the full threefold, Igusa showed that we need 8 invariants (10 to have good
reduction modulo 2), not 3. So in this case the invariants of the -isogenous varieties are
not well defined;

e The most interesting case from the point of view of moduli is when i1, 9,13 are well
defined and induce a local embedding, but one of the isogenous invariant zk(%vz) is not
well defined.

Most of our invariants have a denominator whose locus is inside the Humbert surface H;
(or a component) of split abelian surfaces. In particular D will contain a (component
of) abelian surfaces with real multiplication by O and which admits a split S-isogenous
variety. By the Lemma below, any element in such a locus is inside an intersection
of Humbert surfaces Ha, N H,,2 where A is the discriminant of Ox. We conjecture
that the values m are the same for any element in the same locus; and in our practical
examples, this value m is not the norm of 8 as we could think it could be.

Lemma 4.21. If A is an abelian surface isogenous to a product of elliptic curves, then there
exists m such that A is m-isogenous to E1 X Eo (with the product polarization).

Proof. See | , Lemma 2.13] and | , Theorem 5.3.7, Corollary 12.1.2]. O

4.4 Modular polynomials with Gundlach invariants

Recall that J; and Ja are the Gundlach invariants (see Theorems 2.8 and 2.10), which we know
for K = Q(v2) and Q(v5).

Since we only have two invariants, this simplifies the definition of the modular polynomials:

Proposition 4.22. Let D =2 or 5 and ¢ be a prime number. Write { = BB with B € (9}*.
If £ is ramified, then the polynomials

Dys(X, J1, J
Op(X, Ji, Do) = [[ (X =J7p)  and (X, J1,D0) = > Jgﬁw
veCpg v€Cys 1B
lie in Q(J1, J2)[X]. If € is split, then the polynomials
(X, J1, J2) = [ (X = J7p)(X - Jl”ﬁ) and

7€Cp
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®45(X, 01, J) Z L ®5(X, 01, o)

Ws(X, i o) = 3 T g p 28 X —J7-

v€Cs 1,8

lie in Q(Jy1, J2)[X]. These polynomials depend only on £ and can be computed in time quasi-
linear in their size.

Proof. This is a corollary of Theorem 4.15. These polynomials depend only on ¢ as Q(v/D)
for D =2 and 5 has a fundamental unit of norm —1 (see the discussion in Remark 4.18). [
0

By construction, for any z € H?, the modular polynomials satisfy ®5(X, Ji(2), J2(2)) =
when X is the evaluation of J; in one of the - or B-isogenous point 2’. Then Jy(2') =
Ug(J1(2"), J1(2), J2(2)) /@5 (J1(2'), J1(2), J2(2)), where @} is the derivative of @5 with respect
to the variable X. Thus, given Ji(z) and J2(z), the S-modular polynomials allow one to
compute all the Gundlach invariants at the isogenous point of z.

Let £y be the locus of the principally polarized abelian surfaces with real multiplication by
Ok which are 8- or 3-isogenous to a product of elliptic curves (and which are not isomorphic
to a product of elliptic curves because when this happens, the Gundlach invariants are not
always defined).

Proposition 4.23. In the case where D = 5, the denominators of the modular polynomials
®g and Vg are divisible by a polynomial Ly in Q[J1, Jo] describing L;.

Proof. We adapt the proof of | , Lemma 6.2]. Let z € H? which is 3- or S-isogenous to
a product of elliptic curves and let ¢; be a coefficient of ®3. The cusp form xio vanishes at
products of elliptic curves and by Theorem 2.13, we have Fig = —4¢Zx10 so that Fjp also
vanishes at product of elliptic curves. Thus J; and Jo have poles at these values and there
exists some v € T'/T%(8) such that J] 5(2) or J;B(z) is infinite. The evaluation of ¢; at z is

a symmetric expression in the J{ 5(z) and in the J;’B(z). Generically, there is no algebraic
relation between these values and the evaluation of ¢; at z is therefore infinite. Since Ji(z) and

Jo(z) are finite, the numerator of ¢; is finite. The denominator of ¢; must vanish at z which
means that ¢; is divisible by L,. The proof for ¥ is similar. O

If D = 2, the Gundlach invariants J; and J have poles when Fy(z) = 0. Since by Theorem
2.15, we have that ¢fx10 = 7 Fu1Fs, the set of poles is a subset of the products of elliptic
curves. We have thus to consider the subset £ of L of the surfaces z such that F4(%7 -2)=0

or F4( v - z) = 0 for some v € Cg.

Proposition 4.24. In the case where D = 2, the denominators of the modular polynomials
®g and Vg are divisible by a polynomial L} in Q[Jy1, Jo] describing L.

We have proved that we have in the denominators of the modular polynomials a subset
of the set Hg of abelian surfaces which are (-isogenous to a product of elliptic curves (and
which are not isomorphic to a product of elliptic curves; see also Remark 4.20). Moreover by
Lemma 4.21 Hg is an intersection of Humbert surface.

4.5 Modular polynomials with theta constants

In this section, we define modular polynomials for any D square-free by using theta constants.
These polynomials are available for all D, smaller than the ones that we get from the pull-
backs of the Igusa invariants. Furthermore they illustrate nicely the different possibilities of
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Theorem 4.15. Lastly this illustrates how to use the action of (SLa(Ox @® 95') U SLa(Ox @
8;{1)0) /T(2,4) to prove symmetries of these polynomials and accelerate their computations.
The invariants we use are the pullbacks of the generators for the group I'(2,4) defined
in Section 2.1 (see Section 3.4): bi = ¢*b; for i = 1,2,3, which are modular functions for
['(2,4), defined in Equation (11). Recall that we have Theorem 2.30. We denote in this section
= SL2 (O @ 8;(1)
Recall that we denote for i =1,2,3, 5 € (’)}?Jr and vy e T UTo:

Biﬂi ’H% - C

blg: H} — C
T = bi(%T)

and T = 51(%77’)

For a matrix v € T'(2,4) NT°(3), we would like to write

B25(r) =BG+ 7) =Bl (57) = Bi(57) = Big(r)
so that the functions b; g for i = 1,2,3 would be modular for the group I'(2,4)NT°(5). However
the third equality is true only if the matrix 74 is in T'(2,4) (see Corollary 4.14). A simple
calculation shows that this is always the case when D =1 mod 4. When D = 2,3 mod 4, this
happens only when 3 is of the form a + bw with b even. If D = 2 mod 4, this is equivalent
to ask that £ = 1 mod 4 and else if D = 3 mod 4, ¢ must necessarily verify £ = 1 mod 4. In
particular, in the last case, 0, 1 or 2 modular polynomials with f(2, 4) structure can exist for a
given prime which splits in totally positive factors, according to the fundamental unit e. Thus

Proposition 4.25. The functions b; g for i = 1,2,3 are modular functions for T'(2,4) NT9(B)
when

e D =1mod4;
e D=2mod4 and f = a+ bw with b even, or, equivalently, £ = 1 mod 4;
e D=3mod4 and f = a+ bw with b even; this implies that £ = 1 mod 4.

Proposition 4.26. Let ¢ be a prime number. Write { = BB with B € O}Jr and Cg be a set of
representatives of I'(2,4)/('(2,4) NT(B)). If D = 1 mod 4, then the polynomials

®s(X, b1, b2, b3)

@5(X, 51,52,53) = H (X _Blﬁ)’ and \I]k,B(Xy 51762753) - Z Bz,ﬁ X Bw
b4

v€Cs €03

for k =2,3 lie in @(51,52,33)[X]. If D=2,3mod 4 and § = a+ bw with b even, then

(I)ﬁ(Xv 51762763> = H (X - 6’ly,ﬂ)(‘}( - BY%)a and
’YECﬁ

(PB(Xal;l?BQvB:i) B'yo‘ (I)B(X,61762753)

7 k.3 770
X —big ~eCs X —=big

\Ilk:,ﬁ(Xv 51762a63) = Z B’]Z’ﬁ
"/EC/;

for k = 2,3 lie in Q(b1, by, b3)[X]. They can be computed in time quasi-linear in their size.
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Proof. This is a corollary of Theorem 4.15. The difference between the cases D = 1 mod 4
and D = 2,3 mod 4 comes from Equations (4) and (5): in the first case, by Proposition 2.21,
the map I'(2,4)\H*} — Sp,(Z)\Hs is injective while in the second it is the map (I'(2,4) U
['(2,4)0)\H? — Spy(Z)\Ha which is injective. The coefficients of the Fourier series of the b;
are in Q because it is the case of the Hilbert theta series (see [ - O

Note that there is three polynomials so that given b1, by and bs, one can obtain the values
bYﬂ, bgﬁ and b;)’ﬂ for any v € Cjs.

If D =1 mod 4 we are in the non symmetric case, so we compute non symmetric modular
polynomials.

Remark 4.27. When D = 2, Equation (12) says that we have to consider only two modular
functions as by is determined by be and b3. In particular the corresponding Humbert component
is a rational surface.

B-modular polynomials: As ®j is a minimal polynomial, it is the unique irreducible and
monic polynomial which verifies, for any 7 € H3, ®35(b1 5(7), b1(7), ba(7),b3(7)) = 0. We can
look at what happen on ¢ (7). The matrix M, of Equation (4) acts as follows: (b7, bhle pie) =
(b1, ba, b3) if D = 2,3 mod 4 and (b7, 657, b3'7) = (b3, ba, by) if D =1 mod 4.

So when D = 2,3 mod 4 the b; are symmetric and the S-modular polynomials are symmet-
ric, they encode both the 3 and the -isogenies, as it is the case for the Gundlach invariants.

However (b7,b3,b) = (b3, ba,b1) if D = 1 mod 4. The irreducible and monic polynomial
@5(5‘1’75, b,b3,b9) has the same roots as ®5(by 5, b1, ba, b3) and thus by unicity, these polyno-
mials have to be equals. Thus, if D = 1 mod 4, @5(5373, bs, ba, 131) = @5(51’5, b1, ba, 133) and it is
possible to obtain the value 13373(7') for any 7 € H? using the f-modular polynomials. We have
then, still acting by o,

by 5(7) = Wa,5(by 5(7), b3(7), ba(7), ba(7)) /@5 (by 5(7), b3 (7), ba(7), bi(7))  and

by 5(7) = W,5(by 5(7), By(7), Ba (), Bu(7)) [ @lp (B 5(7), Ba(7), B (7). B (7)-

We conclude that once we have the B-modular polynomials, we get the S-modular polynomials
for free.

Changing 8 by a unit: Note that in the case where two pairs (3, 3) and (5, 3) of totally
positive elements, whose product is ¢, differ by an even factor of € (this always happens when

¢ has norm —1), we have that 3/ = 2" = (en 0 )B. Thus for any 7 € H?, if we compute

0 e™
bi5(7), for i = 1,2,3, from b;(7) and using the S-modular polynomials, then we have b; 5 (1) =

b; ((%n GQL ) %T) and knowing how the matrix (66" GQL) acts on the Eiﬂ, we can compute the

b; g from the lN)Z-,g. In this case, it is useless to compute the 3-modular polynomials.
Example 4.28. When D = 2,5 or 13, the fundamental unit has norm —1.

e If D =2, we have that (61,5% 52,527 53’62) = (b1, b3, bo);

e If D =5, we have that (61,527 52,52, 53762) = (b3, by, bo);

e If D =13, we have that (51762,52762,53762) = (bg, b3, by).
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When the norm of € is 1, then if £ = B3, we also have ¢ = ('/3’, where 8/ = ¢S. The
multiplication by € does not come from the action of a matrix and the previous argument does
not work.

Example 4.29. When D = 55, the fundamental unit ¢ = 89 4+ 124/55 has norm 1 and for
¢ =5, we can choose = 15 + 2v/55 and 3’ = €8 = 2655 + 358v/55. As 2 and 358 are even,

we can define two triplets of “non-equivalent” modular polynomials (by Propositions 4.25 and
4.26) .

Symmetries: We can proceed in the same way with matrices vy € f‘/ f(2, 4) having special
properties. If v permutes the b; and the b; g, this says that there are symmetries ~in the
modular polynomials. In particular, if v satisfies (b],b3,b3) = (b1, b, b2) and (b] 8 by 5 b37 5) =
(bl,b’, bgﬁ, bg,ﬁ), this means that

(Dﬂ(Xa 61752763) — (I)B(X7 51763a62)

and consequently that L o
\11275()(, bl, b3, b2> = \113,,B(X7 b17 b27 b3)

so that we only need to compute the two first S-modular polynomials, as the third one is
deduced from the second one. For example, this happens for D = 6, ¢ = 73, f = 13 — 41/6 and
for D =10, ¢ = 41, 8 =9 — 2V/10.

Moreover, if v satlsﬁes b7 — %}y, and b g = = iPry, B, for k=1,2,3 and ay, B € {0,1,2,3}
(i is the imaginary unit), then the exponents of the by at each coefficient of the modular
polynomials verify some relations modulo 4. As we compute the modular polynomials by eval-
uation/interpolation (see Section 3.3), this can be used to decrease the number of evaluations.

The existence of these matrices depend on D and . They can be searched before the
computation of the polynomials. We give some examples of relations between the exponents in
Section 5 (see Equation (22)). Similar arguments have already been used in | , Sections
5.2 and 5.3] for the computation of £-modular polynomials.

Denominator: Let Lz be the locus of the principally polarized abelian surfaces z modulo
'(2,4) with real multiplication by O for which z, or o(z) in the case D = 2,3 mod 4, is
B-isogenous to 2’ such that ¢(z2’) is isogenous to a product of elliptic curves by the 2-isogeny
#(2") — ¢(2')/2 and such that 6y(¢(2")/2) = 0.

Proposition 4.30. The denominators of the modular polynomials ®g and Yy 53 are divisible
by a polynomial Lg in Q[b1, b, bs] describing Lg.

Proof. Let z € L3 and let Ci be a coefficient of ®5. Then there is some v € T'(2, 4)/(f(2,4) N
I'°(3)) such that bYB, or b7 5 if D = 2,3mod 4, is infinite. Indeed, recall that b; = 5(9/2)
and that by [ Proposmon 6.5 and Corollary 6.1], exactly one theta constant vanishes
at (2 if and only if Q is isomorphic to a product of elliptic curves. We conclude using the same

arguments as in the proof of Theorem 4.23 (see also Remark 4.20). O

The reason for which we have introduced modular polynomials with the b; invariants was
to obtain smaller polynomials compared to the ones with the Gundlach invariants or with
the pullbacks of the Igusa invariants. But by Theorem 4.25, the S-modular polynomials are
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not defined for all £ splitting in totally positives factors. We have two ways to deal with this
problem, as explained in Remark 4.19. The first one consists to find a subset of I'(2,4) for
which b 6 s invariant (we are in the case D = 2,3 mod 4). A group which always work is the
group I defined as I'(2,4) in the case D = 1 mod 4 (see Equation 11). This subgroup is of
index 4 in T'(2,4) and we consider the quotient I'(2,4)/(I"NTY(3)), containing 4(£+1) classes,
to define our polynomials. The second one consists to take other invariants, in particular the
Rosenhain invariants 7; = ¢*r;. We have already seen that they are generators for the field
of Hilbert modular functions invariants by T'(2) (see Theorem 2.30) and 74 for i = 1,2,3
is always invariant by T'(2) N T%(8). All the results of this section can be adapted to these
invariants.

5 Results

The aim of this section is to present some polynomials we have computed and to compare the
polynomials with the different invariants when this comparison makes sense.

5.1 Case D=2

We have computed the S-modular polynomials with the Gundlach invariants for £ = 2, 7, 17,
23, 31, 41, 47 and 71. If we write, in the split case,

20+1 ) 2041
(X, J1, J2) = X2+ 3" ¢i(J1, o)X and 5(X, J1, Ja) = Z di(J1, o)X
=0

then we have constated that the denominator of ¢; is of the form D(Jy, J2)* unless i = 2/ + 1
where it is D(.J1, J2)?, and that the denominator of d; is of the form D(Jy, J2)8, unless i = 20+1
where it is D(Jq, J2)4. We have for example for £ =7

D(J1,Jp) = J? — J1J2 4+ 2J1J5 — 81.J; + 64.J2

and for ¢ =17

D(Jy,J2) = J{ —JVJ3 —6J0J3 + JPJy — 4149 + 428J7 J3 + 2387J7 J3—
17760J7 Jo + 4318117 + 17728.J1J4 — 331952.J¢J5 — 2578856.J1 .3+
6229197J1.J5 — 80515134.J¢ — 6145536.J3.J4 + 52974272.J3 J3+
535037040.J5J3 4+ 61168164125 J5 + 37822859361.J7 — 91648000.J2.J5 —
6502153216.J2.J4 — 75793205760.J2.J3 — 197144611776.J7 J3 —
1756569600011 J5 — 78120427521 J5 + 110592000000.JS .

Table 1 contains some informations about these polynomials. The first column is the prime
number, the second the size of the S-modular polynomials, then we have put the total degree
and the degree in J; and in J; of the denominator D(Jp, J2), and then similarly for the maximal
degrees appearing in the numerators. The last column is the number of decimal digits of the
largest coefficient appearing in the polynomials.

We have computed the S-modular polynomials for ¢ = 17, 41, 73, 89 and 97 (which are 1
modulo 4, see Proposition 4.25). By Remark 4.27, the S-modular polynomials are

L 20+1 o ) 20+1
D3(X,ba,bg) = X224+ 3" ¢5(bo,b3) X' and 5(X, ba, b3) = Z di(by,b3) X
=0
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2
7
17
23
31
41
47
71

8.5 KB
172 KB
5.8 MB
21 MB
70 MB
225 MB
400 MB
2.2 GB

25
37

0 SN W

—_

0
14
16
24

4
25
65
87
117
157
179
275

4
23
61
85
111
153
177
265

2
13
36
48
61
84
96

144

8
66
196
280
401
560
665
1078

Table 1: Informations about the modular polynomials for D = 2

We have constated that the denominators of ¢; and d; are of the form D(l~)2, 153)2 unless ¢ = 20+1
where it is D(bg, b3). For example, we have for £ = 17 and § = 5 + 2v/2

bSbAS 4 (6b5 — 603 + 1)b30 + (15630 — 2408 + 762)bA* 4 (20032 — 4205 + 9ba+
2)b82 + (15b3% — 48530 + 3705 + 4b2)b30 + (6536 — 4212 + 68b§ — 26b4 + 3)b5+
(D3 — 24b3* + 37b10 + 8B — B2)D§ + (—6b30 + 9b% — 2605 — 24b3 + 2)bi+
(T3 4 4b10 — b$)b2 + (D16 + 2b3% + 30§ + 2064 + 1).

D(by,b3) =

For / = 17 and 41, the degrees of the coefficients ¢; and diNin the variables l~)2 and l~)3 are
close to the degrees in the variables J; and Jy. But with the b;, some relations between the
exponents occur. The numerator of ¢; can be written as Y., > ¢imnby'by (and similarly for

d;). We have then for £ = 17 and = 5 + 2v/2

m = 0Omod?2 m = 1mod?2
n+i = 0mod?2 and n+i = 1mod?2 (22)
m-+n = imod4 m-+n = imod4

for ¢; and d; respectively. In the case £ = 41 and 8 = 7 + 2v/2, these equations are the same

except the last which is m +n = —i mod 4 for ¢; and d;.
17221 KB | 24 18 18 | 57 53 50 | 13
41 | 72MB | 64 56 56 | 144 140 132 | 38
73| 81 MB | 120 112 112 | 264 260 246 | 79
89 | 188 MB | 152 138 138 | 3256 317 309 | 102
97 | 269 MB | 168 154 154 | 357 345 341 | 112

Table 2: Informations about the modular polynomials for D = 2

Comparing Tables 1 and 2, we can see that taking the invariants based on the theta
functions give better results. But, here, this is the case only when £ = 1 mod 4.

Taking ¢ = 7 (¢ = 3 mod 4), we have done as explained at the end of Section 4.5. On the
one hand, we have computed the polynomials using the subgroup of index 4(¢ 4+ 1) and on
the other hand, we have computed the polynomials using the Rosenhain invariants. The first
solution give better results in terms of degree, sparsity and the whole polynomials fill 930 KB
in the first case while 70 MB in the second. In both cases, the polynomials are bigger than
those using the Gundlach invariants. This is also true for £ = 23, where using the first method,
the polynomials fill 110 MB.
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5.2 Case D=5

We have computed the S-modular polynomials with the Gundlach invariants for ¢ = 5, 11, 19,
29, 31, 41 and 59. If we write

2041 2041
Dp(X, J1, Ja) = X224+ 3" ¢i(J1, o)XY and  Ug(X,J1, ) = Y di(J1, o)X,
=0 =0

when £ is split, then we have constated that the denominators of ¢; and of d; are of the form
D(Jy, J2)* except for i = 2¢ 4 1 where it is D(Jy, J2)?. We have for example for £ = 11

D(J1,J2) = 4J7 + (—12J2 —19236.J5 + 119497519).J% + (12.J3 + 56972.J5 — 387805052.J2 —
278163835056.J5 + 35953243171744)J7 + (—4J9 — 55980.J35 + 44973069874+
9438372909605 — 133230692691392.J3 + 6651010132099840.J5+
13001634695104256).J7 + (18500.J3 — 215193500.J§ — 1170430882000.J5+
388324233980000.J4 — 32395226716512000.J3)J3 + (32609375J5+
635091750000.J5 — 718632513000000.JS + 34620677424000000.J3).J2+
(—124875000000.J39 + 601911000000000.J8)J; — 182250000000000.J1°.

We have computed the S-modular polynomials for £ = 5, 11, 19, 29, 31, 41 and 59. These
polynomials are

0 4
Dp(X, b1, ba,b3) = X+ (b1, b)b) X' and
i=0 j=0

l 4
W p(X, b1, bo, bg) = XM 43D dia (b, ba)b3) X,
i=0 j=0

by Equation (12) and what we said in Section 4.5. Table 3 contains the same informations
as Table 1, but the first part concern the polynomials with the Gundlach invariants and the
second the polynomials with the b; invariants.

We can see that there is a gain in terms of memory space, except for £ = 5, which cor-
responds to the ramified case. The degrees are larger with the b; but there also are relations
modulo 4 between the exponents.

5.3 Examples of isogenous curves

First at all, the modular polynomials allow one to compute hyperelliptic curves with isogenous
Jacobians. In particular, over finite field as the S-polynomials found can be reduced modulo a
prime number p # 33 without loosing their meaning ([ , Section 6, page 511]).

We begin with examples of curves found when working on Q(1/2) and taking the Gundlach
invariants. The Jacobians of the following curves are (3 + /2)-isogenous over Fagas:

Y2 = 356X%+116X° + 1589X* +986X3 4 178X 2 4 1094X + 1229,
Y2 = 144X%+2096X° + 387X* 4+ 1562X3 + 478 X2 + 486X + 1718

while the Jacobians of the followinf ones are (5 + Qﬁ)—isogenous over F345967203:
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5 | 22KB 5) 3 ) 10 10 10 93

11| 3.5MB | 10 7 10 | 40 40 40 | 252
19| 3MB | 16 12 16 | 64 64 64 | 513
29 | 18 MB | 25 20 25 | 100 100 100 | 830
31 1 248MB | 26 21 26 | 104 104 104 | 885
41 |78 MB | 35 29 35 | 140 140 140 | 1191
591 3.6 GB | 50 43 50 | 200 200 200 | 1820

5 1 26 KB | 16 8 8 31 19 22 5)

11 308 KB | 72 40 40 | 84 52 52 11
19| 36MB | 128 96 96 | 132 103 108 | 25
29 | 21 MB | 200 152 152|212 160 168 | 44
31| 28 MB | 216 160 160 | 224 173 172 | 47
41 | 115 MB | 288 240 240 | 324 272 272 | 69
59 | 470 MB | 424 352 352 | 440 373 370 | 109

Table 3: Informations about the modular polynomials for D =5

Y2 = 288618938X° 4 208826828X* + 736815003 4 329580565 X 2+
193693317.X + 328425210,
Y2 = 229859713X° 4 180037958 X* + 95105703 X3 4 68631100.X 2+

32660205X + 107566399

and the Jacobians of the curves hereafter are (7 + ﬂ)—isogenous over F3506982779:

Y2 = 3476666651 X° + 2997006123 X% + 2343918968 X3 + 1313289865 X 2+
1251164949X + 1521154595,
Y2 = 2390845907X6 + 2649299485 X° + 3307186776 X* + 2143442296 X3+

1448110737X2 + 918458873 X + 1476608496.

We also give two examples of pairs of curves computed with the S-modular polynomials
with the Gundlach invariants for Q(v/5). First example of curves for (4 — (1++/5)/2)-isogenies
over F563112

Y2 = 13477X° +6136X* + 35146 X3 + 28148 X2 + 7150X + 19730,
Y2 = 2953X5 +26725X% + 14100X3 + 6565X2 + 22149X + 19740

and second example for (5 + 2(1 + 1/5)/2)-isogenies over Fgragoar:

Y2 = 3739712X6 4 4881762X° 4 6611129X* 4 5775262X3 + 521647 X2+
2066678X + 350732,

Y2 = 2707309X% + 1535264X° + 311501 X% + 2965267 X3 + 3507011.X 2+
101110X + 5795310.

Finally, we give pairs of curves, whose Jacobians are (7 4 2v/2)-isogenous over Fsga789,
computed using the S-modular polynomials with the b; for Q(v/2):

Y? = 540913X° + 353915X% + 118050X° + 355166.X2 + 424096.X + 379433,
Y2 = 231396X° + 474300X* + 200176 X3 + 335056 X 2 + 345222 X + 464702

and a pair for (5 — (1 4+ +/5)/2)-isogenies over Fs3g2789, computed using the polynomials with
the b; for Q(v/5):
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Y2 = 2531476X° + 900554 X% + 1248025X3 + 440959X2 + 912166 X +
4367293,

Y2 = 1772175X° + 3557482X* + 848889X 3 + 4562893 X2 + 146681 X +
475016.

The motivated reader can check that the curves are indeed isogenous in verifying that the
curves have the same zeta function (by | 1)-

5.4 Denominators of the Hilbert modular polynomials and intersection of
Humbert surfaces

From Remark 4.20, Propositions 4.23 and 4.24 we know that some factors (which we call the
interesting factors) of the denominators of the Hilbert S-modular polynomials in the pullbacks
of the Igusa invariants or in the Gundlach invariants for Q(v/2), Q(v/5) lie the locus Lg of
abelian surfaces with real multiplication by Og which are S-isogenous to a product of elliptic
curves (endowed with the product polarization).

By Lemma 4.21, the abelian surfaces in Lg are inside the intersection of Humbert surfaces
Ha, N H,,» where A is the discriminant of O. The goal of this section is to explain how to
find the value m for a given abelian surface and to describe this intersection in more details.
(More precisely since we remove the uninteresting factors coming from the intersection of H;
and Ha, ., we study Ha, N H,2 \ Hy).

First we explain how to find m. If 8 = £ is inert, then we can obviously take m = /.
The interesting case is when 8 comes from a split prime ¢. By Proposition 2.20, if A is an
abelian surface, then A € H,» if and only if there is a symmetric endomorphism f on A
of discriminant m?2. We recall (see | , Section 1.1 and 1.2]) that an endomorphism f is
induced by its analytic representation p,(f) which is given by a two by two matrix (‘CL Z). This
matrix can also be seen as the action of f on the tangent space of A at the neutral point 0 4.
The discriminant of f is then defined to be the discriminant of the characteristic polynomial
of this matrix: Ay = (a +d)? — 4(ad — be).

On a product of elliptic curves E; x Eo (seen as a torus in C2), the endomorphism given
by the matrix v1 = (} ) on the tangent space at the neutral point is of discriminant 1. If
A € Lg and f is the isogeny from A to E x Ey (endowed with the product polarization), then
pulling back the endomorphism «; by f gives an endomorphism f*v; of A. If we compute the
matrix associated to the action of f*vy; on the tangent space, then its discriminant will give
us a possible value of m. (As we will see below, the abelian surface A lie in several H,,» and
changing the matrix v; by others which have discriminant 1 will give other possible values of
m). The following lemma allows us to compute the analytic representation of f*~;.

Lemma 5.1. Let e1, e as a basis of Ok, and R = (% 2—5) be the matrix given in Section 2.3
for the isomorphism ¢e, e, -

Let f : A — Ey x Ey be a B-isogeny, and denote f the -contragredient isogeny. We write
A=C?/(®(0") +T*®(OkK)) for some T = (11,72) € H? such that By x Ey is C?/(Z? + QZ?)
Jor Q= e, (r/8) = 'R(r/B)*R.

Lety = (%) be the analytic representation of an endomorphism e of C*/(Z*+QZ*). Then

the analytic representation of f¥ oeo f is given by (/03 %) ‘(R1~R.

Proof. By Section 2.2, A is of the form C2/(®(Ok) ® 7*®(0y")) for 7 € H? and ® = (-,7) is
given by the two real embeddings of K. Here, we prefer to write A differently to be compatible
with the isomorphism ¢, .,. We have 7/ = ((1) —01 )T
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The isogeny f is of the form
C?/(®(05") ® 7" ®(Ok)) — C*/(®(9:") @ (7/B8)*®(OK)), 2 > 2

where 7/ = (11/,72/B). The action on the tangent space of f is thus the identity.
The isogeny fV is then given by

C*/(@(9%") @ (1/6)"®(OK)) — C*/(®(0%') ® 7" ®(Ok)), 2 = B2

where 3.(21,22) = (821, Bz2). The action on the tangent space of f is thus (g%)

The product Ey x Ej is of the form C?/(Z* & QZ?) and by definition, the action on the
tangent space of e is given by 7.

We look now at the change of basis on C2. We have ®(Of) = RZ? and ®(0y') = R~172
so that ®(0") @ (7/B)*®(Ok) = 'R™'Z> ® (7/8)*RZ? and multiplying by ‘R we obtain
72 @ 'R(1/B)*RZ? = 7* @ O Z*

We conclude in gluing everything together. O

Let 7 representing a variety A € Lg. Such a 7 can be found in two ways.

1. Assuming that we have the interesting factor D(J;, J2) of the denominators of the /-
modular polynomials, we can fix two values j1, jo such that D(ji,j2) = 0 and compute
7 € H? such that Jy(7) = jg, k = 1,2, using the methods exposed in Section 3;

2. Start from a matrix ) = (% g) € Hs. It satisfies singular relations of discriminant

Aj (for instance if Ag is 5 or 8, take (a,b,c,d,e) = (1,1,—1,0,0) and (1,2,—1,0,0)
respectively). Use the results of Section 2.4 to deduce 7/ € H? such that ¢, ., (7') is
equivalent to  (for a fixed basis ey, ea of O; this choice does not change the equivalence
class of the image of 7). Finally, take 7 = 7.

We explain in more details what happen in the first case for Gundlach invariants. By Sections
2.2 and 2.3, for the Gundlach invariants we have to consider the morphism ¢, associated to the
basis e; = 1, ez = € (this is a basis for Q(v/2) and Q(v/5)) and to the isomorphism ¢q (we are
in the case where the fundamental unit has norm —1) to go from the Hilbert modular space to

the Siegel one. Denote a = <€/VOAK —E/\O/H>’ then by definition ¢.(7) = 'RaT*R := Q € Ha.

Here, the abelian variety A associated to T is seen as being C2/(®(0y") @ 7*®(Of)).

The matrix € is not necessarily diagonal and we can not apply directly to it the endo-
morphism ;. We have to reduce 2 in the fundamental domain to obtain a diagonal ma-
trix /. This means there exists a matrix v = (4 B) € Spy(Z) such that Q' = ~€; there
is an algorithm to compute v (see for example | ]). On the tangent spaces, we have
C2/(Z* + QZ*) — C?)(Z* + U'7Z?), 2 — {CQ+ D)1z, Denote N = {(CQ + D)~ 1.

To simplify, assume that the isogeny is of the form 7 — 7/8. Then the analytic represen-

tation of the endomorphism of A is given by (g %)a‘l '‘RIN~1~ N 'Ra and its discriminant
gives us a value for m. Note that according to the representative of 7 in its equivalence class
chosen, the value of m can vary and that for 7 fixed, in addition to ~y;, we can also consider
v2=(09)

Conjecture 5.2. We conjecture that for any A € Lg, the set of values m is the same. This is
verified in all the examples we have done.
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Example 5.3. For Q(v/2),

e If B =2++/2 (of norm 2), with the second method we have found the values m = 1 and
m =9 for any A € Lg. So, according to the conjecture, Lg C Hg N Hy N Hy.

e If 3 =3+ /2 (of norm 7), we get with the two methods the discriminants 4 and 16. So
L/B C HsN HyN Hyg.

e If 3 =15+ 2y2 (of norm 17), we get with the two methods the discriminants 9 and 49.
So Lﬁ C Hg N Hg N Hyg.

For Q(v/5),
o If 3 =3 —w (of norm 5) we have found that Lg C Hs N Hy N Hy.
o If 5 =4 —w (of norm 11), we have found that Lg C Hs N Hg N Hys.

Now we want to describe the intersection of Ha, N H,,2 in more details. Some Humbert

surfaces were computed in | ] so we could compute the intersections from their equations
but we use a different method.
As explained in | |, the f-modular polynomials (in the Siegel space) using Streng

invariants have been computed for £ = 2,3. We explain in this section what happens if we
substitute in these polynomials the Streng invariants by the Gundlach ones. Recall that the
Streng invariants are the functions iy, i2, i3 defined by

hahg  j2(j2 — 3) h3h i3 h} 5
i = L1 . 13), g = 4212 :Q, 132742].%- (23)
h1o 2j1 hip i ST
By | , Lemma 6.2], the denominators of these ¢~-modular polynomials are divisible by

a polynomial D, which parametrizes the Humbert surface Hy2 where we exclude the points
in Hj. We recall that Hyp2 is a surface representing the principally polarized abelian surfaces
which are ¢-isogenous to a product of elliptic curves and that the Streng invariants are not
defined at the product of elliptic curves.

Thus we have

Dg(il(Q),ig(Q),ig(Q)) =0, when Q€ ng\Hl.

Now consider the application ¢, : SLy(Of) — Ha for K = Q(v/A) and A = 5,8. Let 7 be in
H3. Proposition 2.21 tells us that ¢(7) € Ha, and then

D5<il(¢€(7—))7i2(¢6(7—))ﬂi3(¢6(7—))) =0, when ¢€(T> € (HEZ N HAK)\Hl'

Now using the corollaries 2.14 and 2.16 and the equations relating the Igusa invariants with
the Streng ones (Equation 23), it is possible to express the iy o ¢, in function of the Gundlach
invariants. This describe the intersection of Hyp2 N Ha . inside of Ha . in term of the Gundlach
invariants.

But, while the polynomial Dy(i1,i2,13) is irreducible, we have remarked that this is not the
case of the polynomial Dy(J1, J2). So the curve Hp N Hp ,, splits into several components. We
want to understand the factors and to do that we have to understand the intersection of two
general Humbert surfaces. The reference for this are | ; ; ].
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Definition 5.4. Let ¢ be an integral positive definite quadratic form in r variables. Let

. ~ {discriminants of the primitive singular relations satisfied by Q}
H(q) :== {Q € Ha/Spy(Z) = {integers which are represented primitively by ¢} ’

We call H(q) a generalized Humbert variety.

By [Kan], H(q) has codimension 7 in Ha/Sp,(Z) (and we refer to the papers cited above
for more details on the moduli interpretation of H(g)). Now, if r = 1, A = 0,1 mod 4 and
A > 0, then we have the equality Hx = H(Az?) (recall Proposition 2.19). Thus, the term
generalized Humbert variety is justified. Moreover, it is a classical result that two equivalent
forms (modulo GL,(Z)) g and ¢’ represent the same integers. This implies by definition that
H(q) = H(¢'), but by | , Corollary 33], the reciprocity is also true. Then

H(q)=H(¢) = q~q.

Let ¢ be an integral binary positive definite quadratic form: ¢(z,y) = ax? + bxy + cy?. We
denote this form ¢ = [a,b,c] and we denote by ¢ — n the fact that ¢ represent the integer
n primitively. Let A and A’ be two positive discriminants. Then the intersection of the
corresponding Humbert surfaces is obviously:

HANHpy = | H(q).
q—A
g—A’
By [[{an], a form ¢ as in the union satisfies |disc(q)| < 4AA’. Thus, up to equivalence, there
are finitely many forms in the union. Looking at the reduced forms is still not enough to
compute the intersection of two Humbert surfaces, as a set H(g) may be empty. We overcome
this difficulty in the following way.

Definition 5.5. Let n, r, d be integers with n A d = 1. We define by T'(n,r,d) the set of the
integral binary quadratic forms ¢ = [a, b, ¢] such that
1. disc(q) = b? — dac = —1672d;

2. q— (rn)?;

3. q(x,y) = 0,1 mod 4, for all z,y € Z.

Theorem 5.6. Let q be an integral binary quadratic form such that ¢ — N2, for some N > 1.
Then

H(q) #0 <= H(q) is an irreducible curve
< q€T(N/r,r,d), for somer|N and d > 1 with (N/r)ANd=1

Proof. See [IKan]. O

Remark 5.7. When r = 1, by | , Section 6] we are in the conditions of | ], where
the genus 2 curves whose Jacobian is isomorphic to a product of elliptic curves are studied (as
a non polarized abelian surface!).

What is interesting for us from the point of view of moduli, is that a modular point in
H(q) € T(N/r,r,d) corresponds to an abelian surface A which is N-isogenous to a product of
elliptic curves £ x E5 which admits a cyclic isogeny f of degree d: f : Fy — Es.
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Using the previous results, it is possible to compute intersections of Humbert surfaces. The
ones we are interested in are:

HyNHs= H([1,0,4]) U H([4,0,5]) U H([4,4,5]);

HyNHs = H([4,0,5]) U H([5,2,9]) U H([5,4,8]);

HyNHg= H([1,0,4]) U H([4,0,4]) U H([4,0,8]) U H([4,4,8]);

HyNHg= H([1,0,8]) U H([8,0,9]) U H([5,4,8]) UH([8,4,9]) UH([8,8,9]).

Looking at the factorization of Dy(.J1, J2), we try to identify the factors with the generalized
Humbert varieties of these intersections. This allows us to compute the equations for the H(q)
in the intersection. We can also match these factors with factors of the denominators of the
B-modular polynomials we have computed. This allows us to match Lg with the correct H(g),
assuming Conjecture 5.2.

Case K = Q(v/2) and ¢ =2 (HyN Hg): The factorization of the polynomial Ds(i1 o ¢¢,is 0
e, i30¢€) = DQ(Jl, JQ) is DQ(Jl, Jg) = 310J1(J1 + 144)10(J1 +4J2)2(J12 — J1J22 +2J1J9—81J1 +
64.J2)2(J2Jy + 4J3 — 288015 — 102411 — 1728.J2)/J3°. We could think that there would be a
bijection between the factors and the Humbert varieties in the intersection H4 N Hg, but this is
not true. Indeed, the form [1,0, 4] represents the number 1 primitively so that Q € H([1,0, 4])
implies 2 € Hy, which means that the variety associated to {2 is isomorphic to a product of
elliptic curves and the invariants we use are not defined at such 2.

For each factor, we tried to find a period matrix €2, which makes this factor vanish (see
Theorem 3.8), and for such a matrix we computed the discriminants of many primitive singular
relations satisfied by ) and compared these numbers with the numbers represented primitively
by the forms in the intersection Hy N Hg, according to Definition 5.4.

We have found:

H([4,0,4]) J1+4J
H([4,4,8)) J? — 1J2 +2J1Jo — 81.J; + 6473
H([4,0,8]) J?Jy+4J? — 288J1J2 — 1024.J; — 172873

The factor corresponding to H([4,4,8]) is the common denominator of the A-modular
polynomials for £ = 7 (a split prime). From Conjecture 5.2 and Example 5.3, we knew that
Lg C HgN Hy N Hyg. Moreover, note that [4,4, 8] has discriminant —16 x 7.

We focus now on the factors Jy and J; + 144 in the denominator. Writing the pullbacks
of the Streng invariants in function of J; and J» and putting J; = 0, we obtain ¢}i; = —972,
¢prig = T776, ¢fiz = 0. But the last equality implies ¢ hy = 0 (or equivalently ¢4 = 0)
and thus ¢fi; = 0 and ¢}i2 = 0 which is contradictory. Thus, J; can not be zero. Similarly,
J1 4144 = 0 implies that the Streng invariants are 0 and thus ¢hs = 0. This can also be seen
looking at the first equality of Theorem 2.15.

So these two factors correspond to the non interesting part of the denominator, as explained
in Remark 4.20, and do not correspond to components of Lg.

Case K = Q(v2) and ¢ = 3 (Hg N Hg): Ds3(Jy,Jo) = 2312321 (Jy + 144)20(J + 3J2J5 —
162J7 — 2268.J1.Jo + 6561.J; — 5184J2)(Jf + 8J3Jy + 288J3 — J2J3 4 14J2J2 + 59522 5 +
20736.J7 — 360.J1.J5 + 32992J1J3 — 3375.J3)2(J{ 2 + 3J} — 1332J3 Jo — 3888.J3 + 6750773 +
485028.J32 J5 + 1259712J2 + 5346000.J1 J3 + 3779136.J1 J2 + 11390625J3)(J{ — JSJ3 — 6J9J3 +
JOJy — 414J9 + 42877 J3 + 2387J7J3 — 17760.J7 J2 + 4318117 + 17728.J1 75 — 331952J¢J5 —
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2578856.J1 J5 + 62291971 Jo — 80515134.J} — 614553673 J5 + 52974272.J3 J3 + 53503704073 J3 +
61168164123 .J5 + 37822859361.J7 — 91648000.J7.J5 — 6502153216.J2J5 — 75793205760J2 J5 —
197144611776 J2J3 — 17565696000.; J5 — 78120427521 J5 + 110592000000.JS)/J3°

(I ) JP+3J2Js — 162J2 — 226815 + 6561.J; — 5184.J2
([8,8,9]) Ji+8J3Jy +288J3 — JEJ3 +14J2J2 + ...

([ ) JiJo + 3JF — 133273 Jo — 3888.J3 4 6750J2.J2 + ...
H([8,4,9])) J{ —JSJ3 —6J0J3 4+ 8Ty + ...

Here, we have that H([5,4,8]) corresponds to the common denominator of the 5 modular
polynomials for ¢ = 3. Since £ = 3 is inert, we knew that Ls C Hg N Hy, furthermore we note
that [5,4,8] is of discriminant —16 x 9. Also H([8,4,9]) corresponds to £ dividing ¢ = 17 (a
split prime). Once again this was expected from Conjecture 5.2 and Example 5.3. We also
have here that the quadratic form has discriminant —16 x 17.

Case K = Q(v5) and ¢ = 2 (HyN Hs): Do(J1,Jo) = 310(Jy — 32)2J2(J3 — 2J%J3 —
1000J2 J + 500002 + J1J3 + 1800.J1 J3 — 864.J3)

H([4,4,5]) Jo—32
H([4,0,5]) J3 —2J2J3 —1000J%J5 + 50000J2 + JyJ4 + 1800.J1.J5 — 864.J5

The factor associated to H([4,0,5]) is the common denominator of the f-modular polynomials
for 8 dividing ¢ = 5 (a ramified prime) while the one associated to H([4,4,5]) is the common
denominator of the modular polynomials for £ = 2 (which is an inert prime). One can check
that the quadratic forms have discriminant —16 x 5 and —16 x 4 respectively.

As previously, if we write the pullbacks of the Streng invariants in function of J; and Jo
and if we put J; = 0, then we obtain ¢fi; = —27.J5/8, ¢Fia = 3J2/32 and ¢fi3 = 0 and we
deduce that J; = 0 is equivalent to ¢Xhs = 0. This can also be deduced by the first equality
of Theorem 2.13.

Case K = Q(v/5) and ¢ = 3 (HoNH;5): Ds(J1,Jo) = 3% (J} —2J2J2 —1000.J2J2 45000077 +
J1J3+1800J1 J3 —864J3) (4 JF +12J3 J2+8748.J3 Jo+12882159.J3 +30132J2 J3 +34698942.J2 J2 +
10857300264.J2 .J2+2339378717616.J% —820125.1; J3 +34031907000.J; J3 —29524500000.J3 ) (4.J{ —
1278721923679 J5+119497519.J5+12J7 J3 45697277 J3 —387805052.J7 J2 —278163835056.J7 Jo+
35953243171744.J7 —4.J7 J§ —55980.J1 J3+449730698.J; J54+-943837290960.J1 .73 —133230692691392
J$J2 +6651010132099840.J1 J3 + 13001634695104256.J7 + 18500735 — 215193500738 —
1170430882000.J3 J3 4 388324233980000.J; .J4 — 32395226716512000.J5.J3 + 3260937525 +
635091750000J2.J5 — 718632513000000.J7 J§ + 34620677424000000J% J5 — 124875000000.J; .J3 +
601911000000000.J; J§ — 182250000000000./5%)

H([4,0,5]) J3 —2J2J3 —1000J%J5 + 50000J7 + JyJ3 + 1800.J1.J5 — 864.J5
H([5,4,8]) 4J} +12J3J2 + 8748J3 Jo + 128821593 + . ..
H([5,2,9]) 4J] —12J%J2 —19236J%J5 + 1194975199 + . ..

The variety H([4,0,5]) is associated to the denominator for ¢ = 5 (ramified), H([5,4,8])
to ¢ = 3 (inert) and H([5,2,9]) to £ = 11 (split). And again the discrimant of these quadratic
forms are respectively —16 x 5, —16 x 9 and —16 x 11.
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The fact that the denominators for f = ¢ = 3 do not correspond to the full Hs N Hy is
that the latter is the locus of abelian surfaces with real multiplication by Ok which admit
a 3-isogeny to a split abelian surface, while the former requires that the 3-isogeny to a split
abelian surface is compatible with the real multiplication (so its kernel is stable under the
action of Ok). Hence it is not surprising that we only get a component.

Remark 5.8. We can see that H([5,4, 8]) appears in H9 N Hg and in HgN Hy so that we have
two description of this variety.

More generally it seems from these computations that the component Lg of the denominator
of the S-modular polynomials corresponds to only one H(q); so it describes an irreducible curve
in Ha, N H,;2. It would be interesting to know if this is true in general, or only due to the
small discriminants of the real quadratic fields in our examples. Secondly, if the denominator is
indeed a H(q), then it would be nice to have an intrinsic way to compute this g. This quadratic
form seems to have discriminant —16 x L, where L is the norm of 3. Does this determine ¢
completely?
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