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Abstract

We describe an evaluation/interpolation approach to compute modular polynomials on
a Hilbert surface, which parametrizes abelian surfaces with maximal real multiplication.
Under some heuristics we obtain a quasi-linear algorithm. The corresponding modular
polynomials are much smaller than the ones on the Siegel threefold. We explain how to
compute even smaller polynomials by using pullbacks of theta functions to the Hilbert
surface, and give an application to the CRT method to construct class polynomials.

1 Introduction

1.1 Context

Isogenies play an important role in elliptic curve cryptography. They allow to transfert the
DLP from one curve to a possibly weaker one [GHS02; Smi09]; they are used by the SEA
point counting algorithm [Sch95; Mor95; Elk97], but also by the CRT algorithms to compute
class polynomials [Sut11; ES10] and modular polynomials [BLS12]. Splitting the multiplication
using isogenies can improve the arithmetic [DIK06; Gau07], taking isogenies reduce the impact
of side channel attacks [Sma03], and they allow to construct normal basis of a finite field [CL09].
They have also been used to construct hash functions [CLG09] or to build cryptosystems [Tes06;
RS06].

In dimension 1, the `-modular polynomials φ` parametrize couple of elliptic curves E1 and
E2 that are `-isogenous over the algebraic closure. They can be computed in quasi-linear
time [Eng09] by the evaluation/interpolation method. More precisely the classical modular
polynomials parametrize the elliptic curves from their j-invariants, so that E1 and E2 are `-
isogenous whenever φ`(j(E1), j(E2)) = 0. Other modular invariants have been proposed which
yield smaller polynomials [EM02].

Principally polarized complex abelian surfaces (which are generically Jacobians of hyperel-
liptic curves) are parametrized by the Siegel threefold Hg/Sp4(Z) (with g = 2) where Hg is the
Siegel space of symmetric g × g complex matrices with totally positive imaginary part. The
Siegel threefold is an algebraic variety birationally equivalent to the three dimensional alge-
braic space, and is parametrized by the three Igusa invariants [Igu60; Igu62]. One can then
generalize modular polynomials to this setting: the `-modular polynomials classify couple of
principally polarized abelian surfaces (A,B) which admit an `-isogeny A→ B. More precisely
the `-modular polynomials evaluated on the three Igusa invariants of A describe a dimension 0
subvariety of the Siegel threefold of degree `3 + `2 + `+ 1 whose geometric points correspond
to the three Igusa invariants of the `-isogenous abelian surfaces B. Alternatively, these mod-
ular polynomials describe the image of X0(`) inside X0(1) ×X0(1) where X0(`) = Hg/Γ0(`).
These polynomials have been studied in [Gau00; BL09] and computed for ` = 2 in [Dup06].
A generalization of these modular polynomials using smaller Siegel modular invariants have
more recently been computed in [Mil15].

Unfortunately even using a quasi-linear algorithm computing them is hard due to their size.
Indeed compared to dimension 1 where modular polynomials describe a curve X1

0 (`) inside the
plane X1

0 (1) × X1
0 (1), and where the degree of the projection is ` + 1, in dimension 2 they

describe the threefold X0(`) inside a dimension six space and the degree of the projection is
`3 +`2 +`+1. Already these polynomials for ` = 7 takes 29GB to write (even using the smaller
theta invariants), so it seems hard to go much further. But having them only up to ` = 7 is
not enough for most of the applications mentioned.
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Another problem is that restricting to `-isogenies does not allow one to explore the full
isogeny graph of principally polarized abelian surfaces. In the CRT method to compute class
polynomials, one key step of the algorithm is to take an abelian surface in the right isogeny
graph, and then use isogenies to find an abelian surface with maximal complex multiplication
[BGL11; LR13]. But this is not always possible using only `-isogenies.

We recall that an `-isogeny f corresponds to a kernel V = Ker f which is maximal isotropic
for the Weil pairing e` on the `-torsion A[`]. The kernel of an `-isogeny is then an abelian group
of type (`, `). One can also consider cyclic isogenies, where the kernel is a cyclic subgroup of
the `-torsion. However, if A is principally polarized and V is cyclic in A[`], then A/V is not
principally polarized in general. The isogenous abelian surface admits a principal polarization
if and only if there exists a real totally positive endomorphism β ∈ Ends,++(A) of norm ` such
that V ⊂ Kerβ (since V is cyclic it is automatically isotropic for the β-Weil pairing). We call
such an isogeny a β-isogeny, and one is naturally led to try to define β-modular polynomials
parametrizing couple of β-isogenous abelian surfaces (A,B). Generically, a complex abelian
surface A has no real endomorphisms, so to define β-modular polynomials we need to restrict
to a sublocus of abelian surfaces with specific real multiplication.

Let OK be a maximal real quadratic order of discriminant ∆K . The Hilbert moduli space
is a surface parametrizing isomorphism classes of principally polarized abelian surfaces A with
Ends,++(A) ⊂ OK . Let β ∈ OK be a totally positive element of norm `. In this article,
we define β-modular polynomials on this Hilbert modular surface and we explain how to
compute them by evaluation/interpolation. We use the forgetful map from the Hilbert modular
surface to the Siegel space, or more precisely, to an Humbert surface, and use the tools already
known there, especially those described in [Dup06; Mil15] for the computation of `-modular
polynomials.

1.2 Outline

We study several parametrizations of the Humbert surfaces. The Siegel moduli threefold is
parametrized by the three Igusa functions, and in [Mil15] a cover of the Siegel space given by
level 2 theta constant is also used to give smaller modular polynomials.

Pulling back the Igusa functions to the Humbert surface gives rational coordinates which
can be used to define modular polynomials. Likewise pulling back the theta functions give
coordinates on a cover of the Humbert surface. Some Humbert surfaces are rational and can
be parametrized by two invariants instead of the three defined above. In this paper we look in
particular at the case of Humbert surfaces of discriminant 5 and 8 which can be parametrized
by two Gundlach invariants.

We describe in Section 2.3 an algorithm which, given a period matrix τ ∈ Hg compute the
above invariants in quasi-linear time. We also give an algorithm, which given the value of the
above invariants, compute the corresponding period matrix τ ∈ Hg in time quasi-linear. (See
Theorem 3.4). For the modular polynomials computations, these algorithms are crucial for
the evaluation (resp the interpolation) step, but they have independent interest. For instance
the fast evaluation would speed up the algorithms described in [LY11; LNY15] for computing
class polynomials via Gundlach invariants. The idea is to translate back and forth between the
Hilbert moduli space and the Siegel moduli space where in the latter space both algorithms
have been developed by Dupont in [Dup06].

The main result of the paper is the computation of modular polynomials on the Hilbert
(or Humbert) surface. When β ∈ OK is a totally positive prime, we define β-isogenies and
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β-modular polynomial in Section 4.1. There are two cases:

• When the norm of β is a prime number `, then the β-isogenies correspond to isogenies
with cyclic kernel V ⊂ A[β] ⊂ A[`]. All β-isogenies then preserve real multiplication
and the β-modular polynomials parametrize all couple of principally polarized abelian
surfaces with maximal real multiplication and admitting a cyclic isogeny of degree `;

• Otherwise β is an inert prime number ` ∈ Z. In this case the `-modular polynomials
(on the Hilbert moduli space) parametrize `-isogenies between abelian surfaces with
maximal real multiplication. By contrast to the Siegel `-modular polynomials which
given A parametrize all `3 + `2 + ` + 1 abelian surfaces B = A/V where V ⊂ A[`] is
maximal isotropic for the Weil pairing, the Hilbert `-modular polynomials parametrize
all `2 + 1 abelian surfaces B = A/V where V is furthermore stable under the action of
the real multiplication.

We give in Theorem 4.15 a quasi-linear algorithm for computing β-modular polynomials
for a large class of invariants, like Gundlach invariants (for Q(

√
2) and Q(

√
5)), pullbacks of

Igusa invariants and pullbacks of theta constants (for all real quadratic field). In the latter
two cases we have three invariants for a moduli space of dimension 2 so we need to adapt
the evaluation/interpolation algorithm to handle the fact that these three invariants have to
satisfy a relation.

Theorem 4.15 is itself a particular case of Theorem 3.13 which gives an evaluation/inter-
polation algorithm to compute covers of Hilbert surfaces. Adapting this Theorem to the cover
parametrizing β-isogenies then yields Theorem 4.15.

The corresponding algorithms have been implemented in Pari/GP, and we give some ex-
amples of β-modular polynomials. We mainly give examples on the case where K = Q(

√
2)

and Q(
√

5) since this allows us to compare different kind of invariants.
Finally Martindale and Streng have also independently described an algorithm to compute

modular polynomials on Hilbert moduli space. While we use evaluation/interpolation, they
use linear algebra on the Fourier coefficients of the Hilbert modular form. The advantage of
their method is that it works in any dimension and for any modular invariant (provided one
can compute its Fourier coefficients). By contrast our evaluation/interpolation approach needs
fast evaluation of modular invariants (for the complexity) and we need for the interpolation to
be able to recover the period matrix from the values of the modular coefficients. We only know
how to do that efficiently in dimension 2 (and 1) when the invariants are derived from theta
constant (as mentioned by translating back and forth to the Siegel space and using [Dup06]).
In particular our algorithm can not be extended to higher dimension as long as the work of
Dupont on the generalization of the AGM is not extended to dimension greater than 2. Work
in this direction has been done in [Lab16; LT16]. However in dimension 2 we do obtain a quasi-
linear algorithm which is much faster than the linear algebra approach used by Martindale and
Streng.

The remainder of this article is organized as follows. In Section 2, we define the Siegel (in
Section 2.1) and the Hilbert spaces (in Section 2.2) and describe the corresponding moduli
data. We also give generators for the fields of modular functions on these spaces. Then in
Section 2.3, we analyze the forgetful map from the Hilbert modular surface to the Siegel space.
In Section 2.4, we focus on the Humbert surfaces, which is the image of the previous map. We
conclude this Section by looking at covers of the Humbert surface in Section 2.5.
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Section 3 is concerned with invariants of Hilbert surfaces. In Section 3.2 we explain how to
efficiently evaluate a large class of Hilbert invariants. In Section 3.3 we give an interpolation
algorithm, which work even when we have relations between our invariants. In Section 3.4 we
apply the previous Section to explain how to interpolate with Gundlach invariants and pull-
backs of the Igusa and theta functions. Lastly we conclude the Section by giving in Section 3.5
an algorithm to compute covers of Hilbert surface.

Section 4 is concerned with modular polynomials on Hilbert surfaces. First in Section 4.1,
we define the isogenies preserving real multiplication and give some applications in Section 4.2.
In Section 4.3, we define the modular polynomials depending on these isogenies, explain some
of their properties and give an algorithm to compute them in quasi-linear time.

Finally in Section 5, we describe some polynomials we have computed. In particular Sec-
tion 5.4 look in more details the denominators of Hilbert modular polynomials, which describe
very interesting modular curves.

Thanks We thank Pierre-Jean Spaenlehauer to have succesfully done the Gröbner basis
expressing the Gundlach invariants in term of the Igusa invariants for D = 2. We thank David
Kohel which suggested us to look at [EK14] to get invariants for more Humbert or Hilbert
surfaces. We thank Ernst Kani for helpfull discussions regarding his results in [Kan] and John
Boxall for pointing us to the results of Ernst Kani.

2 Hilbert and Siegel modular spaces

2.1 Siegel modular space

The Siegel upper half-space in dimension 2 is the set H2 = {Ω ∈M2(C) | Ω is symmetric and
=(Ω) > 0}. It is a moduli space for principally polarized abelian surfaces: such a surface is a
torus C2/(Z4 + ΩZ4) for some Ω ∈ H2 (see [BL03]), and the principal polarization is induced
by the Hermitian form given by =(Ω)−1.

We define the symplectic group Sp4(Z) as {γ ∈ GL4(Z) | tγJγ = J} where J =
(

0 I2
−I2 0

)
and In is the identity matrix of size n. It acts on H2 by

(
A B
C D

)
· Ω = (AΩ + B)(CΩ + D)−1

(it is a left action). The Siegel modular threefold is the (Baily-Borel) compactification of the
quotient space Sp4(Z)\H2. It is a moduli space for isomorphism classes of principally polarized
abelian surfaces.

Let Γ be a finite subgroup of Sp4(Z) and k ∈ Z. A Siegel modular form of weight k for
Γ is a holomorphic function f : H2 → C such that for all γ =

(
A B
C D

)
∈ Sp4(Z) and Ω ∈ H2,

f(γΩ) = det(CΩ + D)kf(Ω). The quotient of two Siegel modular forms for the same weight
and group Γ is called a Siegel modular function.

Let a, b ∈ {0, 1
2}

2. The classical theta constant with characteristic (a, b) is

θ [ ab ] (Ω) =
∑
n∈Zg

exp(iπ t(n+ a)Ω(n+ a) + 2iπ t(n+ a)b).

To simplify the notation we define for all a = ( a0
a1 ) and b =

(
b0
b1

)
in {0, 1}2

θb0+2b1+4a0+8a1(Ω) := θ
[
a/2
b/2

]
(Ω).
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Of the 16 theta constants, 6 are identically zero and we denote P = {0, 1, 2, 3, 4, 6, 8, 9, 12, 15}
the subscripts of the even theta constants (the non-zero ones). The following functions hi are
Siegel modular forms of weight i for the symplectic group Sp4(Z)

h4 =
∑
i∈P

θ8
i , h6 =

∑
60 triples (i,j,k)∈P3

±(θiθjθk)4,

h10 =
∏
i∈P

θ2
i , h12 =

∑
15 tuples (i,j,k,l,m,n)∈P6

(θiθjθkθlθmθn)4

(see for example [Dup06; Str10; Wen03] for the exact definition).
We define the Eisenstein serie ψk of even weight k ≥ 4 by

ψk(Ω) =
∑
C,D

det (CΩ +D)−k,

where the sum is taken over the set of matrices
(
A B
C D

)
in Sp4(Z) up to left multiplication by

SL2(Z). Let
χ10 = −2−123−55−27−153−143867(ψ4ψ6 − ψ10) and

χ12 = 2−133−75−37−2337−1131 · 593(3272ψ3
4 + 2 · 53ψ2

6 − 691ψ12)

be two Siegel modular cusps forms of weight 10 and 12 respectively. These series can be written
in terms of theta constants. Indeed we have ψ4 = 2−2h4, ψ6 = 2−2h6, χ10 = −2−14h10 and
χ12 = 2−173−1h12. The graded ring of holomorphic Siegel modular forms for Sp4(Z) is the
polynomial ring of ψ4, ψ6, χ10 and χ12. We define the Igusa invariants from these last modular
forms:

j1 = 2 · 35χ
5
12
χ6

10
, j2 = 2−333ψ4χ

3
12

χ4
10

and j3 = 2−53
(
ψ6χ

2
12

χ3
10

+ 223ψ4χ
3
12

χ4
10

)
. (1)

The field of Siegel modular functions for Sp4(Z) is C(j1, j2, j3). Generically, two principally
polarized abelian surfaces are isomorphic if and only if they have the same Igusa invariants
(see [Igu60; Igu62]).

Remark 2.1. For practical computations we use different invariants introduced by Streng in
his thesis [Str10] whose denominators are respectively χ10, χ2

10, χ2
10 and hence give smaller

modular polynomials (see [Mil15]).

Let Γ(2) = {
(
A B
C D

)
∈ Sp4(Z) :

(
A B
C D

)
≡ I2 mod 2}. It is a normal subgroup of Sp4(Z) of

index 720. The three following functions

r1 = θ2
0θ

2
1

θ2
3θ

2
2
, r2 = θ2

1θ
2
12

θ2
2θ

2
15

and r3 = θ2
0θ

2
12

θ2
3θ

2
15

(2)

are Siegel modular functions for Γ(2) called the Rosenhain invariants. They are generators for
the field of modular functions belonging to Γ(2) ([Mum84]).

Let Γ(2, 4) = {
(
A B
C D

)
∈ Sp4(Z) :

(
A B
C D

)
≡ I4 mod 2 and B0 ≡ C0 ≡ 0 mod 4}, where X0

denotes the vector composed of the diagonals elements of X. It is a normal subgroup of Sp4(Z)
of index 11520. The quotients of theta functions bi(Ω) = θi(Ω/2)/θ0(Ω/2) for i = 1, 2, 3 are
Siegel modular functions for Γ(2, 4) and they are generators for the field of modular functions
belonging to Γ(2, 4) (see [Man94; Mil15]).
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2.2 Hilbert modular space

We refer to [Van12; Bru08; Gor02; Fre90; Nag83] for more details on Hilbert modular forms
and Hilbert surfaces.

Let D be a square-free integer and K = Q(
√
D) be a real quadratic field. Its discriminant

∆K is D if D ≡ 1 mod 4 and 4D if D ≡ 2, 3 mod 4. Consider OK the ring of integers of
K. We have that OK = Z + ωZ where ω = 1+

√
D

2 if D ≡ 1 mod 4 and ω =
√
D otherwise.

Denote by a the conjugate of a in OK . We consider K ⊂ R and
√
D > 0. We then have

α+ β
√
D = α− β

√
D.

The set H+
1 = {z ∈ C : =(z) > 0} is the Poincaré half-plane. We will often denote it as

H1 to not surcharge the notations. Let H−1 = −H+
1 . The group SL2(OK) acts on the left on

H+
1 ×H

−
1 by

(
a b
c d

)
· (τ1, τ2) = (aτ1+b

cτ1+d ,
aτ2+b
cτ2+d). The Baily-Borel compactification of the quotient

space SL2(OK)\H+
1 ×H

−
1 is the Hilbert modular surface. It parametrizes principally polarized

abelian surfaces (A, θ) with real multiplication by the maximal order OK , with an explicit
embedding µ : OK → End(A) (see [BL03; EK14]).

Let SL2(OK⊕∂−1
K ) = {

(
a b
c d

)
∈ SL2(K) : a, d ∈ OK , b ∈ ∂−1

K and c ∈ ∂K}. As K = Q(
√
D),

we have that ∂K =
√

∆KOK and ∂−1
K = 1√

∆K
OK . The isomorphisms φ± : SL2(OK) →

SL2(OK⊕∂−1
K ),

(
a b
c d

)
7→
(

a b/
√

∆K

c
√

∆K d

)
and φ± : H+

1 ×H
−
1 → H2

1, (τ1, τ2) 7→ (τ1
√

∆K ,−τ2
√

∆K)
induce an isomorphism between the group action of SL2(OK) on H+

1 ×H
−
1 and the group action

of SL2(OK ⊕ ∂−1
K ) on H2

1 ([EK14, Section 3]).
If τ = (τ1, τ2) ∈ H2

1, the corresponding abelian surface is given by the torus C2/(Φ(OK)⊕(
τ1 0
0 τ2

)
Φ(∂−1

K )) where Φ : K → C2 is given by the two real embeddings, and the polarization
is induced by the symplectic form E on the lattice: E(x1 +x2τ, y1 +y2τ) = trK/Q(x1y2−x2y1).
From the definition of ∂−1

K we get indeed that E induces a principal polarization.
Since SL2(OK) is generated by the matrices ( 1 1

0 1 ), ( 1 ω
0 1 ),

( 0 −1
1 0

)
, the group SL2(OK ⊕∂−1

K )
is generated by the matrices

(
1 1/
√

∆K
0 1

)
,
(

1 ω/
√

∆K
0 1

)
and

(
0 −1/

√
∆K√

∆K 0

)
.

For λ ∈ K and τ = (τ1, τ2) ∈ H2
1, we denote

λτ = (λτ1, λτ2), N(τ) = τ1τ2 and tr(τ) = τ1 + τ2.

We define σ to be the involution σ : (τ1, τ2) ∈ H2
1 7→ (τ2, τ1) ∈ H2

1. We let σ act by conjugation
on SL2(OK ⊕ ∂−1

K ) via σγσ =
(
a b
c d

)
∈ SL2(OK ⊕ ∂−1

K ), for γ =
(
a b
c d

)
∈ SL2(OK ⊕ ∂−1

K ). It
is straightforward to check that this is compatible with the action on H2

1. We call the group
SL2(OK ⊕ ∂−1

K ) o 〈σ〉 the symmetric Hilbert modular group. For a function f : H2
1 → C and

γ ∈ SL2(OK ⊕ ∂−1
K ) o 〈σ〉 we denote fγ(τ) = f(γ.τ).

Definition 2.2. Let Γ be a subgroup of SL2(K) commensurable with SL2(OK). A holomorphic
function f on H2

1 is called a Hilbert modular form of weight k for the subgroup Γ if it satisfies
for any γ =

(
a b
c d

)
∈ Γ and τ = (τ1, τ2) ∈ H2

1 the condition f(γτ) = N(cτ+d)kf(τ). If moreover
it verifies f(σ(τ)) = f(τ) for all τ ∈ H2

1, then we say that this form is symmetric. A Hilbert
modular function is the quotient of Hilbert modular forms of the same weight and for the same
group. We say it is symmetric when the forms are.

Remark 2.3. Note that a modular form f is then automatically holomorphic at the cusps
SL2(OK)\P1(K) ' Cl(OK).
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Theorem 2.4. The Hilbert modular surface is rational for D = 2, 3, 5, 6, 7, 13, 15, 17, 21, 33.

Proof. See [HZ77, Theorem 2]

For the study of Humbert surfaces in Section 2.4 we will be interested in symmetric Hilbert
modular forms and functions. For the simplicity of the exposition, we now assume that the
fundamental unit ε has norm −1 and ε > 0. Let α = diag(1,

√
∆K
ε ). Then φ0 : τ ∈ H2

1 7→
ε√
∆K

τ ∈ H2
1 and φ0 : γ ∈ SL2(OK) 7→ αγα−1 ∈ SL2(OK ⊕ ∂−1

K ) are bijections which induce an
isomorphism between the action of SL2(OK ⊕ ∂−1

K ) on H2
1 and the action of SL2(OK) on H2

1.
Note that when ε > 0 has norm −1, then ε < 0 so that ε√

∆K
is totally positive and φ0(τ) ∈ H2

1.
Let {e1, e2} be a Z-basis of OK and qj = e2iπ(εejτ1−εejτ2)/

√
∆K for j = 1, 2.

Proposition 2.5. Let g be a holomorphic Hilbert modular form for SL2(OK) of weight k.
Then it has Fourier expansion

g(τ) = ag(0) +
∑

t=ae1+be2∈O++
K

ag(t)qa1qb2.

Proof. See [LY11, Proposition 3.2].

We denote by AZ(SL2(OK))k the Z-module of symmetric Hilbert modular forms of even
weight k with rational integral Fourier coefficients and put A2(SL2(OK)) =

⊕
AZ(SL2(OK))k.

Define the Eisenstein series of even weight k ≥ 2:

Gk(τ) = 1 +
∑

t=ae1+be2∈O++
K

bk(t)qa1qb2,

where
bk(t) = κk

∑
tOK⊂µOK

| OK/µOK |k−1

and κk = ζK(k)−1(2π)2k((k − 1)!)−2∆1/2−k
K (by [Nag83, Equation (1.5)]).

Lemma 2.6.

• If K = Q(
√

2), let ε = 1+
√

2. Then κ2 = 24 ·3, κ4 = 25 ·3·5·11−1 and κ6 = 24 ·32 ·7·19−2;

• If K = Q(
√

5), let ε = 1+
√

5
2 . Then κ2 = 23 · 3 · 5, κ4 = 24 · 3 · 5, κ6 = 23 · 32 · 5 · 7 · 67−1

and κ10 = 23 · 3 · 52 · 11 · 412751−1.

Proof. See [Nag83, Lemma 1.1].

The Eisenstein series are symmetric Hilbert modular forms for SL2(OK) with coefficients
in Q. We focus now on the cases D = 2, 5 and we fix the basis {1, ε}, which gives a nice
expression of q1 and q2. We have

Theorem 2.7. In the case K = Q(
√

2), we put

F4 = 2−6 · 3−2 · 11(G2
2 −G4) and F6 = −5 · 72

283313G
3
2 + 11 · 59

28325 · 13G2G4 −
192

27335 · 13G6.

Then G2, F4 and F6 are in AZ(SL2(OK))k for k = 2, 4, 6 respectively. Furthermore, they form
a minimal set of generators of AZ(SL2(OK)) over Z.
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Proof. See [Nag83, Theorem 1].

Theorem 2.8. In the case K = Q(
√

2), the field of symmetric meromorphic Hilbert modular
functions for SL2(OK) are rational functions of

J1 = G2
2

F4
and J2 = G2F6

F 2
4
.

We call J1 and J2 the Gundlach invariants for K.

Proof. A proof of this theorem will be given later in page 14.

Theorem 2.9. In the case K = Q(
√

5), we put

F6 = 67
253352 (G3

2 −G6),

F10 = 2−103−55−57−1(412751G10 − 5 · 67 · 2293G2
2G6 + 223 · 7 · 4231G5

2),

and F12 = 2−2(F 2
6 −G2F10).

The four modular forms G2, F6, F10 and F12 are in AZ(SL2(OK))k for k = 2, 6, 10 and 12
respectively. Furthermore, they form a minimal set of generators of AZ(SL2(OK)) over Z.

Proof. See [Gun63] or [Nag83, Theorem 2].

Theorem 2.10. In the case K = Q(
√

5), the field of symmetric meromorphic Hilbert modular
functions for SL2(OK) are rational functions of

J1 = G5
2

F10
and J2 = F6G

2
2

F10
.

We call J1 and J2 the Gundlach invariants for K.

Proof. See [Gun63] or the proof in page 14.
Note that it is usual to take the invariants G5

2
F10

and F6
G3

2
. We have substituted the last

one by the product of the two. As explained in Section 4.3 these invariants will give smaller
modular polynomials. Indeed we will see that the denominators of the invariants determine
the denominators of the modular polynomials so that it is better to have fewer factors.

2.3 From Hilbert to Siegel

Let τ = (τ1, τ2) ∈ H2
1, x ∈ K and γ =

(
a b
c d

)
∈ SL2(K). We denote τ∗ =

(
τ1 0
0 τ2

)
, x∗ =

(
x 0
0 x

)
and γ∗ =

(
a∗ b∗
c∗ d∗

)
. Fix {e1, e2} a Z-basis of OK and define the matrices R =

( e1 e2
e1 e2

)
and

S =
(
tR 0
0 R−1

)
and the maps

φe1,e2 : H2
1 → H2
τ 7→ tRτ∗R

and φe1,e2 : SL2(K) → Sp4(Q)
γ 7→ Sγ∗S−1.

Recall that SL2(OK⊕∂−1
K ) = {

(
a b
c d

)
∈ SL2(K) : a, d ∈ OK , b ∈ 1/

√
∆KOK and c ∈

√
∆KOK}.

Proposition 2.11. The map φe1,e2 satisfy:
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• φ−1
e1,e2(Sp4(Z)) = SL2(OK ⊕ ∂−1

K );

• φe1,e2(γ · τ) = φe1,e2(γ) · φe1,e2(τ) for all γ ∈ SL2(OK ⊕ ∂−1
K ) and τ ∈ H2

1;

• If f1, f2 is another Z-basis of OK , then there exists some γ ∈ Sp4(Z) such that for all
τ ∈ H2

1, φe1,e2(τ) = γ · φf1,f2(τ);

• There exists some γ ∈ Sp4(Z) such that φe1,e2(σ(τ)) = γ · φe1,e2(τ). We denote Mσ this
γ, and this allows us to extend φe1,e2 to SL2(OK ⊕ ∂−1

K ) o 〈σ〉.

Proof. See [LY11, Proposition 3.1].

Thus, the map φe1,e2 gives a holomorphic map from SL2(OK ⊕ ∂−1
K )\H2

1 to Sp4(Z)\H2
which is independent of the choice of the basis of OK . It also sends τ and σ(τ) to the same
point of Sp4(Z)\H2. Since φe1,e2 allows us to identify SL2(OK ⊕ ∂−1

K ) and < σ > as subgroups
of Sp4(Z), we will often note SL2(OK⊕∂−1

K )∪SL2(OK⊕∂−1
K )σ the group SL2(OK⊕∂−1

K )o〈σ〉.
We will often work with the basis e1 = 1 and e2 = ω. We will denote φ instead of φ1,ω. We

have then φ(τ) =
(

τ1+τ2 τ1ω+τ2ω
τ1ω+τ2ω τ1ω2+τ2ω2

)
=
(

Ω1 Ω2
Ω2 Ω3

)
∈ H2 and it verifies

D−1
4 Ω1 + Ω2 − Ω3 = 0, if D ≡ 1 mod 4;

DΩ1 − Ω3 = 0, if D ≡ 2, 3 mod 4. (3)

Moreover, set

Mσ =



(
1 0 0 0
1 −1 0 0
0 0 1 1
0 0 0 −1

)
if D ≡ 1 mod 4;

(
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
if D ≡ 2, 3 mod 4.

(4)

The matrix Mσ satisfies
φ(σ(τ)) = Mσ · φ(τ). (5)

Consider now γ =
(

a+a′ω (b+b′ω)/
√

∆K√
∆K(c+c′ω) d+d′ω

)
∈ SL2(OK ⊕ ∂−1

K ). Then

φ(γ) =



 a a′ b′ b+b′
(D−1

4 )a′ a+a′ b+b′ b+(D+3
4 )b′

(D−1
4 )c′−c c d (D−1

4 )d′
c c′ d′ d+d′

 if D ≡ 1 mod 4;

(
a a′ b′ b
Da′ a b Db′

Dc′ c d Dd′

c c′ d′ d

)
if D ≡ 2, 3 mod 4.

(6)

For D = 2, 5, the fundamental unit has norm −1 and it can be more convenient to work
with the basis {1, ε}, which was used to define the Fourier coefficients of the symmetric Hilbert
modular forms in Section 2.2. Let φ1 := φ1,ε and φε := φ1◦φ0 where φ0 denote the isomorphisms
introduced in Section 2.2. The map φε verifies similar equalities as in Proposition 2.11 between
the action of SL2(OK) on H2

1 and the action of Sp4(Z) on H2.
For a basis {e1, e2}, we give now the relation between the Fourier coefficients of a Siegel

modular form f and the coefficients of its pullback φ∗e1,e2f , which is a symmetric Hilbert
modular form.
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Proposition 2.12. Let

f(Ω) = af (0) +
∑

T∈Sym2(Z)∨,++

af (T )qT

be a holomorphic Siegel modular form for Sp4(Z) of weight k. Then its pullback g = φ∗e1,e2f is
a symmetric Hilbert modular form with the following Fourier expansion:

g(τ) = f(φe1,e2(τ)) = ag(0) +
∑

t=ae1+be2∈O++
K

ag(t)qa1qb2,

with ag(0) = af (0) and
ag(t) =

∑
T∈Sym2(Z)∨,++

QT (e1,e2)=t

af (T ).

Here, QT (x1, x2) = (x1, x2)T ( x1
x2 ) is the positive definite quadratic form associated to T and

Sym2(Z)∨ =
{
T =

(
m1

1
2m

1
2m m2

)
: mi,m ∈ Z

}
is the dual of Sym2(Z). Finally, qT = e2iπtr(TΩ).

Proof. See [LY11, Proposition 3.2].

We are interested in the pullbacks of the Igusa invariants (defined in Equation (1)). They
are already known in the case D = 5.

Theorem 2.13. For K = Q(
√

5) we have

φ∗εψ4 = G2
2;

φ∗εψ6 = −42
25G

3
2 + 67

25G6 = G3
2 − 2533F6;

−4φ∗εχ10 = F10;
12φ∗εχ12 = 3F 2

6 − 2G2F10.

Proof. See [Res74, Theorem 1].

Corollary 2.14. One has

φ∗ε j1 = 8J1(3J2
2/J1 − 2)5;

φ∗ε j2 = 1
2J1(3J2

2/J1 − 2)3;
φ∗ε j3 = 2−3J1(3J2

2/J1 − 2)2(4J2
2/J1 + 2532J2/J1 − 3).

Proof. See also [LY11, Proposition 4.5].

Using Proposition 2.12 and comparing the different Fourier series (as done in [Res74] in
the case D = 5) we have found

Theorem 2.15. For K = Q(
√

2) we have

φ∗εψ4 = G2
2 + 144F4;

φ∗εψ6 = G3
2 − 648F4G2 − 1728F6;

φ∗εχ10 = −1
4F4F6;

φ∗εχ12 = 1
12G2F4F6 + F 3

4 + F 2
6 .
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Corollary 2.16. One has

φ∗ε j1 = 8J3
1/J2(1 + 12/J2 + 12J2/J1)5;

φ∗ε j2 = J2
1/J2/2(J1 + 144)(1 + 12/J2 + 12J2/J1)3;

φ∗ε j3 = 1/8(1 + 12/J2 + 12J2/J1)2·
(J3

1/J2 + 16J2
1 + 16J3

1/J
2
2 + 2304J2

1/J
2
2 + 408J2

1/J2 + 2880J1).

2.4 Humbert surfaces

Let Ω =
(

Ω1 Ω2
Ω2 Ω3

)
∈ H2 and a, b, c, d, e ∈ Z. We call an equation of the form:

aΩ1 + bΩ2 + cΩ3 + d(Ω2
2 − Ω1Ω3) + e = 0

a singular relation. If gcd (a, b, c, d, e) = 1, we say that this relation is primitive. Moreover, we
define the discriminant of a singular relation to be ∆ = b2 − 4ac− 4de.

Theorem 2.17 (Humbert’s Lemma). Let Ω =
(

Ω1 Ω2
Ω2 Ω3

)
satisfying the singular relation:

aΩ1 + bΩ2 + cΩ3 + d(Ω2
2 − Ω1Ω3) + e = 0

of discriminant ∆ = b2 − 4ac− 4de. Then there exists a matrix γ ∈ Sp4(Z) such that γ · Ω =(Ω′1 Ω′2
Ω′2 Ω′3

)
satisfies a unique normalized singular relation of the form:

kΩ′1 + `Ω′2 − Ω′3 = 0 (7)

where k and ` are determined uniquely by ∆ = 4k + ` and ` ∈ {0, 1}.

Proof. See [Hum99; Hum00; Hum01].

Remark 2.18.

• Equations (3) and (7) are of the same type;

• Let Ω ∈ H2 be a matrix equivalent to a matrix satisfying (7). Then Ω satisfy necessarily
a singular relation of discriminant ∆;

• Let Ω ∈ H2 satisfying a singular relation of discriminant ∆. A constructive algorithm to
find γ as in the Humbert’s Lemma can be found in [BW03; Run99].

Proposition 2.19. For any ∆ ≡ 0 or 1 mod 4, ∆ > 0, the set H∆ := {Ω ∈ Sp4(Z)\H2 : Ω
satisfies a primitive singular relation of discriminant ∆} is a surface which we call a Humbert
surface of discriminant ∆.

Proof. See [BW03, Corollary 4.6 and Proposition 4.7] or [Gru08, Proposition 2.11].

Proposition 2.20. Let AΩ be the principally polarized abelian surface associated to Ω ∈ H2.
Let also ∆ 6= ∆′ be non-square discriminants. Then:

• AΩ is simple if and only if Ω 6∈
⋃
m>0Hm2;

• Ω ∈ H∆, if and only if End(AΩ) ⊗ Q contains Q(
√

∆), if and only if there exists a
symmetric endomorphism of discriminant ∆ on AΩ;

12



• if Ω ∈ H∆ ∩ H∆′, then either AΩ is simple and End(AΩ) ⊗ Q is a totally indefinite
quaternion algebra over Q, or AΩ is isogenous to E × E, where E is an elliptic curve.

Proof. See [BW03, Proposition 4.9] or [Gru08, Corollary 2.10, Proposition 2.15].

We denote now Γ̃(1) = SL2(OK ⊕ ∂−1
K ). Proposition 2.11 and Equations (3), (4) and

(5) say that the images by φ of H2
1 and of (Γ̃(1) ∪ Γ̃(1)σ)\H2

1 are in the Humbert surface of
discriminant ∆K . This is also true for any φe1,e2 because the images of τ by φ and by φe1,e2

are equivalent modulo the action of Sp4(Z) (which means that these maps send τ to the same
point of the Humbert surface). Similarly, φε also maps to the Humbert surface because it is
the composition of φ1,ε with an automorphism of the Humbert surface. More precisely, the
Hilbert surface maps onto the Humbert surface:

Proposition 2.21. The following diagram is commutative:

Γ̃(1)\H2
1

π

((

H2
1

oo ψ //

��

H2

��
(Γ̃(1) ∪ Γ̃(1)σ)\H2

1
ρ // Sp4(Z)\H2

where ψ is either φe1,e2 or φε, π is a map of degree 2 and ρ is a map generically of degree 1
onto the Humbert surface H∆K

.

Proof. See [Van82]. The fact that π is of degree 2 is obvious. It remains to see that ρ ◦ π
is generically of degree 2. But H∆K

is the locus of principally polarized abelian surfaces
(A, θ) with real multiplication by OK , and the preimages correspond to explicit embeddings
µ : OK → End(A). Generically there are only two such embeddings which differ by the real
conjugation, which corresponds to the action of σ.

The analytic quotient space (Γ̃(1)∪Γ̃(1)σ)\H2
1 is called a symmetric Hilbert modular surface.

Lemma 2.22. Let X be a subvariety of Y , with both X and Y irreducible and defined over
a field F . Then the restriction map (which is not defined everywhere) on the functions fields
F (Y ) −→· F (X) is surjective.

Proof. Since X is a subvariety of Y , it is a closed variety of an open locus U of Y . The inclusion
ι : X → U then yields an epimorphism of sheaves ι∗ : OU → OX . Looking at the stalks of the
generic points we deduce that the map F (Y )→ F (X) (defined for functions f ∈ F (Y ) which
are defined on the generic point of X) is surjective.

Corollary 2.23. The pullbacks by ρ of the Igusa invariants to the symmetric Hilbert modular
surface (Γ̃(1) ∪ Γ̃(1)σ)\H2

1 generate the function field of symmetric Hilbert modular functions.
(These pullbacks can also be seen as the restriction of the Igusa invariants to the Humbert
surface).

Proof. By the theory of Shimura varieties, both (Γ̃(1)∪Γ̃(1)σ)\H2
1 and Sp4(Z)\H2 are algebraic,

and so is ρ.
Proposition 2.21 says that the map from the Symmetric Hilbert modular surface (Γ̃(1) ∪

Γ̃(1)σ)\H2
1 to the Siegel space is birational to its image, the Humbert surface H∆K

. Its field
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of functions are the symmetric Hilbert modular functions. So, by Lemma 2.22, any symmetric
Hilbert modular function (seen by birationality as a rational function on the Humbert surface)
can be lifted to a Siegel modular function. Since the Igusa invariants generate the field of the
Siegel modular functions, it suffices to check that the restriction of these invariants to H∆K

is well defined (on an open set). But the denominators of these functions is (up to a scalar
multiple) χ10 whose locus is exactly H1, the set of abelian surfaces isomorphic to a product of
elliptic curves. By Proposition 2.20 the intersection of H1 and H∆K

is a (union of) curves, so
the Igusa invariants are well defined on H∆K

\H1.

Proof of Theorems 2.8 and 2.10. By Corollary 2.23, any symmetric Hilbert modular function
is a rational fraction with complex coefficients in the pullbacks of the Igusa invariants. By
Corollaries 2.16 and 2.14, the pullbacks of the Igusa invariants can be expressed in terms of
the Gundlach invariants for Q(

√
2) and Q(

√
5) respectively. Thus each symmetric Hilbert

modular function can be expressed in terms of the Gundlach invariants.

2.5 Symmetric and non symmetric covers of the Humbert surface

We study here the covers of the Hilbert modular surface SL2(OK⊕∂−1
K )\H2

1 given by a subgroup
Γ̃ of finite index in SL2(OK ⊕ ∂−1

K ).

Remark 2.24. By [Ser70] a group Γ̃ of finite index in SL2(OK ⊕ ∂−1
K ) is necessarily a level

subgroup, meaning that it contains a congruence subgroup Γ̃(n) (see Definition 2.28).

Lemma 2.25. Let G be a subgroup of SL2(OK ⊕ ∂−1
K ) o 〈σ〉 of finite index. If σ 6∈ G then

G ⊂ SL2(OK ⊕∂−1
K ). Otherwise G = Γ̃o 〈σ〉 for a subgroup Γ̃ ⊂ SL2(OK ⊕∂−1

K ) of finite index
and normalized by σ (meaning that Γ̃ is stable under the real conjugation).

In the latter case we say that G is symmetric.

Proof. Indeed as a set it is easy to see that if σ ∈ G, then G = Γ̃ ∪ Γ̃σ for a subgroup
Γ̃ ⊂ SL2(OK ⊕ ∂−1

K ). It remains to check that σ normalize Γ̃. But since G is a group,
σΓ̃σ−1 = Γ̃ ⊂ G, so Γ̃ = Γ̃.

Definition 2.26. We denote by CG the field of meromorphic functions of H2
1 invariant under

the action of G. It is the function field of the Hilbert surface HG = G\H2
1.

Remark 2.27. HG admits a (Baily-Borel) compactification, which in turn admits a smooth
birational model. In this article we only work with invariants of the Hilbert modular function
field, so only up to birational equivalence, so we don’t distinguish between these models.

When Γ = SL2(Z), the subgroups Γ(n), Γ0(`) and Γ(2, 4) are standard, and of main interest
for modular polynomials of elliptic curves. We want to generalize these notations to the Hilbert
modular group. It is easier to define them first in the model of SL2(OK) acting on H+ ×H−
and then transport them to the model of SL2(OK ⊕ ∂−1

K ) action on H2 via the automorphism
φ± of Section 2.2.

Definition 2.28. Let

Γ̃(n) =
{(

a b
c d

)
∈ SL2(OK) : a ≡ d ≡ 1 mod n, b ≡ c ≡ 0 mod n

}
. (8)
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Define then for D ≡ 1 mod 4 and D ≡ 2, 3 mod 4

Γ̃(2, 4) =
{(

a b
c d

)
∈ Γ̃(2) : b ≡ c ≡ 0 mod 4

}
,

Γ̃(2, 4) =
{(

a (b+b′ω)
(c+c′ω) d

)
∈ Γ̃(2) : b′ ≡ c′ ≡ 0 mod 4

} (9)

respectively.
By abuse of notation, we use the same notation for their image by φ±:

Γ̃(n) =
{(

a b/
√

∆K√
∆Kc d

)
∈ SL2(OK ⊕ ∂−1

K ) : a ≡ d ≡ 1 mod n, b ≡ c ≡ 0 mod n
}
. (10)

Define then for D ≡ 1 mod 4 and D ≡ 2, 3 mod 4

Γ̃(2, 4) =
{(

a b/
√

∆K√
∆Kc d

)
∈ Γ̃(2) : b ≡ c ≡ 0 mod 4

}
,

Γ̃(2, 4) =
{(

a (b+b′ω)/
√

∆K√
∆K(c+c′ω) d

)
∈ Γ̃(2) : b′ ≡ c′ ≡ 0 mod 4

} (11)

respectively. Note the subtlety in the definition of Γ̃(2, 4) for D ≡ 2, 3 mod 4, this will be
explained below.

Consider now Γ a subgroup of Sp4(Z) of finite index. The projection π : Γ\H2 → Sp4(Z)\H2
is a finite map. Recall that if ∆K is the discriminant of OK , we denote by H∆K

the Humbert
surface of discriminant ∆K . An irreducible component of HΓ

∆K
= π−1(H∆K

) in Γ\H2 is called
a Humbert surface component.

Let G = φ−1(Γ) and Γ̃ = G ∩ SL2(OK ⊕ ∂−1
K ). If the matrix Mσ is not in Γ, then G = Γ̃,

otherwise G = Γ̃∪ Γ̃σ. By Proposition 2.21 we get that the following diagram is commutative:

H2
1

ψ //

��

H2

��
G\H2

1
ρ // Γ\H2

where ρ is a map generically of degree 1 onto its image, which is a Humbert surface component
HG∆K

.

Proposition 2.29. Suppose that b1, . . . , bk are modular functions for Γ which generate the
function field C(Γ) and that the restriction of b1, . . . , bk is well defined on the component
HG∆K

(on an open set). Then ρ∗b1, . . . , ρ∗bk generate the function field CG of Hilbert modular
functions.

In particular if Mσ ∈ Γ, the pullbacks generate the symmetric Hilbert modular functions
for Γ̃; while if Mσ 6∈ Γ the pullbacks generate the full function field CΓ̃ of Hilbert modular
functions for Γ̃.

Proof. This is identical to the proof of Corollary 2.23.

We have seen that by Corollary 2.23 we can take j̃k = φ∗jk, for k = 1, 2, 3, as invariants on
the symmetric Hilbert modular surface. These functions are algebraically dependent. Similarly,
we want to apply Proposition 2.29 to the functions b̃k = φ∗bk and r̃k = φ∗rk for k = 1, 2, 3.

Theorem 2.30. The functions r̃k and b̃k for k = 1, 2, 3 are generators for the field of Hilbert
modular functions invariants by Γ̃(2) and Γ̃(2, 4), if D ≡ 1 mod 4, and by Γ̃(2) ∪ Γ̃(2)σ and
Γ̃(2, 4) ∪ Γ̃(2, 4)σ, if D ≡ 2, 3 mod 4, respectively.
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Proof. By Equation (6), we have that φ−1(Γ(2, 4)) ∩ SL2(OK ⊕ ∂−1
K ) = Γ̃(2, 4). Thus, the

functions b̃k are modular for Γ̃(2, 4). Moreover, if D ≡ 2, 3 mod 4, then these functions are
also modular for Γ̃(2, 4)σ, as the matrix Mσ of Equation (4) belongs to Γ(2, 4). Similarly,
φ−1(Γ(2)) ∩ SL2(OK ⊕ ∂−1

K ) = Γ̃(2) and the r̃k are modular for Γ̃(2) and also by Γ̃(2)σ when
D ≡ 2, 3 mod 4. We conclude using Proposition 2.29 and the fact that the bi (resp. ri) are
generators for the field of Siegel modular functions invariants by Γ(2, 4) (resp. Γ(2)). The
pullbacks are indeed well defined because the denominators of these invariants divide χ10, so
the locus of the denominators are components above the Humbert surface H1.

Proposition 2.31. The subgroups Γ̃(2) and Γ̃(2, 4) of Γ̃(1) are of index
36 and 576, if D ≡ 1 mod 8;
60 and 960, if D ≡ 5 mod 8;
48 and 192, if D ≡ 2, 3 mod 4.

Proof. We do the proof for Γ̃(2, 4) as the other one is similar. Note that Γ̃(1)/Γ̃(4) '
SL2(OK/4OK). We have then that OK/4OK is isomorphic to

• Z/4Z× Z/4Z when 2 is split, namely when D ≡ 1 mod 8;

• Z/4Z[X]/(X2 +X + 1) when 2 is inert, namely when D ≡ 5 mod 8;

• Z/4Z[X]/(X2) when 2 is ramified, namely when D ≡ 2, 3 mod 4.

The cardinality of SL2(OK/4OK) is then 482, 3840 and 3072 respectively. Moreover, the index
of the subgroup Γ̃(4) of Γ̃(2, 4) is 4 when D ≡ 1 mod 4 and 16 when D ≡ 2, 3 mod 4. As these
two sets are normal subgroups of Γ̃(1), the third isomorphism theorem of groups gives us the
desired results.

Proposition 2.32. The number of Humbert surfaces components for Γ(2) and for Γ(2, 4) is
respectively 

10 if D ≡ 1 mod 8
6 if D ≡ 5 mod 8
15 if D ≡ 2, 3 mod 4

and


10 if D ≡ 1 mod 8
6 if D ≡ 5 mod 8
60 if D ≡ 2, 3 mod 4

Proof. See [Run99]. An heuristic argument for Γ(2, 4) is that given P (b1, b2, b3), the Hum-
bert component HG∆K

which is the image of φ and Ω = φ(τ) ∈ H2, then for any γ ∈
Sp4(Z)/Γ(2, 4), we have that P (bi(γΩ)) = 0 only for the matrices γ which come from the
image of φ(Γ̃(1)/Γ̃(2, 4)) and of φ(Γ̃(1)/Γ̃(2, 4)σ) in Sp4(Z)/Γ(2, 4). The number of compo-
nents corresponds to the number

v(D) · |Sp4(Z)/Γ(2, 4)|/|Γ̃(1)/Γ̃(2, 4)|,

where v(D) is 1 if D ≡ 2, 3 mod 4 and 1
2 if D ≡ 1 mod 4. This argument works also for Γ(2).

This is easier to see via the modular interpretation. Let Γ = Γ(2) (respectively Γ(2, 4)).
Then an element of Γ\H2 corresponds to a principally polarized abelian surface with a sym-
plectic basis of the 2-torsion (resp. a symmetric theta structure of level 2). The cover
Γ\H2 → Sp4(Z)\H2 corresponds to forgetting this extra structure, and the fibers form a
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torsor under the isomorphisms of this extra structure, which are equal to Sp4(Z)/Γ(2) (resp.
Sp4(Z)/Γ(2, 4)).

The same is true for the map HG∆K
' G\H2

1 → HΓ
∆K
' Γ̃(1) ∪ Γ̃(1)σ\H2

1 and the action of
Γ̃(1)∪Γ̃(1)σ/G on the fibers, where G is Γ̃(2) (resp. Γ̃(2, 4)) whenD ≡ 1 mod 4 and Γ̃(2)∪Γ̃(2)σ
(resp. Γ̃(2, 4) ∪ Γ̃(2, 4)σ) when if D ≡ 2, 3 mod 4. Except that here the extra structure has
to be compatible with the action of OK . (For instance a symmetric theta structure of level 2
is induced by a symplectic basis of the 2-torsion and a compatible symplectic decomposition
of the 4-torsion into maximal isotropic subgroups. For this symmetric theta structure to be
compatible with the action of OK , these maximal isotropic subgroups have to be stable under
the action of OK .)

In particular on the Humbert component HG∆K
, then the action of Γ̃(1) ∪ Γ̃(1)σ/G per-

mute the fibers. Since this quotient is isomorphic to φ(Γ̃(1) ∪ Γ̃(1)σ)Γ(2)/Γ(2) (resp. to
φ(Γ̃(1) ∪ Γ̃(1)σ)Γ(2, 4)/Γ(2, 4)) this means that the action of Sp4(Z)/

(
φ(Γ̃(1) ∪ Γ̃(1)σ)Γ(2)

)
(resp. Sp4(Z)/φ(Γ̃(1) ∪ Γ̃(1)σ)Γ(2, 4)), which is not compatible with OK , permutes the com-
ponents.

We give the equations of the Humbert component corresponding to the image of φ for
Γ(2, 4) and D = 2, 3, 5

b1 − 1
2(b22 + b23) = 0;

−b41 − b42 − 4b23 − 2b21b22 + 4b1b2 + 4b1b2b23 = 0;
−1
2 (
∑
i b

4
i +

∑
i

∑
j 6=i(bibj)4) + b1b2b3(1 +

∑
i b

4
i − b1b2b3) = 0

(12)

and similarly for Γ(2) and D = 2 only

((16r2
3 − 16r3)r2

2 + (−16r2
3 + 16r3)r2)r4

1 + ((−16r2
3 + 16r3)r3

2 + (−16r3
3 + 16r2

3)r2
2+

(16r3
3 − 16r3)r2)r3

1 + (−r4
2 + (16r3

3 − 16r3 + 2)r3
2 + (−14r2

3 + 14r3 − 1)r2
2+

(−16r3
3 + 14r2

3 + 2r3)r2 + (−r4
3 + 2r3

3 − r2
3))r2

1 + (2r3r
4
2 + (−16r3

3 + 14r2
3 − 2r3)r3

2+
(14r3

3 − 12r2
3)r2

2 + (2r4
3 − 2r3

3)r2)r1 + (−r2
3r

4
2 + 2r3

3r
3
2 − r4

3r
2
2) = 0.

(13)

For D = 3, the equations are too big to be put in the paper. The computation of these
equations is explained in [Gru08], where the equations for many discriminants can be found.
We managed to directly recompute the equations for the small discriminants by evaluating the
invariants at many matrices and by solving a linear algebra system.

3 Invariants of Hilbert surfaces

3.1 Generators of the field of Hilbert modular functions

Let Γ̃ ⊂ SL2(OK ⊕ ∂−1
K ) be a subgroup of finite index. We note HΓ̃ = Γ̃\H2

1 the correspond-
ing Hilbert modular surface, and HΓ̃,σ = (Γ̃ ∪ Γ̃σ)\H2

1 the corresponding symmetric Hilbert
modular surface. We let G = Γ̃ in the first case, and G = Γ̃ ∪ Γ̃σ in the second one.

Proposition 3.1. Let HG be a Hilbert surface as above. Then CG) = C(i1, i2, i3) where i1
and i2 are symmetric Hilbert modular functions for SL2(OK ⊕ ∂−1

K ) and i3 is algebraic over
C(i1, i2). Moreover i3 is symmetric if and only if HG is symmetric.
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Proof. Since HG is a surface, the field of Hilbert modular functions CG is of transcendence
degree 2. By the primitive element theorem, CG is generated by two transcendental func-
tions i1, i2 (called primary invariants) and a third one i3 algebraic over C(i1, i2) (called a
secondary invariant). Since CG is algebraic over CSL2(OK⊕∂−1

K )∪SL2(OK⊕∂−1
K )σ, we can take

i1, i2 ∈ CSL2(OK⊕∂−1
K )∪SL2(OK⊕∂−1

K )σ. They are then symmetric, so HG is symmetric if and only
if i3 is symmetric.

Usually working with symmetric Hilbert modular surface yields invariants easier to com-
pute. For instance while HΓ̃(1) is not often a rational surface according to Theorem 2.4, from
[EK14] we have that HΓ̃(1),σ is a rational surface for every fundamental discriminent ∆K < 100.
Hence for these surfaces we need only two birational primary invariants to define the modular
polynomials. The drawback of symmetric modular surfaces is that they can not be used for
all the applications of isogenies as we will see in Section 4.1.

Note that by the general theory of Shimura varieties HG has a (birational) model defined
over an algebraic number field F . In fact by [Van12, Section X.4], the Hilbert surface can be
defined over Q, and its connected components over an abelian extension of Q. In particular if
the invariants i1, i2, i3 come from this model defined over F , the equation E(i1, i2, i3) = 0 will
have coefficients in ck ∈ F (X1, X2) where E =

∑
ck(i1, i2)ik3.

But it is important to know in practice when the Hilbert invariants we work with are defined
over a number field F : it is when their Fourier coefficients have value in F . In practice the
invariants we use for computation (pullbacks of Igusa invariants, pullbacks of theta functions,
Gundlach invariants) even have Fourier coefficients in Q.

Lemma 3.2. Let i1, . . . in be Hilbert modular functions generating the Hilbert modular field
CG, and let E be the ideal of equations among the ik and HE the corresponding birational model
of HG. Then if the Fourier coefficients of each ik are in F , then the ideal E is generated by
equations with coefficients in F , so HE has a model in F .

Proof. The proof uses a similar argument as [BL09, Theorem 5.2]. If we fix a monomial
ordering, the generators of E are uniquely determined when they form a Gröbner basis. This
Gröbner basis induces a set of linear relations on the Fourier coefficients of the ik from which
its coefficients (as unknown) are the unique solution. But since the Fourier coefficients lie in
F , this linear system is defined over F , so the solution is defined over F .

Remark 3.3. The condition on the Fourier coefficients is a sufficient condition, but far from a
necessary condition. In general the field of definition of the cusps will be larger than the field
of definition of the Hilbert surface, so to know if the equations among the Hilbert functions ik
will lie in a subfield of F , one needs to look at the Galois action on the Fourier coefficients.

3.2 Fast evaluation of Hilbert modular functions

We will compute modular polynomials using an evaluation/interpolation approach. To be able
to compute these polynomials in time quasi linear in their size, we need two properties for the
invariants used:

• For the evaluation, given τ = (τ1, τ2) ∈ G\H2
1 we need to be able to compute the invariants

(i1(τ), i2(τ), i3(τ)) ∈ C3 in time quasi-linear in the required precision;
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• For the interpolation, given the value of (i1(τ), i2(τ), i3(τ)) ∈ C3 we need to be able to
recover the matrix τ ∈ G\H2

1 in time quasi-linear in the required precision.

Theorem 3.4. Assume that Γ̃ ⊃ Γ̃(2, 4), G = Γ̃ or G = Γ̃∪Γ̃σ, and i1, i2, i3 such that F (HG) =
F (i1, i2, i3), where F is the field of definition of HG. Assume that we are given the Fourier
coefficients of the invariants i1, i2, i3. Then both the map G\H2

1 → C3, τ 7→ (i1(τ), i2(τ), i3(τ))
and its inverse can be computed in time quasi-linear in the precision.

Proof. We first do the symmetric case. According to Theorem 2.30 the functions b̃k for k =
1, 2, 3 are generators for the function field F (HΓ̃(2,4)) when D ≡ 1 mod 4 and F (HΓ̃(2,4)∪Γ̃(2,4)σ)
when D ≡ 2, 3 mod 4. In both case this means that the invariants ik can be expressed as
rational functions in the b̃k: ik = Rk(b̃1, b̃2, b̃3).

Computing these rational functions is just a pre-computation step and can be done by linear
algebra on the Fourier coefficients, or by linear algebra on the evaluation of these modular
functions at several period matrices τ (where the evaluation uses the slow summation series
given by the Fourier coefficients).

By [Dup06; Mil15] given a Siegel matrix Ω ∈ H2, evaluating the bk(Ω) can be done in time
quasi-linear in the precision. Given a period matrix τ ∈ H2

1, one can use the map φ from
Section 2.3 to get Ω = φ(τ) ∈ H2, the values of b̃k(τ) = bk(φ(τ)) in time quasi-linear, and then
the values of ik(τ) = Rk(b̃1(τ), b̃2(τ), b̃3(τ)).

For the converse, the (restriction of the) Igusa invariants j̃1, j̃2, j̃3 can also be expressed as
rational functions in the invariants i1, i3, i3. From the values of these three invariants, one
can then compute the values of the Igusa invariants, and thus recover using [Dup06; Mil15] a
matrix Ω ∈ H2 giving these values in time quasi-linear.

The matrix Ω lies in the Humbert surface of discriminant ∆K , so it satisfies a singular
relation. By Section 2.4 there is a constructive algorithm to find γ ∈ Sp4(Z) such that γ.Ω
satisfy a normalized singular relation. By Section 2.3, γ.Ω is in the image of φ, so one can
compute τ = φ−1(γ.Ω) ∈ H2

1. It then only remains to compute all classes of τ under the
action of the finite group SL2(OK ⊕ ∂−1

K )/G to find a τ ′ such that (i1(τ ′), i2(τ ′), i3(τ ′)) has the
required values.

For the non symmetric case, recovering τ from the values of the invariants uses the same
algorithm. The only difficulty is for the evaluation in the case D ≡ 2, 3 mod 4 because in this
case the b̃k are symmetric while i3 is not, and can not be expressed as a rational function in
the b̃k. However, since t = i3 +σ(i3) and n = i3σ(i3) are symmetric, one can evaluate t(τ) and
n(τ) in time quasi-linear using the techniques above for the symmetric case. Thus i3(τ) is a
root of X2− t(τ)X +n(τ). The two roots can be computed in quasi-linear time, and choosing
the correct one only require an evaluation with small precision of i3 using its Fourier series.

Remark 3.5. In practice, while the pre-computation step does not affect the asymptotic
complexity, it is important to optimize the computation of the invariants ik as rational functions
of the b̃k to be able to do concrete computations. Rather than using linear algebra, one can use
an interpolation approach as outlined in Section 3.3. Indeed since we know by [Mil15; Dup06]
how to obtain a period matrix Ω from the values of the bk, it is possible to use fast algorithms
for the interpolation. We note that this method requires the equation P (b̃1, b̃2, b̃3) = 0 of the
Humbert component described by the b̃k (we refer to Section 3.3 for more details).

Likewise, to recover τ , rather than expressing the Igusa invariants jk in terms of the
Hilbert invariants ik, one could simply use Newton’s method to invert the equations ik =
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Rk(b̃1, b̃2, b̃3), P (b̃1, b̃2, b̃3) = 0 for k = 1, 2, 3 to recover the values of the b̃k hence the matrix
Ω, hence the matrix τ .

3.3 Interpolation by Hilbert modular functions

For the interpolation approach of the computation of modular polynomials, we will interpo-
late the coefficients of these polynomials as rational functions in term of the chosen modular
invariants i1, i2, i3.

Let HG be a Hilbert surface defined over F of level G = Γ̃ or G = Γ̃ ∪ Γ̃σ, and c a Hilbert
modular function in F (HG). We assume that the invariants i1, i2, i3 are such that the map
τ ∈ G\H2

1 → (i1(τ), i2(τ), i3(τ)) can be inverted in time quasi-linear (see Theorem 3.4).
We explain how to get a fast interpolation algorithm to express c as a rational function in

i1, i2, i3. (Without the above property, one can still do linear algebra on the Fourier coefficients
or the evaluations, which gives a slow interpolation algorithm).

We first handle the case where HG is a rational surface, hence F (HG) can be written as
F (J1, J2), using only two primary invariants. For the interpolation step we write

c = c(J1, J2) = A(J1, J2)
B(J1, J2) =

∑dAJ1
m=0

∑dAJ2
n=0 am,nJ

m
1 J

n
2∑dBJ1

m=0
∑dBJ2
n=0 bm,nJ

m
1 J

n
2

=
∑dAJ1
m=0 am(J2)Jm1∑dBJ1
m=0 bm(J2)Jm1

.

Let zm form = 1, . . . , dAT +dBT +2, where T designes the total degree, such that (J1(zm), J2(zm))
is of the form (um, vum) for a fixed v ∈ C. Interpolate to find the univariate rational fraction
c(J1, vJ1) and write the fraction such that the coefficient of degree 0 of the denominator is 1.
Compute in this way the fractions c(J1, vnJ1) for n = 1, . . . ,max (dAJ2

, dBJ2
) + 1. Interpolate

the polynomials am and bm to obtain c(J1, J1J2) and substitute J2 by J2/J1 to obtain c. Note
that we have to consider the total degree to interpolate correctly the fractions. More details
can be found in [Mil15, Section 2], in particular a complexity analysis.

In practice for the modular polynomials the coefficients of the bivariate rational fractions
will be defined over Q. So the computations are done at precision N which has to be large
enough so that we can recognize the coefficients of the bivariate rational fractions as algebraic
numbers in Q using a continuous fraction algorithm. We do not usually know any bounds for
the precision so that in practice we double the precision until we manage to find a sufficient
precision to compute the modular polynomials. The complexity of the interpolation of a
bivariate rational fraction is Õ(dTdJ2N), where dT = max (dAT , dBT ) and dJ2 = max (dAJ2

, dBJ2
).

We now describe the general case, where we have three invariants i1, i2, i3 where i1 and i2
are primary, and i3 is a secondary invariant, so there is an equation E(i1, i2, i3) = 0 describing
the surface HG . Like before we would like to work with values zj with the property that
(i1(zj), i2(zj), i3(zj)) is of the form (um, vnum, wrum), where the subscripts m, n and r vary
from 1 to the maximal degree the variables i1, i2 and i3 appear. But this is not possible
because of the equation E that i1, i2, i3 have to satisfy, so that for fixed i1 and i2, the values
i3 can take are determined (moreover, they will not be of the form wrum and the number
of values will be inferior to the degree in i3). A solution to this problem consists to remark
that F (i1, i2, i3)/(E) = F (i1, i2)[i3]/(E). Thus the modular function c can be written as
c(i1, i2, i3) =

∑d−1
i=0 ci(i1, i2)ii3, where d is the degree in which the variable i3 appears in E and

ci ∈ F (i1, i2).
The interpolation is done as follows. For sufficiently many values um and vn, compute the

d roots wr of E(um, vnum, x). For r = 1, . . . , d, find zr ∈ H2
1 such that (i1(zr), i2(zr), i3(zr)) =
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(um, vnum, wr) and evaluate c(zr) =
∑d−1
i=0 ci(um, vnum)wir. Since wr = i3(zr), we first inter-

polate c as a univariate polynomial in i3 by interpoling on the d values wr to recover the d
coefficients ci(um, vnum) It remains to do the interpolation of the coefficients ci to recover them
as rational functions in i1, i2 as was outlined above.

We summarize this discussion by the theorem

Theorem 3.6. Let G be a subgroup of finite index in SL2(OK ⊕ ∂−1
K ) ∪ SL2(OK ⊕ ∂−1

K )σ. Let
i1, i2, i3 generating CG be such that the evaluation map τ ∈ G\H2

1 → (i1(τ), i2(τ), i3(τ)) can be
inverted in time quasi-linear in the precision.

Let E(i1, i2, i3) the equation describing the Hilbert surface HG, and d the degree degi3(E)
of i3 in E.

Let c a Hilbert modular function in CG, then c can be written as c =
∑d−1
k=0 ck(i1, i2)ik3.

We let dT be the maximal total degree of all the coefficients ck (where the degree of a rational
function is the maximal of the degree of its numerator and denominator), and di2 the maximal
degree in i2 of the coefficients ck.

Then if c can be evaluated in time quasi-linear in the precision, then the coefficients ck can
be computed in precision N in time Õ(ddTdi2N).

Assume furthermore that the ck lie in a number field F . Let N be the maximal height of
the rational coefficients of each ck. Then the coefficients ck can be recovered exactly in time
Õ(ddTdi2N).

In the case that HG is a rational surface so that we only need two primary invariants i1
and i2, then c can be interpolated in time Õ(dTdi2N).

Proof. Indeed the evaluation of c will be executed O(ddTdi2) times and we will interpolate
O(d) bivariate rational fractions and do O(dTdi2) interpolations of an univariate polynomial.
The complexity is then

O(ddTdi2) +O(d)Õ(dTdi2N) +O(dTdi2)Õ(dN) ⊂ Õ(ddTdi2N). (14)

Given a coefficient ck ∈ C computed at precision O(N), if ck lie in a number field F then
one can use the LLL algorithm [LLL82] to recover ck ∈ F . Using fast version of LLL this
reconstruction step can be done in time Õ(N) (See [NSV11]).

In the case that HG is a rational surface, the evaluation step will be executed O(dTdi2)
times and we will interpolate 1 bivariate rational fraction. The complexity is then

O(dTdi2)Õ(N) + Õ(dTdi2N) ⊂ Õ(dTdi2N). (15)

More generally a similar technique could be used if we had several secondary invariants
i3, i4, . . . i`. There is no unique expression of c in terms of the ik due to the equations among
the invariants ik. But for the interpolation to work we need to interpolate the same rational
function expression. A solution is to fix a monomial ordering, since this defines a unique
rational function expressing c modulo the corresponding Gröbner basis. As long as the partial
evaluation of the Gröbner basis corresponds to the Gröbner basis of the partial evaluation of
the equation (see [Bec94; Kal97]), the interpolation step will interpolate the correct expression
of the rational function.
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3.4 Example of invariants

3.4.1 Gundlach invariants

We first illustrate Theorem 3.4 for the Gundlach invariants J1, J2 defined for Q(
√

2) and Q(
√

5)
in Theorem 2.8 and 2.10. The only small difference is that for convenience we will use the
map φε defined in Section 2.3 rather than the map φ to map Hilbert matrices τ ∈ H2

1 to Siegel
matrices Ω ∈ H2.

In this case we have already seen how to express the pullbacks of the Igusa invariants in
terms of the Gundlach invariants in Section 2.3 (see Corollaries 2.16 and 2.14). The expres-
sion is easier than the method outlined in Theorem 3.4 because the Gundlach invariants are
expressed in terms of symmetric Hilbert modular forms whose relation to the pullbacks of the
Siegel modular form defining the Igusa invariants are very simple (see Theorems 2.15 and 2.13).

We outline the algorithm (Algorithm 3.7) to find τ ∈ H2
1 from the values J1(τ) and J2(τ).

Algorithm 3.7: τ from (J1(τ), J2(τ))
Data: The values J1(τ) and J2(τ), the working precision N
Result: τ modulo SL2(OK) ∪ SL2(OK)σ

1 Compute j1(Ω), j2(Ω), j3(Ω), where Ω ∈ H2 such that Ω = φε(τ);
2 Deduce the period matrix Ω (modulo Sp4(Z)) from the three Igusa invariants;
3 Find some γ ∈ Sp4(Z) such that φε(τ) = γΩ and deduce τ ;

The first step can be done using Corollary 2.14 or 2.16. The second is explained in [Dup06;
Mil15] and can be done in Õ(N) (under some conjecture [Dup06, Conjecture 9.1], the com-
putation is simplified because we do not need to compute low precision theta functions to get
the correct sign in the Borchardt mean). For the third step, remark that for D = 5, if τ ∈ H2

1,
then φε(τ) =

(
Ω1 Ω2
Ω2 Ω3

)
∈ H2 verifies by definition Ω1 + Ω2 −Ω3 = 0. The second step provides

Ω′ ∈ H2 which is more precisely in the Humbert surface H5. Thus by Humbert Lemma we
know there exists a matrix γ ∈ Sp4(Z) such that Ω′′ = γΩ′ =

(Ω′′1 Ω′′2
Ω′′2 Ω′′3

)
verifies Ω′′1 +Ω′′2−Ω′′3 = 0

(see Remark 2.18 for the computation of γ). We have then τ∗ = (( ε√
∆K

)∗)−1 tR−1Ω′′R−1. For
D = 2, φε(τ) verifies Ω1 + 2Ω2 −Ω3 = 0 and we can adapt the algorithm to find the matrix γ.
Thus

Corollary 3.8. Given J1(τ) and J2(τ), where J1 and J2 are the Gundlach invariants for
D = 2 or 5 and τ ∈ H2

1, then we can find τ ∈ (SL2(OK) ∪ SL2(OK)σ)\H2
1 in Õ(N) time.

For the evaluation of the Gundlach invariants, using their definition as Fourier series would
not give a good enough complexity. Instead Theorem 3.4 suggests to express J1 and J2 in
term of the b̃k. Here, since the Gundlach invariants are invariants for the full modular group
SL2(OK ⊕ ∂−1

K ), we can also express them directly in terms of the (pullbacks of the) Igusa in-
variants j1, j2, j3. Rather than doing an interpolation using Section 3.3, the relations expressing
the Igusa invariants in term of the Gundlach invariants are sufficiently simple to be inverted
by a Gröbner basis.

In the case D = 5 we have found:

J2/J1 = (1/6912φ∗j21φ∗j2 − 1/2304φ∗j21φ∗j3 − 1/3359232φ∗j1φ∗j32 + 1/373248φ∗j1φ∗j22φ∗j3+
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1/864φ∗j1φ∗j22 − 1/124416φ∗j1φ∗j2φ∗j23 + 1/124416φ∗j1φ∗j33 + 1/3359232φ∗j42−

1/1119744φ∗j32φ∗j3)/(φ∗j1φ∗j22 + 1/1944φ∗j42 − 1/648φ∗j32φ∗j3);

J1 = −(45349632φ∗j31φ∗j42 − 2584929024/5φ∗j31φ∗j32φ∗j3 − 499571546112/5φ∗j31φ∗j32+

11019960576/5φ∗j31φ∗j22φ∗j23 + 1410554953728/5φ∗j31φ∗j22φ∗j3 − 20815481088/5φ∗j31φ∗j2φ∗j33+

14693280768/5φ∗j31φ∗j43− 186624φ∗j21φ∗j62 + 16236288/5φ∗j21φ∗j52φ∗j3− 12380449536/5φ∗j21φ∗j52−

23514624φ∗j21φ∗j42φ∗j23 + 146887458048/5φ∗j21φ∗j42φ∗j3 + 31972578951168/5φ∗j21φ∗j42+

90699264φ∗j21φ∗j32φ∗j33 − 651402114048/5φ∗j21φ∗j32φ∗j23 − 90275517038592/5φ∗j21φ∗j32φ∗j3−

196515072φ∗j21φ∗j22φ∗j43 + 1279948013568/5φ∗j21φ∗j22φ∗j33 + 226748160φ∗j21φ∗j2φ∗j53−

940369969152/5φ∗j21φ∗j2φ∗j43 − 544195584/5φ∗j21φ∗j63 + 192φ∗j1φ∗j82 − 22464/5φ∗j1φ∗j72φ∗j3−

18289152/5φ∗j1φ∗j72+229824/5φ∗j1φ∗j62φ∗j23+260527104/5φ∗j1φ∗j62φ∗j3+30051689472/5φ∗j1φ∗j62−

1342656/5φ∗j1φ∗j52φ∗j33 − 1482541056/5φ∗j1φ∗j52φ∗j23 − 171240210432/5φ∗j1φ∗j52φ∗j3+

979776φ∗j1φ∗j42φ∗j43 + 4212476928/5φ∗j1φ∗j42φ∗j33 + 243799621632/5φ∗j1φ∗j42φ∗j23−

2286144φ∗j1φ∗j32φ∗j53 − 5976073728/5φ∗j1φ∗j32φ∗j43 + 16656192/5φ∗j1φ∗j22φ∗j63+

3386105856/5φ∗j1φ∗j22φ∗j53 − 13856832/5φ∗j1φ∗j2φ∗j73 + 5038848/5φ∗j1φ∗j83 − 320φ∗j92+

5568φ∗j82φ∗j3 − 155520φ∗j82 − 40320φ∗j72φ∗j23 + 4572288/5φ∗j72φ∗j3 + 3869835264/5φ∗j72+

155520φ∗j62φ∗j33 − 6718464/5φ∗j62φ∗j23 − 336960φ∗j52φ∗j43 + 388800φ∗j42φ∗j53 − 186624φ∗j32φ∗j63)/

(φ∗j82 − 42/5φ∗j72φ∗j3 − 7776/5φ∗j72 + 117/5φ∗j62φ∗j23 − 108/5φ∗j52φ∗j33);

In the case D = 2, the equations are too large to be included in the paper.
We then have the following algorithm:

Algorithm 3.9: Evaluation of J1(τ) and J2(τ), for τ ∈ H2
1

Data: τ ∈ H2
1 and a working precision N

Result: J1(τ) and J2(τ)
1 Compute Ω = φε(τ) at precision N ;
2 Compute j1(Ω), j2(Ω) and j3(Ω);
3 Deduce J1(τ) and J2(τ) from the Igusa invariants;
For the first step we only have to use the definition of φε. For the second, we refer to

[Dup06]. The evaluation of the Igusa invariants can be done in Õ(N) by [ET14]. For the third,
we use the equations above.

Corollary 3.10. We can evaluate the Gundlach invariants J1(τ) and J2(τ) for D = 2 or 5 at
any point τ ∈ H2

1 with a complexity in Õ(N) time.
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3.4.2 Pullbacks of theta functions

We now outline efficient procedures for the computation of the b̃i(τ) at any τ ∈ H2
1 and for

finding some τ ∈ H2
1 from the b̃i(τ). The first one is similar to Algorithm 3.9, the third

step being trivial as b̃i = φ∗bi, and has the same complexity. For the second procedure,
we also proceed as in Algorithm 3.7, the first step being also trivial. For the second, it is
possible to find Ω modulo Γ(2, 4) in Õ(N) time (see [Mil15]). The difficulty is in the third
step. Indeed, we are able to find γ such that φ(τ) = γΩ, but γ is not necessarily in Γ(2, 4) so
that we only find τ modulo Γ̃(1) ∪ Γ̃(1)σ (Γ̃(1) = SL2(OK ⊕ ∂−1

K ) here) instead of τ modulo
Γ̃(2, 4), if D ≡ 1 mod 4, or modulo Γ̃(2, 4) ∪ Γ̃(2, 4)σ, if D ≡ 2, 3 mod 4. A solution consists
to compute beforehand all the classes of Γ̃(1)/Γ̃(2, 4) and of Γ̃(1)/Γ̃(2, 4)σ and see how they
are sent to the classes of Sp4(Z)/Γ(2, 4). It suffices to find in which class of Sp4(Z)/Γ(2, 4) γ
belongs to to find a corresponding matrix γ̃ in Γ̃(1)/Γ̃(2, 4) or in Γ̃(1)/Γ̃(2, 4)σ. Then we have
φ(γ̃−1τ) = φ(γ̃−1)φ(τ) = γ−1γΩ = Ω. Thus

Corollary 3.11. We can evaluate the three b̃i(τ) for τ ∈ H2
1 in Õ(N) time and we can find τ

modulo Γ̃(2, 4), or modulo Γ̃(2, 4) ∪ Γ̃(2, 4)σ according to the cases, from the values b̃i(τ) with
this same complexity.

Note that when we use the function b̃i to define modular polynomials, for the interpolation
step we need the equations of the Humbert component defined by the b̃i, as explained in
Section 3.3. We refer to Equation 12 for the equations for D = 2, 3, 5 and to [Gru08] for larger
discriminants.

3.4.3 Non symmetric invariants

By [BGL+16], non-symmetric Gundlach invariants for Q(
√

5) can be obtained considering the
Hilbert modular forms

F15 = 16(55F 3
10 − 53G2

2F6F
2
10/2 +G5

2F
2
10/24 + 3252G2F

3
6F10/2−G4

2F
2
6F10/23 − 2 · 33F 5

6 +G3
2F

4
6 /24),

F 2
5 = F10

and by defining the modular function J3 = F15/F
3
5 . To use interpolation to compute non-

symmetric Hilbert modular polynomials for J1, J2 and J3, we need the equation of the Hilbert
modular surface, which is given by

J2
3 = (J3

1 + (−2J2
2 − 1000J2 + 50000)J2

1 + (J4
2 + 1800J3

2 )J1 − 864J5
2 )/(16J2

1 ). (16)

We cannot directly efficiently evaluate J3. However we can use Equation (16) to compute
J2

3 and the correct square root is determined by the precomputed Fourier serie of J3. The
polynomials obtained are smaller than the symmetric ones. We refer to [BGL+16; Mar16] for
more details on the polynomials coming from these invariants.

The paper [EK14] contains a lot of other invariants. For instance, still for Q(
√

5), the
authors prove that the Humbert surface H5 is birational to P2

g,h and that a birational model
over Q of the non symmetric Hilbert modular surface is given by the double cover of P2

g,h

z2 = 2(6250h2 − 4500g2h− 1350gh− 108h− 972g5 − 324g4 − 27g3).
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As this surface is also rational, a parametrization is obtained, given by the modular functions
m and n. We have

m = −(5g2 + 3g/2−125h/9 + 3/25)/(g2 + 13g/30 + 1/25), n = z/(18(g2 + 13g/30 + 1/25))

and

g = (m2 − 5n2 − 9)/30, k = 3m(10g + 3)(15g + 2)/6250,
h = k + 9(250g2 + 75g + 6)/6250, z = 3n(10g + 3)(15g + 2)/25.

(See [EK14, Section 6]). Using these equations, we have found the relations g = −J1/(6J2
2 ),

h = J2
1/J

5
2 and z = −F 3

5F15/(2F 5
6 ) from which we can compute m,n explicitly. The functions

g and h are easy to evaluate from the Gundlach invariants, for z we use the equation of the
double cover given above in a similar strategy as the one for J3.

More generally in [EK14] equations are given for every quadratic field Q(
√
D) for all thirty

fundamental discriminants D with 1 < D < 100. We can then use invariants for other fields
than Q(

√
5). The difficulty residing in the optimization of these invariants: for instance for

computing modular polynomials it is better that they have the same denominator.

3.5 Equations for covers of Hilbert surfaces

Let G2 ⊂ G1 ⊂ SL2(OK ⊕ ∂−1
K ) ∪ SL2(OK ⊕ ∂−1

K )σ be level subgroups. Then HG2 → HG1 is a
covering. Let i1, i2, i3 be Hilbert modular functions such that CG1 = C(i1, i2, i3) and j1, j2, j3
be Hilbert modular functions such that CG2 = C(j1, j2, j3).

To describe the cover HG2 → HG1 we need to give the full set of relations between
i1, i2, i3, j1, j2, j3. To be more precise, as always in this text we work up to birational equiva-
lence, and i1, i2, i3 only give an embedding of an open subset of HG1 , and similarly for j1, j2, j3.
To describe the full cover we would potentially need to give the relations between more modular
functions invariant by G1 (respectively G2), but the same tool as described below will apply.

Let i1, i2, i3 be generators of the Hilbert modular field CG1 such that the evaluation and its
inverse can be computed in time quasi-linear (see for instance Theorem 3.4).

Let j be a generator of the field extension CG2/CG1 . Such a generator always exists by
the primitive element theorem. The cover HG2 → HG1 is then (up to birationality) uniquely
described by

• The minimal polynomial Φj ∈ CG1 [X] of j over CG1 ;

• And the polynomials Qk ∈ CG1 [X] such that jk = Qk(j).

In practice it is more convenient to use the polynomial Ψk ∈ CG1 [X] defined such that jkΦ′j(j) =
Ψk(j). The polynomial Ψk is called the Hecke representation of jk and is more convenient for
computations than Qk because it has smaller coefficients [GHK+06, Section 3].

Lemma 3.12. Ψk(X) =
∑
γ∈G1/G2 j

γ
kΦj(X)/(X − jγ).

Proof. Let M/K be a finite Galoisian extension of Galois group G, and for f ∈M and γ ∈ G
note fγ the action γ.f of γ on f . Let G2 ⊂ G1 ⊂ G and let K2 = MG2 , K1 = MG1 . Let j be
a generator of K2/K1; then its minimal polynomial is Φ(X) =

∏
γ∈G1/G2(X − jγ).

Let J ∈ K2, then there exists Q ∈ K1[X] such that J = Q(j). The Hecke representation is
given by a polynomial Ψ ∈ K[X] such that JΦ′(j) = Ψ(j).
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Since Jγ = Q(jγ), the polynomial Q can be computed by a Lagrange interpolation. Indeed,
evaluating

∑
δ∈G1/G2 J

δ∏
δ′ 6=δ(X − jδ

′)/(jδ − jδ′) at jγ gives Jγ . Now, this expression is equal
to
∑
δ∈G1/G2 J

δ∏
δ′ 6=δ(X − jδ

′)/Φ′(jδ) =
∑
δ∈G1/G2 J

δΦ(X)/((X − jσ)Φ′(jδ)) and we deduce
that taking Ψ(X) =

∑
δ∈G/H J

δΦ(X)/(X − jδ), we have the property JγΦ′(jγ) = Ψ(jγ).
We apply this to the extension CΓ̃(n)/CSL2(OK⊕∂−1

K )∪SL2(OK⊕∂−1
K )σ where Γ̃(n) is a level

subgroup included in G2. Indeed this is a Galoisian extension of Galois group (SL2(OK⊕∂−1
K )∪

SL2(OK ⊕ ∂−1
K )σ)/Γ̃(n), and we apply the result above to G1 = G1/Γ̃(n) and G2 = G2/Γ̃(n)

with the notations of the Lemma.

Theorem 3.13. Assume that we are given

• CG1 = C(i1, i2, i3) for invariants on which the inversion of the evaluation can be computed
in time quasi-linear in the precision;

• the equation E(i1, i2, i3) = 0 of the surface birational to HG1 described by i1, i2, i3, and d
the degree degi3(E) of i3 in E;

• CG2 = CG1(j) for a Hilbert modular function j which admits a fast evaluation algorithm;

• CG2 = C(j1, j2, j3) for Hilbert modular functions j1, j2, j3 which admit a fast evaluation
algorithm;

• and assume that all the modular functions i1, i2, i3, j, j1, j2, j3 have Fourier coefficients
in an algebraic number field F ⊂ C.

Let Φ(X, i1, i2, i3) =
∏
γ∈G1/G2(X − jγ) = XD +

∑D−1
m=0 cm(i1, i2, i3)Xm be the minimal

polynomial of j over CG1, where D = #G1/G2. Let Ψk ∈ CG1 [X] be the polynomial defined by
Lemma 3.12 for jk. A birational model of the cover HG2 → HG1 is described by the equations

Φ(j) = 0, j1Φ′(j) = Ψ1(j), j2Φ′(j) = Ψ2(j), j3Φ′(j) = Ψ3(j). (17)

The coefficients cm of the polynomial Φ can be written as cm =
∑d−1
n=0 cmn(i1, i2)in3 , and

similarly for Ψk. We have cmn ∈ F (i1, i2).
We let dT be the maximal total degree of all these coefficients cmn (where the degree of a

rational function is the maximal of the degree of its numerator and denominator), and di2 the
degree in i2 of the coefficients cmn. Let N be the maximal height (over F ) of the coefficients
of each rational function cmn ∈ F (i1, i2).

Then Φ and the Ψk can ben computed in time Õ(ddTdi2DN).
In the case that CG1 is a rational surface so that we only need two primary invariants i1

and i2, the computation can be done in time Õ(dTdi2DN).

Proof. As i1, i2, i3, j have Fourier coefficients in F , the same argument as in Lemma 3.2 or
[BL09, Theorem 5.2] shows that cm ∈ F (i1, i2, i3). Moreover by the same argument the equa-
tion E is defined over F , so we can also write cmn ∈ F (i1, i2).

To compute the polynomial Φ, we take several (well chosen) τ ∈ H2
1 and evaluate Φ(j(τ)) =∏

γ∈G1/G2(X − j(γ.τ)).
Computing each value j(γ.τ) in precision N can be done with a complexity in DÕ(N)

time. Using a subproduct tree (see [GJ99, Section 10.1]), Φ(j(τ)) can be obtained in Õ(DN)
time.
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Separating the coefficients according to powers of X gives the values cm(i1(τ), i2(τ), i3(τ)).
This is a procedure to obtain the evaluation of the functions cm ∈ F (i1, i2, i3) at any point
τ ∈ H2

1. We can thus recover the cm by interpolation. By Section 3.3 and Theorem 3.6, to
recover Φ, the evaluation step will be executed O(ddTdi2) times and we will interpolate O(dD)
bivariate rational fractions and do O(DdTdi2) interpolation of an univariate polynomial. Recall
that given the coefficient cmn ∈ C computed at precision O(N), using the LLL algorithm to
recover cmn ∈ F can be done in time Õ(N) ([NSV11]).

The final complexity is then

O(ddTdi2)Õ(DN) +O(dD)Õ(dTdi2N) +O(DdTdi2)Õ(dN) ⊂ Õ(ddTdi2DN). (18)

The same algorithm work for the Ψk, where at the evaluation step, Ψk(j(τ)) is computed
via a double subproduct tree on Ψk and Φ.

In the case that CG1 is a rational surface, then to compute Φ, the evaluation step will be
executed O(dTdi2) times and we will interpolate D bivariate rational fractions. The complexity
is then

O(dTdi2)Õ(DN) +DÕ(dTdi2N) ⊂ Õ(dTdi2DN). (19)

4 Modular polynomials

4.1 Isogenies preserving real multiplication

The main goal of this paper is to define modular polynomials, which parametrizes isogenies
between principally polarized abelian surfaces with real multiplication by OK .

We first give more details on isogenies preserving the real multiplication and their applica-
tions.

Let (A, θA) be a principally polarized abelian surface, with real multiplication given by
µ : OK → End(A). Let f : A→ B be an isogeny with kernel V . Then it is easy to see that B
has real multiplication by OK (compatible with f) if and only if V is stable under the action
of µ(OK).

It remains to see whenever B admits a principal polarization. If θB is such a principal
polarization, then θ = f∗θB is a polarization on A. By [BL03, Proposition 5.2.1 and Theorem
5.2.4], the Neron-Severi group of A is isomorphic to the group of totally positive elements
of Ends(A), where we denote by Ends(A) the endomorphisms commuting with the Rosati
involution induced by θA. When Ends(A) = OK (which is the case generically for an element
of the Hilbert surface), then θ comes from a totally positive element β ∈ O++

K . Furthermore it
is easy to check that V is a totally isotropic subgroup for the Weil pairing eβ on A[β]. Looking
at degrees, we also get that #V = NK/Q(β).

Conversely, let β ∈ O++
K and note θβ the polarization induced from θA by β, and V ⊂ A[β]

a maximal isotropic subgroup for the Weil pairing eβ. Then by descent theory, θβ descends
to a polarization θB on B = A/V , and since V is maximal, θB is principal. To emphasize the
role of β, we call the isogeny f induced by V a β-isogeny.

Remark 4.1. The notation θβ comes from the fact that if θ is induced by a symmetric line
bundle L and β = ` ∈ N, then θ` is induced by the symmetric line bundle L`.
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For more details we refer to [Rob13; Dud16; DDR]. We are mainly interested with cyclic
isogenies of prime degree `, these are induced by β of norm `. We sum up the discussion above
by the following

Proposition 4.2. Let (A, θ) be a principally polarized abelian surface lying on the Humbert
surface H∆K

. Then there exists cyclic isogenies of degree ` (possibly defined over an extension
of the field of definition of (A, θ)) if there exists a totally positive element β ∈ O++

K of norm
`. And conversely if the abelian surfaces lying on the Humbert surface admit cyclic isogenies
of degree ` generically, then there exists such an β.

We will apply this when β = ` ∈ Z is a prime number, and when β is a totally positive
element of OK of norm `. When β = `, the Weil pairing is the usual pairing e` on A[`], and the
corresponding `-isogenies come from isotropic kernels of degree `2. Over the splitting field of
A[`] over the field of definition of A, it is easy to see that there are `3 + `2 + `+1 such isogenies
(this is the size of the quotient Sp4(Z)/Γ0(`)). The computation of the corresponding modular
polynomials is described in [Mil15]. On the Hilbert side of things, not all such isogenies stay
on the Humbert surface. Indeed this is the case if and only if the kernel is stable under the
real multiplication by OK . Since the Weil pairing is compatible with endomorphisms, as a
OK module A[`] is given by a symplectic basis e1, e2. To such a basis one can associate the
subgroup V = OKe1 which is maximal isotropic for the Weil pairing and stable under the real
multiplication by OK . All other such kernels are obtained in a similar way via the action of
SL2(OK)/Γ0(`) on the symplectic basis (e1, e2).

Proposition 4.3.

• If ` is inert in OK then there are `2 + 1 `-isogenies stable under the real multiplication;

• If ` is split in OK then there are (`+ 1)2 `-isogenies stable under the real multiplication;

• If ` is ramified in OK then there are `2 +` `-isogenies stable under the real multiplication.

Proof. If ` is inert, then SL2(OK)/Γ̃0(`) is given by the matrices ( 1 x
0 1 ) for x ∈ OK/`OK and( 0 1

−1 0
)
, which yields `2 +1 matrices. One way to see that is to remark that SL2(OK)/Γ̃0(`) is a

quotient of SL2(OK)/Γ̃(`) = SL2(OK/`OK) = SL2(F`2) and count the matrices in Γ̃0(`)/Γ̃(`).
If ` splits as (`) = `1`2, then #SL2(OK)/Γ̃0(`) = #SL2(OK)/Γ̃0(`1)×#SL2(OK)/Γ̃0(`2) so

we get (`+ 1)2 elements. Again one way to see it is that SL2(OK/`OK) ' SL2(OK/`1OK)×
SL2(OK/`2OK) ' SL2(F`)2.

Lastly if ` is ramified, then SL2(OK/`OK) ' SL2(F`[x]/x2) is of size `6 − `4 and counting
matrices in Γ̃0(`)/Γ̃(`) we get that there are `2(`2−`) of them so #SL2(OK)/Γ̃0(`) = `2+`.

Next suppose that we have β ∈ O++
K totally positive of norm `. In this case either ` is

ramified in OK and there is only one kind of cyclic isogenies of degree `, the β-isogenies, or
` splits as ` = ββ and A[`] = A[β] ⊕ A[β] and there are two kind of cyclic isogenies: the
β-isogenies and the β-isogenies.

Proposition 4.4. Let β be a totally positive element of norm `. There are `+ 1 β-isogenies.
They correspond to cyclic kernels of size ` in A[β], which are stable by OK .
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Proof. We have seen that β-isogenies correspond to maximally isotropic kernels of size ` in
A[β]. Since A[β] is of size `2, such kernels are exactly the cyclic kernels of size `. Since
OK/βOK ' F`, the elements of OK act by scalar multiplication on A[β] so they stabilize
all the cyclic subgroups. And indeed since SL2(OK)/Γ(β) ' SL2(F`) it is easy to check that
SL2(OK)/Γ0(β) is of size ` + 1 and a set of representatives is given by the matrices ( 1 x

0 1 ) for
x ∈ {0, . . . , `− 1} and

( 0 1
−1 0

)
.

Indeed since OK/βOK ' Z/`Z, we have that SL2(OK)/Γ0(β) ' SL2(Z)/Γ0(`) whose set
of representatives is well known.

Furthermore it is easy to see that the composition of a β-isogeny and a β-isogeny is an
`-isogeny (preserving real multiplication). Conversely a counting argument shows that any
`-isogeny preserving real multiplication split as a β-isogeny and a β-isogeny (which may be
defined over an extension of greater degree). So in the split case we only need to compute β
and β Hilbert modular polynomials.

Lemma 4.5. Let ` = ββ be a splitting of ` into totally positive ideals. Let V ⊂ A[β] be the
kernel of a β-isogeny.

Let ε ∈ O×K be a unit, so that ε2 is totally positive and we have another splitting of `
as ` = (ε2β)(ε2β). Then ε−1(V ) is the kernel of an ε2β isogeny, and the isogenous variety
A/ε−1(V ) is isomorphic to A/V (as principally polarized abelian varieties).

Proof. Let ε be any endomorphism of A and θ a principal polarization. Then the pullback ε∗θ
is induced by the real endomorphism ε̂ε where ·̂ denote the Rosati involuation. More generally,
if β is totally positive, then ε∗θβ = θε̂βε.

In particular, if f : A→ B is an β-isogeny, then f ◦ ε is an ε̂βε isogeny. It suffices to apply
this to ε ∈ O×K (so that ε̂ = ε) and f : A→ B the isogeny with kernel V . If θB is the principal
polarization induced by the descent of θβ, then the descent of (A, θβ) induced by ε−1(V ) is
(B, θε−2

B ) and ε−1 : B = A/V → A/ε−1(V ) induces the required isomorphism of principally
polarized abelian varieties.

From this Lemma we deduce that the ε2β-modular polynomial will be the same as the
β-modular polynomial.

Remark 4.6. For simplicity of the exposition we work with the maximal real order OK .
However everything outlined above still work with a real order O that is only locally maximal
at `. Also Section 3 to compute invariants on the corresponding Hilbert surfaces can also be
generalized to this case, and so are the computation of the modular polynomials for O.

4.2 Applications of isogenies and modular polynomials

There are a lot of applications to isogenies, here we only describe one of them. The CM
method allows one to generate abelian surfaces with a prescribed number of points (depending
on the CM field F ). This is particularly important for pairings applications of cryptography
since this is the only way to control the embedding degree. The output of the CM method are
polynomials PF describing the (invariants of) locus of all abelian surfaces with CM by OF ; it is
a remarkable fact of Complex Multiplication theory that these polynomials give the equations
of the class field of the reflex field of F corresponding to the Shimura class group.

One method to compute these polynomials described in [LR13] is the CRT approach which
compute all abelian surfaces with multiplication by OF over several primes p (carefully chosen
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so that they split completely in the class field), and then use the Chinese Reminder Theorem
to recover the polynomials PF (which are defined over the real field of the reflex field of F ).

To speed up this method, a key step is to first find an abelian surface in the correct isogeny
class. Its endomorphism ring is then an order in F . Then one computes isogenies increasing
the endomorphism ring until we get to OF . It is not the purpose of this article to describe
the very rich structure of the isogeny graph (which is layered under the real multiplication
orders, the top layer being composed of the product of several volcanoes). We refer to [Rob15;
IMR+13] for more details.

We just remark that it is easy to see that when O is a real order which is not maximal
in `, then there are no cyclic isogenies (see Proposition 4.2). But there are still `-isogenies,
and there is always one which can decrease the `-adic valuation of the conductor of the real
multiplication order. Taking `-isogenies, we can then go up to maximal real multiplication (at
least locally in `), where we can now use Hilbert modular polynomials to stay with maximal
real endomorphism and increase the size of the endomorphism ring (even if for simplicity we
restrict to the maximal real order OK , everything is easily generalized to an order maximal at
` as we remarked above).

If ` = αα splits into principal ideals generated by totally positive elements, the only way
to be sure to go up the isogeny graph to find an abelian surface with real multiplication by OF
is to be able to compute α-modular polynomials and α-modular polynomial (which each form
a volcano by [IT14]). If ` is inert, then this time we need Hilbert `-modular polynomial (the
`-isogeny graph preserving real multiplication also forming a volcano in this case, by an easy
adaptation of the arguments of [IT14]).

But climbing a volcano can be done using modular polynomials as in the case of elliptic
curves [FM02].

4.3 Computing modular polynomials

We let β ∈ O++
K be a prime element of norm L. So L = ` if ` ∈ Z is a prime number which

splits or ramifies in OK , and L = `2 if ` stays inert. Let Γ̃ ⊂ SL2(OK ⊕ ∂−1
K ) be a level

subgroup containing Γ̃(n) for a n prime to L. We want to apply the results of Section 3.5 to
the extension CΓ̃0(β)∩Γ̃/CΓ̃.

We first want to give an explicit set of representatives of Γ̃/Γ̃0(β)∩ Γ̃. Recall that there in
an isomorphism φ± : SL2(OK) → SL2(OK ⊕ ∂−1

K ), so that by looking at the preimage by φ±
we can assume here that Γ̃ ⊂ SL2(OK) (this is more convenient to study the quotient). Recall
that in this model, Γ̃0(β) = {

(
a b
c d

)
∈ SL2(OK) : β|b}.

Lemma 4.7. Let N be an integer. Then the map SL2(OK)→ SL2(OK/NOK) is surjective.

Proof. This is an application of Strong approximation theory. In this case an elementary
proof is also given in Bourbaki, Algebre Commutative, VII, §2, n.4: since SLn(OK/NOK)
is a product of local rings, it is generated by elementary matrices, so it suffices to lift these
matrices.

Lemma 4.8. The quotient Γ̃/Γ̃ ∩ Γ̃0(β) is of cardinality L+ 1.

Proof. Γ̃/Γ̃ ∩ Γ̃0(β) ' Γ̃Γ̃0(β)/Γ̃0(β) so by Propositions 4.3 and 4.4 it suffices to prove that
Γ̃Γ̃0(β) = Γ̃(1). So it suffices to prove that Γ̃(n)Γ̃(L) = Γ̃(1), which is obvious by the Chinese
reminder theorem.
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Indeed by Lemma 4.7 it suffices to check that π : SL2(OK)→ SL2(OK/nLOK) is surjective
on Γ̃(n)Γ̃(L) (since this group contains the kernel). But since n is prime to L, SL2(OK/nLOK) '
SL2(OK/nOK) × SL2(OK/LOK) and π(Γ̃(L)) contains the left factor while π(Γ̃(n)) contains
the right factor.

Example 4.9. We describe in more details the important case Γ̃ = SL2(OK). The group
Γ̃ is generated by the three matrices S =

( 0 −1
1 0

)
, T = ( 1 1

0 1 ) and R = ( 1 ω
0 1 ). Note that

T
( 1 0
−1 1

)
T = −S so that it will be sometimes more convenient to use the matrix

( 1 0
−1 1

)
instead

of S.
By Lemma 4.8, the subgroup Γ̃0(β) of Γ̃ is of index L+ 1 and the set of matrices

Cβ =
{
S, T i, i ∈ {0, . . . , L− 1}

}
is a set of representatives of the classes of Γ̃/Γ̃0(β).

We can give a different proof using the matrices R,S and T : the L+ 1 matrices of Cβ are
clearly in differents classes of the quotient Γ̃/Γ̃0(β). Remark that tT = ST−1S−1 ∈ Γ̃0(β) and
tR = SR−1S−1 ∈ Γ̃0(β) and that Γ̃ is generated by S, tT and tR. For all i ∈ {0, . . . , L}, tTT i

and tRT i are in the class of T i while tTS and tRS are in the class of S. Moreover, ST i is in
the class of S and SS = −I2 which shows that there can not be more than the L + 1 classes
that we already know.

Example 4.10. Another important example is the case Γ̃ = Γ̃(2, 4). By the above Lemma,
the subgroup Γ̃(2, 4) ∩ Γ̃0(β) of Γ̃(2, 4) is of index L+ 1.

If γ ∈ Γ̃(1)/Γ̃0(β) then there exists an element γ′ ∈ Γ̃0(β) such that γ′γ ∈ Γ̃(2, 4). For
applications it is useful to have a constructive definition of γ′.

We look at γ′ such that γ′γ ≡ 0 mod 4, namely such that γ′ ≡ γ−1 mod 4, and such that
γ′ ≡ ( ∗ 0

∗ ∗ ) mod `. By the Chinese remainder theorem, these conditions modulo 4 and ` gives
a matrix γ′′ which must satisfy conditions modulo 4` and by Lemma 4.7, γ′′ can be lifted to a
matrix in Γ̃.

Now we go back to the usual model Γ̃ ⊂ SL2(OK ⊕ ∂−1
K ). Let G be either Γ̃ or Γ̃∪ Γ̃σ. We

have G ∩ Γ̃0(β) = Γ̃ ∩ Γ̃0(β). In the case that σ ∈ G, we recall that by Lemma 2.25 Γ̃ is stable
under the real conjugation.

Let i1, i2, i3 be generators of the Hilbert modular field CG . (Later we will assume that they
are chosen such that the evaluation and its inverse can be computed in time quasi-linear, like
in Theorem 3.4.)

Let j be a generator of the field extension CΓ̃∩Γ̃0(β)/CG . Such a generator always exists by
the primitive element theorem. In fact it is easy to find such a generator:

Proposition 4.11. Let i1, i2, i3 be generators of the Hilbert modular field CΓ̃. Let j be a Hilbert
modular function invariant by Γ̃ ∩ Γ̃0(β) but not by Γ̃. Then CΓ̃∩Γ̃0(β) = C(i1, i2, i3, j).

Let G = Γ̃ ∪ Γ̃σ. Let i1, i2, i3 be generators of the symmetric Hilbert modular field CG. Let
j be a Hilbert modular function invariant by Γ̃ ∩ Γ̃0(β) but not by Γ̃. Then if j is symmetric,
then C(Γ̃∩Γ̃0(β))o〈σ〉 = C(i1, i2, i3, j), otherwise CΓ̃∩Γ̃0(β) = C(i1, i2, i3, j).

Proof. Since the symmetric case is easily deduced from the non symmetric case, we only do the
case G = Γ̃. We have seen in the proof of Lemma 3.12 that the extension CΓ̃(Ln)/CΓ̃(1)∪Γ̃(1)σ
is Galoisian of Galois group (Γ̃(1) ∪ Γ̃(1)σ)/Γ̃(Ln). Let K1 = CΓ̃(j) = C(i1, i2, i3, j) and
K2 = CΓ̃∩Γ̃0(β)/Γ̃(Ln)

Γ̃(Ln) = CΓ̃∩Γ̃0(β). Then K1 ⊂ K2 and we want to prove the equality. By Galois
theory, the subfields between K1 and K2 correspond to subgroups of Γ̃ containing Γ̃ ∩ Γ̃0(β).
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If we show that the group Γ̃ ∩ Γ̃0(β) is maximal in Γ̃, then we would deduce that K1 = CΓ̃
or K1 = K2. By assumption, only the last possibility can be true. Since the quotient is
isomorphic to Γ̃(1)/Γ̃0(β) by Lemma 4.8 it suffice to prove this for Γ̃ = Γ̃(1).

Let π : Γ̃ � SL2(OK/`OK). If β is of norm L = ` prime (so that `) is split, then
SL2(OK/`OK) ' SL2(Z/`Z)2 and π(Γ̃0(β)) = {( ∗ 0

∗ ∗ )×( ∗ ∗∗ ∗ )}. By [Kin05, Theorem 4.1], the set
of triangular matrices of SL2(Z/`Z) is maximal and thus π(Γ̃0(β)) is maximal in SL2(Z/`Z)2.
As π is surjective, we deduce that Γ̃0(β) is maximal in Γ̃.

If β = ` is inert, then the image of π(Γ̃(β)) is given by triangular matrices of SL2(F`2) so
it is also maximal.

If ` is ramified, then SL2(OK/`OK) ' SL2((Z/`Z)[X]/(X2)) and π(Γ̃0(β)) is the set of
matrices of the form ( ∗ xX∗ ∗ ) for any x ∈ Z/`Z. Let G be a group which contains strictly
π(Γ̃0(β)). Then there exists some matrix

(
A B
C D

)
∈ G, whith B(0) 6= 0. If A is invertible

(namely A(0) 6= 0) then
( 1 0
−AC 1

)(
A−1 0

0 A

)
=
(

1 A−1B
0 1

)
∈ G and (A−1B)(0) 6= 0 so that

A−1B = x0 + x1X with x0 6= 0. Finally we have
(

1 x0+x1X
0 1

)(
1 −x1X
0 1

)
=
( 1 x0

0 1
)
from which

we deduce that ( 1 1
0 1 ) ∈ G. As this last matrix and the matrices

( 1 0
−1 1

)
and

( 1 X
0 1

)
are all

in G and are generators for SL2(OK), we deduce that G is π(Γ̃), that π(Γ̃0(β)) is maximal
and thus by surjectivity that Γ̃0(β) is also maximal. If A is not invertible but D is, the proof
proceeds similarly. Otherwise, if both A and D are not invertible, then B and C are. Moreover,(
A B
C D

)
( 1 0

1 1 ) =
(
A+B B
C+D D

)
and (A+B)(0) 6= 0, which ends the proof.

We want to compute modular polynomials classifying all β-isogenies from an abelian surface
with real multiplication by OK . Geometrically, a point in HΓ̃0(β) corresponds to a triple
(A, θ, V ) with a principally polarized abelian surface (A, θ) and V the kernel of a β-isogeny
(equivalently V is maximally isotropic for the eβ Weil pairing on A[β]). We note π : (A, θ, V )→
(A, θ)× (A/V, θ′) where θ′ is the polarization induced on A/V by θβ. This defines an algebraic
map (a modular correspondence) HΓ̃(β) → HΓ̃(1)×HΓ̃(1). The β-modular polynomials describe
the algebraic relations giving the image of this map.

Concretely, if i1, i2, i3 generate C(Γ̃(1)), the β-modular polynomials for the invariants ik
describe the locus of the modular points ((i1(z), i2(z), i3(z)), (i1(z/β), i2(z/β), i3(z/β)) for z ∈
H2

1. In particular the β-modular polynomials classify the β-isogenies. Indeed if z ∈ Γ̃\H2
1,

the β-isogenous varieties are 1
βγ · z for γ ∈ Γ̃/Γ̃0(β). Furthermore since σΓ̃0(β)σ = Γ̃0(β), the

β-isogenous varieties are given by 1
β
γ · z, for γ ∈ Γ̃/Γ̃0(β).

More generally, for a group Γ̃ containing a level subgroup Γ̃(n) with n prime to L, we would
like to define β-modular polynomials describing the image of a map (a modular correspondence)
HΓ̃∩Γ̃(β) → HΓ̃ × HΓ̃. A point in HΓ̃∩Γ̃(β) correspond to a triple (A, θ, V ) as above together
with an extra level structure G defined by Γ̃. To define the modular correspondence we need
for G to induce a unique extra level structure G′ on (A/V, θ′).

Definition 4.12. Let γ ∈ Γ̃0(β) =
(
a b
c d

)
. We denote γβ =

(
a b/β
cβ d

)
∈ Γ̃(1).

Lemma 4.13. Let i be a meromorphic function H2
1 → C, and define iβ(z) = i(z/β). Recall
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that, for γ ∈ Γ̃(1) ∪ Γ̃(1)σ, iγ(z) = i(γ · z) and define iγβ(z) = i( 1
βγ · z). Then for γ ∈ Γ̃0(β),

iγβ(z) = i( 1
β
γ · z) = i(γβ · (

1
β
z)) = iγβ ( 1

β
z)

iσβ(z) = i( 1
β
σz) = iσ( 1

β
z))

iγσβ (z) = i( 1
β
γσ · z) = i(σγβ · (

1
β
z)) = iσ

γ
β ( 1
β
z)

Corollary 4.14. Let i be a Hilbert modular function for Γ̃ ⊂ SL2(OK ⊕ ∂−1
K ). Let Γ̃β = {γ ∈

SL2(OK ⊕ ∂−1
K ) | γβ ∈ Γ̃} ⊂ Γ̃0(β). Then iβ is modular for Γ̃β. Furthermore if i is symmetric

and β = β, then iβ is symmetric.
Assume that for every γ ∈ Γ̃ ∩ Γ̃0(β), γβ ∈ Γ̃, so

Γ̃ ∩ Γ̃0(β) = Γ̃ ∩ Γ̃β. (20)

Then if i is a Hilbert modular function for Γ̃, then iβ is a Hilbert modular function for Γ̃∩Γ̃0(β).

If Γ̃ satisfy Equation (20) (such is the case when Γ̃ = Γ̃(n) is a congruence subgroup), one
can then define the modular correspondence as HΓ̃∩Γ̃(β) → HΓ̃×HΓ̃, z 7→ ((i1(z), i2(z), i3(z)),
(i1(z/β), i2(z/β), i3(z/β))) for z ∈ H2

1 and i1, i2, i3 generating CΓ̃.
Theorem 4.15. Non symmetric case: let Γ̃ be a level subgroup such that Γ̃(2, 4) ⊂ Γ̃ ⊂
SL2(OK ⊕∂−1

K ). Let β ∈ O++
K be a prime of norm L, and assume that for every γ ∈ Γ̃∩ Γ̃0(β),

γβ ∈ Γ̃.
Let Cβ be a set of representatives of Γ̃/Γ̃ ∩ Γ̃0(β).
Let i1, i2, i3 modular functions generating CΓ̃ and with Fourier coefficients in a number field

F .
Define the modular polynomials:

Φβ(X, i1, i2, i3) =
∏
γ∈Cβ

(X − iγ1,β), and Ψk,β(X, i1, i2, i3) =
∑
γ∈Cβ

iγk,β
Φβ(X, i1, i2, i3)

X − iγ1,β
(21)

for k = 2, 3. They lie in F (i1, i2, i3)[X].
Then after a precomputation step described in Theorem 3.4 (which does not depend on β,

only on i1, i2, i3), and under the heuristics of [Mil15, Theorem 34], the modular polynomials
can be computed in quasi-linear time in their size.

Symmetric case: Let G = Γ̃ ∪ Γ̃σ. If β = β we let Cβ be a set of representatives of
G/((Γ̃∩ Γ̃0(β))∪ (Γ̃∩ Γ̃0(β))σ) ' Γ̃/Γ̃∩ Γ̃0(β), otherwise we let Cβ be a set of representatives of
G/(G∩Γ̃0(β)) '

(
Γ̃/Γ̃ ∩ Γ̃0(β)

)
∪
(
Γ̃/Γ̃ ∩ Γ̃0(β)

)
σ. Then the same definition as in Equation 21

applies and the corresponding modular polynomials can be computed in quasi-linear time.
Proof. This is Theorem 3.13, applied to (in the notations of the Theorem) j1 = i1,β, j2 = i2,β,
j3 = i3,β. We only detail the non symmetric case, the adaptations to the symmetric case are
obvious. Since Γ̃ 6= Γ̃ ∩ Γ̃0(β), one of the ik,β is not invariant by Γ̃ so by Proposition 4.11 ik,β
generates the field extension CΓ̃∩Γ̃0(β)/CΓ̃. Then in the notations of Theorem 3.13 we can use
j = ik,β. (In Theorem 4.15 we assume k = 1).

It remains to check that the ik,β can be evaluated in time quasi-linear in the precision, but
this is obvious from their definition and the fact that the ik can due to Theorem 3.4.
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Definition 4.16. The polynomials Φβ(X, i1, i2, i3) and Ψk,β(X, i1, i2, i3) for k = 2, 3 defined
in Theorem 4.15 are called the β-modular polynomials for i1, i2, i3.

Example 4.17.

• If β = ` is an inert prime. Then Φ` has degree `2+1 and Ψk,` has degree `2. If i1, i2, i3 are
symmetric, then i1,`, i2,`, i3,` also, hence they are invariant under (Γ̃∩Γ̃0(`))∪(Γ̃∩Γ̃0(`))σ.

• If β has norm `, so ` = ββ is split. Then if G = Γ̃ is not symmetric, Φβ has degree `+ 1
and Ψk,β has degree `.
However if σ ∈ G, so that G = Γ̃ o 〈σ〉, then since the ik,β are not symmetric, Φβ has
degree 2` + 2 and Ψk,β has degree 2` + 1. Since Γ̃ is stable under the real conjugation,
we can make explicit the action of σ as follows: if we let Cβ be a set of representative of
Γ̃/Γ̃ ∩ Γ̃0(β) the modular polynomials are given by

Φβ(X, i1, i2, i3) =
∏
γ∈Cβ

(X − iγ1,β)(X − iγσ1,β) =
∏
γ∈Cβ

(X − iγ1,β)(X − iγ1,β) and

Ψk,β(X, i1, i2, i3) =
∑
γ∈Cβ

iγk,β
Φβ(X, i1, i2, i3)

X − iγ1,β
+
∑
γ∈Cβ

iγσk,β
Φβ(X, i1, i2, i3)

X − iγ1,β
.

In this case the β-modular polynomials parametrize both β and β-isogenies (so they
are equal to the β-modular polynomials). This is the drawback for the applications of
Section 4.2, hence the interest to also have non symmetric invariants, even if they are
harder to compute.

Remark 4.18 (Changing β when Γ̃ = SL2(OK ⊕ ∂−1
K ) ∪ SL2(OK ⊕ ∂−1

K )σ). Recall that we
denote by ε the fundamental unit of OK . Let ε′ ∈ O×,++

K , then there are also ε′β-isogenies.
(We only consider totally positive units ε′ to guarantee the fact that ε′z ∈ H2

1).
If there exists n ∈ Z such that ε′ = ε2n, then the matrix γ =

(
εn 0
0 ε−n

)
is in Γ̃ and γ ·z = ε′z.

Thus, in this case, ik(ε′z) = ik(z), and, in particular, a β-isogeny is also a ε′β-isogeny. (For a
more intrinsic proof see Lemma 4.5.)

When D = 2 or 5, the fundamental unit ε has norm −1 while ε′ ∈ O×,+K has norm 1, so
that the latter can always been written as an even power of ε. Thus, the choice of the splitting
of ` does not matter.

Remark 4.19 (General modular polynomials). For a group Γ̃ ⊂ SL2(OK ⊕ ∂−1
K ) that does

not satisfy Equation 20, then this means that from a level structure G associated to a triple
(A, θ, V ) correspond several level structure G′ on (A/V, θ′).

From Corollary 4.14 the modular functions ik,β are modular for the group Γ̃β = {γ ∈
SL2(OK ⊕ ∂−1

K ) | γβ ∈ Γ̃} ⊂ Γ̃0(β). So we can define modular polynomials in a similar way
as in Theorem 4.15 except that we act by Γ̃/Γ̃ ∩ Γ̃β. The fibers correspond to β-isogenies
together with an extra structure determined by the action of Γ̃ ∩ Γ̃0(β)/Γ̃ ∩ Γ̃β. So we loose
the corresponding factor in the degree of the modular polynomials. A possible solution would
be to replace i1,β by its trace under the action of Γ̃ ∩ Γ̃0(β)/Γ̃ ∩ Γ̃β to get a modular function
invariant by Γ̃ ∩ Γ̃0(β).

Also, if Γ̃ does not contain a level subgroup Γ̃(n) of level n prime to `, then Γ̃/Γ̃ ∩ Γ̃0(β)
may not be isomorphic to Γ̃(1)/Γ̃0(β), but only isomorphic to a subgroup. We can still com-
pute modular polynomials, but they will not parametrize all β-isogenies, only those who are
compatible with the structure induced by Γ̃.
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Finally if β ∈ O++
K is totally positive but not prime, it is easy to adapt Theorem 4.15 (if

we suppose that i1 is not invariant by Γ̃ ∩ Γ̃0(I) for strict divisors ideal I of (β)). The only
difference is on the degree of the polynomials, Φβ will not be of degree the norm of β. Rather
the degree depends on the factorization of (β) into prime ideals.

(Of course this whole discussion is easily extended to the symmetric case.)

Remark 4.20 (Denominators). We would like to understand the denominators of the mod-
ular polynomials corresponding to invariants i1, i2, i3. Heuristically if there are no random
cancellation, the denominators are due to three factors (we let D be a common denominator):

• i1, i2, i3 are not defined everywhere;

• Even if i1, i2, i3 are defined they may not define a local embedding of the Hilbert surface.
For instance in the Siegel threefold, the three Igusa invariants defined by Streng are not
defined when χ10 = 0, and they do not define a local embedding when χ4 = 0. To get an
embedding of the full threefold, Igusa showed that we need 8 invariants (10 to have good
reduction modulo 2), not 3. So in this case the invariants of the β-isogenous varieties are
not well defined;

• The most interesting case from the point of view of moduli is when i1, i2, i3 are well
defined and induce a local embedding, but one of the isogenous invariant ik( 1

βγz) is not
well defined.
Most of our invariants have a denominator whose locus is inside the Humbert surface H1
(or a component) of split abelian surfaces. In particular D will contain a (component
of) abelian surfaces with real multiplication by OK and which admits a split β-isogenous
variety. By the Lemma below, any element in such a locus is inside an intersection
of Humbert surfaces H∆K

∩ Hm2 where ∆K is the discriminant of OK . We conjecture
that the values m are the same for any element in the same locus; and in our practical
examples, this value m is not the norm of β as we could think it could be.

Lemma 4.21. If A is an abelian surface isogenous to a product of elliptic curves, then there
exists m such that A is m-isogenous to E1 × E2 (with the product polarization).

Proof. See [Gru08, Lemma 2.13] and [BL03, Theorem 5.3.7, Corollary 12.1.2].

4.4 Modular polynomials with Gundlach invariants

Recall that J1 and J2 are the Gundlach invariants (see Theorems 2.8 and 2.10), which we know
for K = Q(

√
2) and Q(

√
5).

Since we only have two invariants, this simplifies the definition of the modular polynomials:

Proposition 4.22. Let D = 2 or 5 and ` be a prime number. Write ` = ββ with β ∈ O++
K .

If ` is ramified, then the polynomials

Φβ(X,J1, J2) =
∏
γ∈Cβ

(X − Jγ1,β) and Ψβ(X,J1, J2) =
∑
γ∈Cβ

Jγ2,β
Φβ(X, J1, J2)
X − Jγ1,β

lie in Q(J1, J2)[X]. If ` is split, then the polynomials

Φβ(X, J1, J2) =
∏
γ∈Cβ

(X − Jγ1,β)(X − Jγ1,β) and
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Ψβ(X,J1, J2) =
∑
γ∈Cβ

Jγ2,β
Φβ(X, J1, J2)
X − Jγ1,β

+
∑
γ∈Cβ

Jγ2,β
Φβ(X, J1, J2)
X − Jγ1,β

lie in Q(J1, J2)[X]. These polynomials depend only on ` and can be computed in time quasi-
linear in their size.

Proof. This is a corollary of Theorem 4.15. These polynomials depend only on ` as Q(
√
D)

for D = 2 and 5 has a fundamental unit of norm −1 (see the discussion in Remark 4.18).

By construction, for any z ∈ H2
1, the modular polynomials satisfy Φβ(X, J1(z), J2(z)) = 0

when X is the evaluation of J1 in one of the β- or β-isogenous point z′. Then J2(z′) =
Ψβ(J1(z′), J1(z), J2(z))/Φ′β(J1(z′), J1(z), J2(z)), where Φ′β is the derivative of Φβ with respect
to the variable X. Thus, given J1(z) and J2(z), the β-modular polynomials allow one to
compute all the Gundlach invariants at the isogenous point of z.

Let L` be the locus of the principally polarized abelian surfaces with real multiplication by
OK which are β- or β-isogenous to a product of elliptic curves (and which are not isomorphic
to a product of elliptic curves because when this happens, the Gundlach invariants are not
always defined).

Proposition 4.23. In the case where D = 5, the denominators of the modular polynomials
Φβ and Ψβ are divisible by a polynomial L` in Q[J1, J2] describing L`.

Proof. We adapt the proof of [BL09, Lemma 6.2]. Let z ∈ H2
1 which is β- or β-isogenous to

a product of elliptic curves and let ci be a coefficient of Φβ. The cusp form χ10 vanishes at
products of elliptic curves and by Theorem 2.13, we have F10 = −4φ∗εχ10 so that F10 also
vanishes at product of elliptic curves. Thus J1 and J2 have poles at these values and there
exists some γ ∈ Γ̃/Γ̃0(β) such that Jγ1,β(z) or Jγ1,β(z) is infinite. The evaluation of ci at z is
a symmetric expression in the Jγ1,β(z) and in the Jγ1,β(z). Generically, there is no algebraic
relation between these values and the evaluation of ci at z is therefore infinite. Since J1(z) and
J2(z) are finite, the numerator of ci is finite. The denominator of ci must vanish at z which
means that ci is divisible by L`. The proof for Ψβ is similar.

If D = 2, the Gundlach invariants J1 and J2 have poles when F4(z) = 0. Since by Theorem
2.15, we have that φ∗εχ10 = −1

4 F4F6, the set of poles is a subset of the products of elliptic
curves. We have thus to consider the subset L′` of L` of the surfaces z such that F4( 1

βγ · z) = 0
or F4( 1

β
γ · z) = 0 for some γ ∈ Cβ.

Proposition 4.24. In the case where D = 2, the denominators of the modular polynomials
Φβ and Ψβ are divisible by a polynomial L′` in Q[J1, J2] describing L′`.

We have proved that we have in the denominators of the modular polynomials a subset
of the set Hβ of abelian surfaces which are β-isogenous to a product of elliptic curves (and
which are not isomorphic to a product of elliptic curves; see also Remark 4.20). Moreover by
Lemma 4.21 Hβ is an intersection of Humbert surface.

4.5 Modular polynomials with theta constants

In this section, we define modular polynomials for any D square-free by using theta constants.
These polynomials are available for all D, smaller than the ones that we get from the pull-
backs of the Igusa invariants. Furthermore they illustrate nicely the different possibilities of
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Theorem 4.15. Lastly this illustrates how to use the action of (SL2(OK ⊕ ∂−1
K ) ∪ SL2(OK ⊕

∂−1
K )σ)/Γ̃(2, 4) to prove symmetries of these polynomials and accelerate their computations.

The invariants we use are the pullbacks of the generators for the group Γ(2, 4) defined
in Section 2.1 (see Section 3.4): b̃i = φ∗bi for i = 1, 2, 3, which are modular functions for
Γ̃(2, 4), defined in Equation (11). Recall that we have Theorem 2.30. We denote in this section
Γ̃ = SL2(OK ⊕ ∂−1

K ).
Recall that we denote for i = 1, 2, 3, β ∈ O++

K and γ ∈ Γ̃ ∪ Γ̃σ:

b̃i,β : H2
1 → C
τ 7→ b̃i( 1

β τ) and
b̃γi,β : H2

1 → C
τ 7→ b̃i( 1

βγ · τ).

For a matrix γ ∈ Γ̃(2, 4) ∩ Γ̃0(β), we would like to write

b̃γi,β(τ) = b̃i(
1
β
γ · τ) = b̃i(γβ · (

1
β
τ)) = b̃i(

1
β
τ) = b̃i,β(τ)

so that the functions b̃i,β for i = 1, 2, 3 would be modular for the group Γ̃(2, 4)∩Γ̃0(β). However
the third equality is true only if the matrix γβ is in Γ̃(2, 4) (see Corollary 4.14). A simple
calculation shows that this is always the case when D ≡ 1 mod 4. When D ≡ 2, 3 mod 4, this
happens only when β is of the form a + bω with b even. If D ≡ 2 mod 4, this is equivalent
to ask that ` ≡ 1 mod 4 and else if D ≡ 3 mod 4, ` must necessarily verify ` ≡ 1 mod 4. In
particular, in the last case, 0, 1 or 2 modular polynomials with Γ̃(2, 4) structure can exist for a
given prime which splits in totally positive factors, according to the fundamental unit ε. Thus

Proposition 4.25. The functions b̃i,β for i = 1, 2, 3 are modular functions for Γ̃(2, 4)∩ Γ̃0(β)
when

• D ≡ 1 mod 4;

• D ≡ 2 mod 4 and β = a+ bω with b even, or, equivalently, ` ≡ 1 mod 4;

• D ≡ 3 mod 4 and β = a+ bω with b even; this implies that ` ≡ 1 mod 4.

Proposition 4.26. Let ` be a prime number. Write ` = ββ with β ∈ O++
K and Cβ be a set of

representatives of Γ̃(2, 4)/(Γ̃(2, 4) ∩ Γ̃0(β)). If D ≡ 1 mod 4, then the polynomials

Φβ(X, b̃1, b̃2, b̃3) =
∏
γ∈Cβ

(X − b̃γ1,β), and Ψk,β(X, b̃1, b̃2, b̃3) =
∑
γ∈Cβ

b̃γk,β
Φβ(X, b̃1, b̃2, b̃3)

X − b̃γ1,β

for k = 2, 3 lie in Q(b̃1, b̃2, b̃3)[X]. If D ≡ 2, 3 mod 4 and β = a+ bω with b even, then

Φβ(X, b̃1, b̃2, b̃3) =
∏
γ∈Cβ

(X − b̃γ1,β)(X − b̃γσ1,β), and

Ψk,β(X, b̃1, b̃2, b̃3) =
∑
γ∈Cβ

b̃γk,β
Φβ(X, b̃1, b̃2, b̃3)

X − b̃γ1,β
+
∑
γ∈Cβ

b̃γσk,β
Φβ(X, b̃1, b̃2, b̃3)

X − b̃γσ1,β

for k = 2, 3 lie in Q(b̃1, b̃2, b̃3)[X]. They can be computed in time quasi-linear in their size.
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Proof. This is a corollary of Theorem 4.15. The difference between the cases D ≡ 1 mod 4
and D ≡ 2, 3 mod 4 comes from Equations (4) and (5): in the first case, by Proposition 2.21,
the map Γ̃(2, 4)\H2

1 → Sp4(Z)\H2 is injective while in the second it is the map (Γ̃(2, 4) ∪
Γ̃(2, 4)σ)\H2

1 → Sp4(Z)\H2 which is injective. The coefficients of the Fourier series of the b̃i
are in Q because it is the case of the Hilbert theta series (see [LNY15]).

Note that there is three polynomials so that given b̃1, b̃2 and b̃3, one can obtain the values
b̃γ1,β, b̃

γ
2,β and b̃γ3,β for any γ ∈ Cβ.

If D ≡ 1 mod 4 we are in the non symmetric case, so we compute non symmetric modular
polynomials.

Remark 4.27. When D = 2, Equation (12) says that we have to consider only two modular
functions as b̃1 is determined by b̃2 and b̃3. In particular the corresponding Humbert component
is a rational surface.

β-modular polynomials: As Φβ is a minimal polynomial, it is the unique irreducible and
monic polynomial which verifies, for any τ ∈ H2

1, Φβ(b̃1,β(τ), b̃1(τ), b̃2(τ), b̃3(τ)) = 0. We can
look at what happen on σ(τ). The matrixMσ of Equation (4) acts as follows: (bMσ

1 , bMσ
2 , bMσ

3 ) =
(b1, b2, b3) if D ≡ 2, 3 mod 4 and (bMσ

1 , bMσ
2 , bMσ

3 ) = (b3, b2, b1) if D ≡ 1 mod 4.
So when D ≡ 2, 3 mod 4 the bi are symmetric and the β-modular polynomials are symmet-

ric, they encode both the β and the β-isogenies, as it is the case for the Gundlach invariants.
However (b̃σ1 , b̃σ2 , b̃σ3 ) = (b̃3, b̃2, b̃1) if D ≡ 1 mod 4. The irreducible and monic polynomial

Φβ(b̃σ1,β, b̃σ1 , b̃σ2 , b̃σ3 ) has the same roots as Φβ(b̃1,β, b̃1, b̃2, b̃3) and thus by unicity, these polyno-
mials have to be equals. Thus, if D ≡ 1 mod 4, Φβ(b̃3,β, b̃3, b̃2, b̃1) = Φβ(b̃1,β, b̃1, b̃2, b̃3) and it is
possible to obtain the value b̃3,β(τ) for any τ ∈ H2

1 using the β-modular polynomials. We have
then, still acting by σ,

b̃2,β(τ) = Ψ2,β(b̃3,β(τ), b̃3(τ), b̃2(τ), b̃1(τ))/Φ′β(b̃3,β(τ), b̃3(τ), b̃2(τ), b̃1(τ)) and

b̃1,β(τ) = Ψ3,β(b̃3,β(τ), b̃3(τ), b̃2(τ), b̃1(τ))/Φ′β(b̃3,β(τ), b̃3(τ), b̃2(τ), b̃1(τ)).

We conclude that once we have the β-modular polynomials, we get the β-modular polynomials
for free.

Changing β by a unit: Note that in the case where two pairs (β, β) and (β′, β′) of totally
positive elements, whose product is `, differ by an even factor of ε (this always happens when
ε has norm −1), we have that β′ = ε2nβ =

(
εn 0
0 ε−n

)
β. Thus for any τ ∈ H2

1, if we compute
b̃i,β(τ), for i = 1, 2, 3, from b̃i(τ) and using the β-modular polynomials, then we have b̃i,β′(τ) =
b̃i
((

ε−n 0
0 εn

)
1
β τ
)
and knowing how the matrix

(
ε−n 0

0 εn

)
acts on the b̃i,β, we can compute the

b̃i,β′ from the b̃i,β. In this case, it is useless to compute the β′-modular polynomials.

Example 4.28. When D = 2, 5 or 13, the fundamental unit has norm −1.

• If D = 2, we have that (b̃1,ε2 , b̃2,ε2 , b̃3,ε2) = (b̃1, b̃3, b̃2);

• If D = 5, we have that (b̃1,ε2 , b̃2,ε2 , b̃3,ε2) = (b̃3, b̃1, b̃2);

• If D = 13, we have that (b̃1,ε2 , b̃2,ε2 , b̃3,ε2) = (b̃2, b̃3, b̃1).
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When the norm of ε is 1, then if ` = ββ, we also have ` = β′β′, where β′ = εβ. The
multiplication by ε does not come from the action of a matrix and the previous argument does
not work.

Example 4.29. When D = 55, the fundamental unit ε = 89 + 12
√

55 has norm 1 and for
` = 5, we can choose β = 15 + 2

√
55 and β′ = εβ = 2655 + 358

√
55. As 2 and 358 are even,

we can define two triplets of “non-equivalent” modular polynomials (by Propositions 4.25 and
4.26) .

Symmetries: We can proceed in the same way with matrices γ ∈ Γ̃/Γ̃(2, 4) having special
properties. If γ permutes the b̃i and the b̃i,β, this says that there are symmetries in the
modular polynomials. In particular, if γ satisfies (b̃γ1 , b̃

γ
2 , b̃

γ
3) = (b̃1, b̃3, b̃2) and (b̃γ1,β, b̃

γ
2,β, b̃

γ
3,β) =

(b̃1,β, b̃3,β, b̃2,β), this means that

Φβ(X, b̃1, b̃2, b̃3) = Φβ(X, b̃1, b̃3, b̃2)

and consequently that
Ψ2,β(X, b̃1, b̃3, b̃2) = Ψ3,β(X, b̃1, b̃2, b̃3)

so that we only need to compute the two first β-modular polynomials, as the third one is
deduced from the second one. For example, this happens for D = 6, ` = 73, β = 13− 4

√
6 and

for D = 10, ` = 41, β = 9− 2
√

10.
Moreover, if γ satisfies b̃γk = iαk b̃k and b̃γk,β = iβk b̃k,β, for k = 1, 2, 3 and αk, βk ∈ {0, 1, 2, 3}

(i is the imaginary unit), then the exponents of the b̃k at each coefficient of the modular
polynomials verify some relations modulo 4. As we compute the modular polynomials by eval-
uation/interpolation (see Section 3.3), this can be used to decrease the number of evaluations.

The existence of these matrices depend on D and β. They can be searched before the
computation of the polynomials. We give some examples of relations between the exponents in
Section 5 (see Equation (22)). Similar arguments have already been used in [Mil15, Sections
5.2 and 5.3] for the computation of `-modular polynomials.

Denominator: Let Lβ be the locus of the principally polarized abelian surfaces z modulo
Γ̃(2, 4) with real multiplication by OK for which z, or σ(z) in the case D ≡ 2, 3 mod 4, is
β-isogenous to z′ such that φ(z′) is isogenous to a product of elliptic curves by the 2-isogeny
φ(z′)→ φ(z′)/2 and such that θ0(φ(z′)/2) = 0.

Proposition 4.30. The denominators of the modular polynomials Φβ and Ψk,β are divisible
by a polynomial Lβ in Q[b̃1, b̃2, b̃3] describing Lβ.

Proof. Let z ∈ Lβ and let ci be a coefficient of Φβ. Then there is some γ ∈ Γ̃(2, 4)/(Γ̃(2, 4) ∩
Γ̃0(β)) such that b̃γ1,β, or b̃

γσ
1,β if D ≡ 2, 3 mod 4, is infinite. Indeed, recall that bi = θi

θ0
(Ω/2)

and that by [Dup06, Proposition 6.5 and Corollary 6.1], exactly one theta constant vanishes
at Ω if and only if Ω is isomorphic to a product of elliptic curves. We conclude using the same
arguments as in the proof of Theorem 4.23 (see also Remark 4.20).

The reason for which we have introduced modular polynomials with the b̃i invariants was
to obtain smaller polynomials compared to the ones with the Gundlach invariants or with
the pullbacks of the Igusa invariants. But by Theorem 4.25, the β-modular polynomials are
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not defined for all ` splitting in totally positives factors. We have two ways to deal with this
problem, as explained in Remark 4.19. The first one consists to find a subset of Γ̃(2, 4) for
which b̃i,β is invariant (we are in the case D ≡ 2, 3 mod 4). A group which always work is the
group Γ̃′ defined as Γ̃(2, 4) in the case D ≡ 1 mod 4 (see Equation 11). This subgroup is of
index 4 in Γ̃(2, 4) and we consider the quotient Γ̃(2, 4)/(Γ̃′∩ Γ̃0(β)), containing 4(`+1) classes,
to define our polynomials. The second one consists to take other invariants, in particular the
Rosenhain invariants r̃i = φ∗ri. We have already seen that they are generators for the field
of Hilbert modular functions invariants by Γ̃(2) (see Theorem 2.30) and r̃i,β for i = 1, 2, 3
is always invariant by Γ̃(2) ∩ Γ̃0(β). All the results of this section can be adapted to these
invariants.

5 Results
The aim of this section is to present some polynomials we have computed and to compare the
polynomials with the different invariants when this comparison makes sense.

5.1 Case D = 2
We have computed the β-modular polynomials with the Gundlach invariants for ` = 2, 7, 17,
23, 31, 41, 47 and 71. If we write, in the split case,

Φβ(X,J1, J2) = X2`+2 +
2`+1∑
i=0

ci(J1, J2)Xi and Ψβ(X, J1, J2) =
2`+1∑
i=0

di(J1, J2)Xi,

then we have constated that the denominator of ci is of the form D(J1, J2)4 unless i = 2`+ 1
where it is D(J1, J2)2, and that the denominator of di is of the form D(J1, J2)6, unless i = 2`+1
where it is D(J1, J2)4. We have for example for ` = 7

D(J1, J2) = J2
1 − J1J

2
2 + 2J1J2 − 81J1 + 64J2

2

and for ` = 17

D(J1, J2) = J7
1 − J6

1J
3
2 − 6J6

1J
2
2 + J6

1J2 − 414J6
1 + 428J5

1J
3
2 + 2387J5

1J
2
2−

17760J5
1J2 + 431811J5

1 + 17728J4
1J

4
2 − 331952J4

1J
3
2 − 2578856J4

1J
2
2 +

6229197J4
1J2 − 80515134J4

1 − 6145536J3
1J

4
2 + 52974272J3

1J
3
2 +

535037040J3
1J

2
2 + 6116816412J3

1J2 + 37822859361J3
1 − 91648000J2

1J
5
2−

6502153216J2
1J

4
2 − 75793205760J2

1J
3
2 − 197144611776J2

1J
2
2−

17565696000J1J
5
2 − 7812042752J1J

4
2 + 110592000000J6

2 .

Table 1 contains some informations about these polynomials. The first column is the prime
number, the second the size of the β-modular polynomials, then we have put the total degree
and the degree in J1 and in J2 of the denominatorD(J1, J2), and then similarly for the maximal
degrees appearing in the numerators. The last column is the number of decimal digits of the
largest coefficient appearing in the polynomials.

We have computed the β-modular polynomials for ` = 17, 41, 73, 89 and 97 (which are 1
modulo 4, see Proposition 4.25). By Remark 4.27, the β-modular polynomials are

Φβ(X, b̃2, b̃3) = X2`+2 +
2`+1∑
i=0

ci(b̃2, b̃3)Xi and Ψβ(X, b̃2, b̃3) =
2`+1∑
i=0

di(b̃2, b̃3)Xi.
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2 8.5 KB 3 0 3 4 4 2 8
7 172 KB 3 2 2 25 23 13 66
17 5.8 MB 9 7 6 65 61 36 196
23 21 MB 12 11 8 87 85 48 280
31 70 MB 17 14 10 117 111 61 401
41 225 MB 23 21 14 157 153 84 560
47 400 MB 26 25 16 179 177 96 665
71 2.2 GB 42 37 24 275 265 144 1078

Table 1: Informations about the modular polynomials for D = 2

We have constated that the denominators of ci and di are of the formD(b̃2, b̃3)2 unless i = 2`+1
where it is D(b̃2, b̃3). For example, we have for ` = 17 and β = 5 + 2

√
2

D(b̃2, b̃3) = b̃63b̃
18
2 + (6b̃83 − 6b̃43 + 1)b̃16

2 + (15b̃10
3 − 24b̃63 + 7b̃23)b̃14

2 + (20b̃12
3 − 42b̃83 + 9b̃43+

2)b̃12
2 + (15b̃14

3 − 48b̃10
3 + 37b̃63 + 4b̃23)b̃10

2 + (6b̃16
3 − 42b̃12

3 + 68b̃83 − 26b̃43 + 3)b̃82+
(b̃18

3 − 24b̃14
3 + 37b̃10

3 + 8b̃63 − b̃23)b̃62 + (−6b̃16
3 + 9b̃12

3 − 26b̃83 − 24b̃43 + 2)b̃42+
(7b̃14

3 + 4b̃10
3 − b̃63)b̃22 + (b̃16

3 + 2b̃12
3 + 3b̃83 + 2b̃43 + 1).

For ` = 17 and 41, the degrees of the coefficients ci and di in the variables b̃2 and b̃3 are
close to the degrees in the variables J1 and J2. But with the b̃i, some relations between the
exponents occur. The numerator of ci can be written as

∑
m

∑
n ci,m,nb̃

m
2 b̃

n
3 (and similarly for

di). We have then for ` = 17 and β = 5 + 2
√

2

m ≡ 0 mod 2
n+ i ≡ 0 mod 2
m+ n ≡ i mod 4

and
m ≡ 1 mod 2
n+ i ≡ 1 mod 2
m+ n ≡ i mod 4

(22)

for ci and di respectively. In the case ` = 41 and β = 7 + 2
√

2, these equations are the same
except the last which is m+ n ≡ −i mod 4 for ci and di.

17 221 KB 24 18 18 57 53 50 13
41 7.2 MB 64 56 56 144 140 132 38
73 81 MB 120 112 112 264 260 246 79
89 188 MB 152 138 138 325 317 309 102
97 269 MB 168 154 154 357 345 341 112

Table 2: Informations about the modular polynomials for D = 2

Comparing Tables 1 and 2, we can see that taking the invariants based on the theta
functions give better results. But, here, this is the case only when ` ≡ 1 mod 4.

Taking ` = 7 (` ≡ 3 mod 4), we have done as explained at the end of Section 4.5. On the
one hand, we have computed the polynomials using the subgroup of index 4(` + 1) and on
the other hand, we have computed the polynomials using the Rosenhain invariants. The first
solution give better results in terms of degree, sparsity and the whole polynomials fill 930 KB
in the first case while 70 MB in the second. In both cases, the polynomials are bigger than
those using the Gundlach invariants. This is also true for ` = 23, where using the first method,
the polynomials fill 110 MB.
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5.2 Case D = 5
We have computed the β-modular polynomials with the Gundlach invariants for ` = 5, 11, 19,
29, 31, 41 and 59. If we write

Φβ(X, J1, J2) = X2`+2 +
2`+1∑
i=0

ci(J1, J2)Xi and Ψβ(X, J1, J2) =
2`+1∑
i=0

di(J1, J2)Xi,

when ` is split, then we have constated that the denominators of ci and of di are of the form
D(J1, J2)4 except for i = 2`+ 1 where it is D(J1, J2)2. We have for example for ` = 11

D(J1, J2) = 4J7
1 + (−12J2

2 − 19236J2 + 119497519)J6
1 + (12J4

2 + 56972J3
2 − 387805052J2

2−
278163835056J2 + 35953243171744)J5

1 + (−4J6
2 − 55980J5

2 + 449730698J4
2 +

943837290960J3
2 − 133230692691392J2

2 + 6651010132099840J2+
13001634695104256)J4

1 + (18500J7
2 − 215193500J6

2 − 1170430882000J5
2 +

388324233980000J4
2 − 32395226716512000J3

2 )J3
1 + (32609375J8

2 +
635091750000J7

2 − 718632513000000J6
2 + 34620677424000000J5

2 )J2
1 +

(−124875000000J9
2 + 601911000000000J8

2 )J1 − 182250000000000J10
2 .

We have computed the β-modular polynomials for ` = 5, 11, 19, 29, 31, 41 and 59. These
polynomials are

Φβ(X, b̃1, b̃2, b̃3) = X`+1 +
∑̀
i=0

(
4∑
j=0

ci,j(b̃1, b̃2)b̃j3)Xi and

Ψk,β(X, b̃1, b̃2, b̃3) = X`+1 +
∑̀
i=0

(
4∑
j=0

dk,i,j(b̃1, b̃2)b̃j3)Xi,

by Equation (12) and what we said in Section 4.5. Table 3 contains the same informations
as Table 1, but the first part concern the polynomials with the Gundlach invariants and the
second the polynomials with the b̃i invariants.

We can see that there is a gain in terms of memory space, except for ` = 5, which cor-
responds to the ramified case. The degrees are larger with the b̃i but there also are relations
modulo 4 between the exponents.

5.3 Examples of isogenous curves

First at all, the modular polynomials allow one to compute hyperelliptic curves with isogenous
Jacobians. In particular, over finite field as the β-polynomials found can be reduced modulo a
prime number p 6= ββ without loosing their meaning ([BGL11, Section 6, page 511]).

We begin with examples of curves found when working on Q(
√

2) and taking the Gundlach
invariants. The Jacobians of the following curves are (3 +

√
2)-isogenous over F2333:

Y 2 = 356X6 + 116X5 + 1589X4 + 986X3 + 178X2 + 1094X + 1229,
Y 2 = 144X6 + 2096X5 + 387X4 + 1562X3 + 478X2 + 486X + 1718

while the Jacobians of the followinf ones are (5 + 2
√

2)-isogenous over F345267203:
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5 22 KB 5 3 5 10 10 10 53
11 3.5 MB 10 7 10 40 40 40 252
19 33 MB 16 12 16 64 64 64 513
29 188 MB 25 20 25 100 100 100 830
31 248 MB 26 21 26 104 104 104 885
41 785 MB 35 29 35 140 140 140 1191
59 3.6 GB 50 43 50 200 200 200 1820
5 26 KB 16 8 8 31 19 22 5
11 308 KB 72 40 40 84 52 52 11
19 3.6 MB 128 96 96 132 103 108 25
29 21 MB 200 152 152 212 160 168 44
31 28 MB 216 160 160 224 173 172 47
41 115 MB 288 240 240 324 272 272 69
59 470 MB 424 352 352 440 373 370 109

Table 3: Informations about the modular polynomials for D = 5

Y 2 = 288618938X5 + 208826828X4 + 73681500X3 + 329580565X2+
193693317X + 328425210,

Y 2 = 229859713X5 + 180037958X4 + 95105703X3 + 68631100X2+
32660205X + 107566399

and the Jacobians of the curves hereafter are (7 +
√

2)-isogenous over F3526982779:

Y 2 = 3476666651X5 + 2997006123X4 + 2343918968X3 + 1313289865X2+
1251164949X + 1521154595,

Y 2 = 2390845907X6 + 2649299485X5 + 3307186776X4 + 2143442296X3+
1448110737X2 + 918458873X + 1476608496.

We also give two examples of pairs of curves computed with the β-modular polynomials
with the Gundlach invariants for Q(

√
5). First example of curves for (4− (1+

√
5)/2)-isogenies

over F56311:

Y 2 = 13477X5 + 6136X4 + 35146X3 + 28148X2 + 7150X + 19730,
Y 2 = 2953X5 + 26725X4 + 14100X3 + 6565X2 + 22149X + 19740

and second example for (5 + 2(1 +
√

5)/2)-isogenies over F6728947:

Y 2 = 3739712X6 + 4881762X5 + 6611129X4 + 5775262X3 + 521647X2+
2066678X + 350732,

Y 2 = 2707309X6 + 1535264X5 + 311501X4 + 2965267X3 + 3507011X2+
101110X + 5795310.

Finally, we give pairs of curves, whose Jacobians are (7 + 2
√

2)-isogenous over F562789,
computed using the β-modular polynomials with the b̃i for Q(

√
2):

Y 2 = 540913X5 + 353915X4 + 118050X3 + 355166X2 + 424096X + 379433,
Y 2 = 231396X5 + 474300X4 + 200176X3 + 335056X2 + 345222X + 464702

and a pair for (5− (1 +
√

5)/2)-isogenies over F5362789, computed using the polynomials with
the b̃i for Q(

√
5):
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Y 2 = 2531476X5 + 900554X4 + 1248025X3 + 440959X2 + 912166X+
4367293,

Y 2 = 1772175X5 + 3557482X4 + 848889X3 + 4562893X2 + 146681X+
475016.

The motivated reader can check that the curves are indeed isogenous in verifying that the
curves have the same zeta function (by [Tat66]).

5.4 Denominators of the Hilbert modular polynomials and intersection of
Humbert surfaces

From Remark 4.20, Propositions 4.23 and 4.24 we know that some factors (which we call the
interesting factors) of the denominators of the Hilbert β-modular polynomials in the pullbacks
of the Igusa invariants or in the Gundlach invariants for Q(

√
2), Q(

√
5) lie the locus Lβ of

abelian surfaces with real multiplication by OK which are β-isogenous to a product of elliptic
curves (endowed with the product polarization).

By Lemma 4.21, the abelian surfaces in Lβ are inside the intersection of Humbert surfaces
H∆K

∩Hm2 where ∆K is the discriminant of OK . The goal of this section is to explain how to
find the value m for a given abelian surface and to describe this intersection in more details.
(More precisely since we remove the uninteresting factors coming from the intersection of H1
and H∆K

, we study H∆K
∩Hm2 \H1).

First we explain how to find m. If β = ` is inert, then we can obviously take m = `.
The interesting case is when β comes from a split prime `. By Proposition 2.20, if A is an
abelian surface, then A ∈ Hm2 if and only if there is a symmetric endomorphism f on A
of discriminant m2. We recall (see [BL03, Section 1.1 and 1.2]) that an endomorphism f is
induced by its analytic representation ρa(f) which is given by a two by two matrix

(
a b
c d

)
. This

matrix can also be seen as the action of f on the tangent space of A at the neutral point 0A.
The discriminant of f is then defined to be the discriminant of the characteristic polynomial
of this matrix: ∆f = (a+ d)2 − 4(ad− bc).

On a product of elliptic curves E1 × E2 (seen as a torus in C2), the endomorphism given
by the matrix γ1 = ( 1 0

0 0 ) on the tangent space at the neutral point is of discriminant 1. If
A ∈ Lβ and f is the isogeny from A to E1×E2 (endowed with the product polarization), then
pulling back the endomorphism γ1 by f gives an endomorphism f∗γ1 of A. If we compute the
matrix associated to the action of f∗γ1 on the tangent space, then its discriminant will give
us a possible value of m. (As we will see below, the abelian surface A lie in several Hm2 and
changing the matrix γ1 by others which have discriminant 1 will give other possible values of
m). The following lemma allows us to compute the analytic representation of f∗γ1.
Lemma 5.1. Let e1, e2 as a basis of OK , and R =

( e1 e2
e1 e2

)
be the matrix given in Section 2.3

for the isomorphism φe1,e2.
Let f : A→ E1×E2 be a β-isogeny, and denote f∨ the β-contragredient isogeny. We write

A = C2/(Φ(∂−1
K ) + τ∗Φ(OK)) for some τ = (τ1, τ2) ∈ H2

1 such that E1 ×E2 is C2/(Z2 + ΩZ2)
for Ω = φe1,e2(τ/β) = tR(τ/β)∗R.

Let γ =
(
a b
c d

)
be the analytic representation of an endomorphism e of C2/(Z2 +ΩZ2). Then

the analytic representation of f∨ ◦ e ◦ f is given by
(
β 0
0 β

)
tR−1γ tR.

Proof. By Section 2.2, A is of the form C2/(Φ(OK)⊕ τ ′∗Φ(∂−1
K )) for τ ′ ∈ H2

1 and Φ = (·, ·) is
given by the two real embeddings of K. Here, we prefer to write A differently to be compatible
with the isomorphism φe1,e2 . We have τ ′ =

( 0 −1
1 0

)
τ .
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The isogeny f is of the form

C2/(Φ(∂−1
K )⊕ τ∗Φ(OK))→ C2/(Φ(∂−1

K )⊕ (τ/β)∗Φ(OK)), z 7→ z

where τ/β = (τ1/β, τ2/β). The action on the tangent space of f is thus the identity.
The isogeny f∨ is then given by

C2/(Φ(∂−1
K )⊕ (τ/β)∗Φ(OK))→ C2/(Φ(∂−1

K )⊕ τ∗Φ(OK)), z 7→ β.z

where β.(z1, z2) = (βz1, βz2). The action on the tangent space of f is thus
(
β 0
0 β

)
.

The product E1 × E2 is of the form C2/(Z2 ⊕ ΩZ2) and by definition, the action on the
tangent space of e is given by γ.

We look now at the change of basis on C2. We have Φ(OK) = RZ2 and Φ(∂−1
K ) = tR−1Z2

so that Φ(∂−1
K ) ⊕ (τ/β)∗Φ(OK) = tR−1Z2 ⊕ (τ/β)∗RZ2 and multiplying by tR we obtain

Z2 ⊕ tR(τ/β)∗RZ2 = Z2 ⊕ ΩZ2

We conclude in gluing everything together.

Let τ representing a variety A ∈ Lβ. Such a τ can be found in two ways.

1. Assuming that we have the interesting factor D(J1, J2) of the denominators of the β-
modular polynomials, we can fix two values j1, j2 such that D(j1, j2) = 0 and compute
τ ∈ H2

1 such that Jk(τ) = jk, k = 1, 2, using the methods exposed in Section 3;

2. Start from a matrix Ω =
(
t1 0
0 t1

)
∈ H2. It satisfies singular relations of discriminant

∆K (for instance if ∆K is 5 or 8, take (a, b, c, d, e) = (1, 1,−1, 0, 0) and (1, 2,−1, 0, 0)
respectively). Use the results of Section 2.4 to deduce τ ′ ∈ H2

1 such that φe1,e2(τ ′) is
equivalent to Ω (for a fixed basis e1, e2 of OK ; this choice does not change the equivalence
class of the image of τ ′). Finally, take τ = βτ ′.

We explain in more details what happen in the first case for Gundlach invariants. By Sections
2.2 and 2.3, for the Gundlach invariants we have to consider the morphism φε associated to the
basis e1 = 1, e2 = ε (this is a basis for Q(

√
2) and Q(

√
5)) and to the isomorphism φ0 (we are

in the case where the fundamental unit has norm −1) to go from the Hilbert modular space to
the Siegel one. Denote α =

(
ε/
√

∆K 0
0 −ε/

√
∆K

)
, then by definition φε(τ) = tRατ∗R := Ω ∈ H2.

Here, the abelian variety A associated to τ is seen as being C2/(Φ(∂−1
K )⊕ τ∗Φ(OK)).

The matrix Ω is not necessarily diagonal and we can not apply directly to it the endo-
morphism γ1. We have to reduce Ω in the fundamental domain to obtain a diagonal ma-
trix Ω′. This means there exists a matrix γ =

(
A B
C D

)
∈ Sp4(Z) such that Ω′ = γΩ; there

is an algorithm to compute γ (see for example [Dup06]). On the tangent spaces, we have
C2/(Z2 + ΩZ2)→ C2/(Z2 + Ω′Z2), z 7→ t(CΩ +D)−1z. Denote N = t(CΩ +D)−1.

To simplify, assume that the isogeny is of the form τ 7→ τ/β. Then the analytic represen-
tation of the endomorphism of A is given by

(
β 0
0 β

)
α−1 tR−1N−1γ1N

tRα and its discriminant
gives us a value for m. Note that according to the representative of τ in its equivalence class
chosen, the value of m can vary and that for τ fixed, in addition to γ1, we can also consider
γ2 = ( 0 0

0 1 ).

Conjecture 5.2. We conjecture that for any A ∈ Lβ, the set of values m is the same. This is
verified in all the examples we have done.
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Example 5.3. For Q(
√

2),

• If β = 2 +
√

2 (of norm 2), with the second method we have found the values m = 1 and
m = 9 for any A ∈ Lβ. So, according to the conjecture, Lβ ⊂ H8 ∩H1 ∩H9.

• If β = 3 +
√

2 (of norm 7), we get with the two methods the discriminants 4 and 16. So
Lβ ⊂ H8 ∩H4 ∩H16.

• If β = 5 + 2
√

2 (of norm 17), we get with the two methods the discriminants 9 and 49.
So Lβ ⊂ H8 ∩H9 ∩H49.

For Q(
√

5),

• If β = 3− ω (of norm 5) we have found that Lβ ⊂ H5 ∩H4 ∩H9.

• If β = 4− ω (of norm 11), we have found that Lβ ⊂ H5 ∩H9 ∩H16.

Now we want to describe the intersection of H∆K
∩Hm2 in more details. Some Humbert

surfaces were computed in [Gru08] so we could compute the intersections from their equations
but we use a different method.

As explained in [Mil15], the `-modular polynomials (in the Siegel space) using Streng
invariants have been computed for ` = 2, 3. We explain in this section what happens if we
substitute in these polynomials the Streng invariants by the Gundlach ones. Recall that the
Streng invariants are the functions i1, i2, i3 defined by

i1 = h4h6
h10

= j2(j2 − 3j3)
2j1

, i2 = h2
4h12
h2

10
= j22

j1
, i3 = h5

4
h2

10
= j52

j31
. (23)

By [BL09, Lemma 6.2], the denominators of these `-modular polynomials are divisible by
a polynomial D` which parametrizes the Humbert surface H`2 where we exclude the points
in H1. We recall that H`2 is a surface representing the principally polarized abelian surfaces
which are `-isogenous to a product of elliptic curves and that the Streng invariants are not
defined at the product of elliptic curves.

Thus we have

D`(i1(Ω), i2(Ω), i3(Ω)) = 0, when Ω ∈ H`2\H1.

Now consider the application φε : SL2(OK) → H2 for K = Q(
√

∆) and ∆ = 5, 8. Let τ be in
H2

1. Proposition 2.21 tells us that φε(τ) ∈ H∆K
and then

D`(i1(φε(τ)), i2(φε(τ)), i3(φε(τ))) = 0, when φε(τ) ∈ (H`2 ∩H∆K
)\H1.

Now using the corollaries 2.14 and 2.16 and the equations relating the Igusa invariants with
the Streng ones (Equation 23), it is possible to express the ik ◦ φε in function of the Gundlach
invariants. This describe the intersection of H`2 ∩H∆K

inside of H∆K
in term of the Gundlach

invariants.
But, while the polynomial D`(i1, i2, i3) is irreducible, we have remarked that this is not the

case of the polynomial D`(J1, J2). So the curve H`2 ∩H∆K
splits into several components. We

want to understand the factors and to do that we have to understand the intersection of two
general Humbert surfaces. The reference for this are [Kan94; Kan14; Kan].

46



Definition 5.4. Let q be an integral positive definite quadratic form in r variables. Let

H(q) :=
{

Ω ∈ H2/Sp4(Z) : {discriminants of the primitive singular relations satisfied by Ω}
= {integers which are represented primitively by q}

}
.

We call H(q) a generalized Humbert variety.

By [Kan], H(q) has codimension r in H2/Sp4(Z) (and we refer to the papers cited above
for more details on the moduli interpretation of H(q)). Now, if r = 1, ∆ ≡ 0, 1 mod 4 and
∆ > 0, then we have the equality H∆ = H(∆x2) (recall Proposition 2.19). Thus, the term
generalized Humbert variety is justified. Moreover, it is a classical result that two equivalent
forms (modulo GLr(Z)) q and q′ represent the same integers. This implies by definition that
H(q) = H(q′), but by [Kan14, Corollary 33], the reciprocity is also true. Then

H(q) = H(q′)⇐⇒ q ≈ q′.

Let q be an integral binary positive definite quadratic form: q(x, y) = ax2 + bxy + cy2. We
denote this form q = [a, b, c] and we denote by q → n the fact that q represent the integer
n primitively. Let ∆ and ∆′ be two positive discriminants. Then the intersection of the
corresponding Humbert surfaces is obviously:

H∆ ∩H∆′ =
⋃
q→∆
q→∆′

H(q).

By [Kan], a form q as in the union satisfies | disc(q)| ≤ 4∆∆′. Thus, up to equivalence, there
are finitely many forms in the union. Looking at the reduced forms is still not enough to
compute the intersection of two Humbert surfaces, as a set H(q) may be empty. We overcome
this difficulty in the following way.

Definition 5.5. Let n, r, d be integers with n ∧ d = 1. We define by T (n, r, d) the set of the
integral binary quadratic forms q = [a, b, c] such that

1. disc(q) = b2 − 4ac = −16r2d;

2. q → (rn)2;

3. q(x, y) ≡ 0, 1 mod 4, for all x, y ∈ Z.

Theorem 5.6. Let q be an integral binary quadratic form such that q → N2, for some N ≥ 1.
Then

H(q) 6= ∅ ⇐⇒ H(q) is an irreducible curve
⇐⇒ q ∈ T (N/r, r, d), for some r|N and d ≥ 1 with (N/r) ∧ d = 1

Proof. See [Kan].

Remark 5.7. When r = 1, by [FK09, Section 6] we are in the conditions of [Kan14], where
the genus 2 curves whose Jacobian is isomorphic to a product of elliptic curves are studied (as
a non polarized abelian surface!).

What is interesting for us from the point of view of moduli, is that a modular point in
H(q) ∈ T (N/r, r, d) corresponds to an abelian surface A which is N -isogenous to a product of
elliptic curves E1 × E2 which admits a cyclic isogeny f of degree d: f : E1 → E2.
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Using the previous results, it is possible to compute intersections of Humbert surfaces. The
ones we are interested in are:

H4 ∩H5 = H([1, 0, 4]) ∪H([4, 0, 5]) ∪H([4, 4, 5]);
H9 ∩H5 = H([4, 0, 5]) ∪H([5, 2, 9]) ∪H([5, 4, 8]);
H4 ∩H8 = H([1, 0, 4]) ∪H([4, 0, 4]) ∪H([4, 0, 8]) ∪H([4, 4, 8]);
H9 ∩H8 = H([1, 0, 8]) ∪H([8, 0, 9]) ∪H([5, 4, 8]) ∪H([8, 4, 9]) ∪H([8, 8, 9]).

Looking at the factorization of D`(J1, J2), we try to identify the factors with the generalized
Humbert varieties of these intersections. This allows us to compute the equations for the H(q)
in the intersection. We can also match these factors with factors of the denominators of the
β-modular polynomials we have computed. This allows us to match Lβ with the correct H(q),
assuming Conjecture 5.2.

Case K = Q(
√

2) and ` = 2 (H4 ∩H8): The factorization of the polynomial D2(i1 ◦ φε, i2 ◦
φε, i3 ◦φε) = D2(J1, J2) is D2(J1, J2) = 310J1(J1 +144)10(J1 +4J2)2(J2

1 −J1J
2
2 +2J1J2−81J1 +

64J2
2 )2(J2

1J2 + 4J2
1 − 288J1J2 − 1024J1 − 1728J2

2 )/J10
2 . We could think that there would be a

bijection between the factors and the Humbert varieties in the intersection H4∩H8, but this is
not true. Indeed, the form [1, 0, 4] represents the number 1 primitively so that Ω ∈ H([1, 0, 4])
implies Ω ∈ H1, which means that the variety associated to Ω is isomorphic to a product of
elliptic curves and the invariants we use are not defined at such Ω.

For each factor, we tried to find a period matrix Ω, which makes this factor vanish (see
Theorem 3.8), and for such a matrix we computed the discriminants of many primitive singular
relations satisfied by Ω and compared these numbers with the numbers represented primitively
by the forms in the intersection H4 ∩H8, according to Definition 5.4.

We have found:

H([4, 0, 4]) J1 + 4J2
H([4, 4, 8]) J2

1 − J1J
2
2 + 2J1J2 − 81J1 + 64J2

2
H([4, 0, 8]) J2

1J2 + 4J2
1 − 288J1J2 − 1024J1 − 1728J2

2

The factor corresponding to H([4, 4, 8]) is the common denominator of the β-modular
polynomials for ` = 7 (a split prime). From Conjecture 5.2 and Example 5.3, we knew that
Lβ ⊂ H8 ∩H4 ∩H16. Moreover, note that [4, 4, 8] has discriminant −16× 7.

We focus now on the factors J1 and J1 + 144 in the denominator. Writing the pullbacks
of the Streng invariants in function of J1 and J2 and putting J1 = 0, we obtain φ∗ε i1 = −972,
φ∗ε i2 = 7776, φ∗ε i3 = 0. But the last equality implies φ∗εh4 = 0 (or equivalently φ∗εψ4 = 0)
and thus φ∗ε i1 = 0 and φ∗ε i2 = 0 which is contradictory. Thus, J1 can not be zero. Similarly,
J1 + 144 = 0 implies that the Streng invariants are 0 and thus φ∗εh4 = 0. This can also be seen
looking at the first equality of Theorem 2.15.

So these two factors correspond to the non interesting part of the denominator, as explained
in Remark 4.20, and do not correspond to components of Lβ.

Case K = Q(
√

2) and ` = 3 (H9 ∩ H8): D3(J1, J2) = 2312321(J1 + 144)20(J3
1 + 3J2

1J2 −
162J2

1 − 2268J1J2 + 6561J1 − 5184J2
2 )(J4

1 + 8J3
1J2 + 288J3

1 − J2
1J

3
2 + 14J2

1J
2
2 + 5952J2

1J2 +
20736J2

1 − 360J1J
3
2 + 32992J1J

2
2 − 3375J4

2 )2(J4
1J2 + 3J4

1 − 1332J3
1J2 − 3888J3

1 + 6750J2
1J

2
2 +

485028J2
1J2 + 1259712J2

1 + 5346000J1J
2
2 + 3779136J1J2 + 11390625J3

2 )(J7
1 − J6

1J
3
2 − 6J6

1J
2
2 +

J6
1J2 − 414J6

1 + 428J5
1J

3
2 + 2387J5

1J
2
2 − 17760J5

1J2 + 431811J5
1 + 17728J4

1J
4
2 − 331952J4

1J
3
2 −
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2578856J4
1J

2
2 +6229197J4

1J2−80515134J4
1 −6145536J3

1J
4
2 +52974272J3

1J
3
2 +535037040J3

1J
2
2 +

6116816412J3
1J2 + 37822859361J3

1 − 91648000J2
1J

5
2 − 6502153216J2

1J
4
2 − 75793205760J2

1J
3
2 −

197144611776J2
1J

2
2 − 17565696000J1J

5
2 − 7812042752J1J

4
2 + 110592000000J6

2 )/J19
2

H([5, 4, 8]) J3
1 + 3J2

1J2 − 162J2
1 − 2268J1J2 + 6561J1 − 5184J2

2
H([8, 8, 9]) J4

1 + 8J3
1J2 + 288J3

1 − J2
1J

3
2 + 14J2

1J
2
2 + . . .

H([8, 0, 9]) J4
1J2 + 3J4

1 − 1332J3
1J2 − 3888J3

1 + 6750J2
1J

2
2 + . . .

H([8, 4, 9]) J7
1 − J6

1J
3
2 − 6J6

1J
2
2 + J6

1J2 + . . .

Here, we have that H([5, 4, 8]) corresponds to the common denominator of the β modular
polynomials for ` = 3. Since ` = 3 is inert, we knew that L3 ⊂ H8 ∩H9, furthermore we note
that [5, 4, 8] is of discriminant −16 × 9. Also H([8, 4, 9]) corresponds to β dividing ` = 17 (a
split prime). Once again this was expected from Conjecture 5.2 and Example 5.3. We also
have here that the quadratic form has discriminant −16× 17.

Case K = Q(
√

5) and ` = 2 (H4 ∩ H5): D2(J1, J2) = 310(J2 − 32)2J2
1 (J3

1 − 2J2
1J

2
2 −

1000J2
1J2 + 50000J2

1 + J1J
4
2 + 1800J1J

3
2 − 864J5

2 )

H([4, 4, 5]) J2 − 32
H([4, 0, 5]) J3

1 − 2J2
1J

2
2 − 1000J2

1J2 + 50000J2
1 + J1J

4
2 + 1800J1J

3
2 − 864J5

2

The factor associated to H([4, 0, 5]) is the common denominator of the β-modular polynomials
for β dividing ` = 5 (a ramified prime) while the one associated to H([4, 4, 5]) is the common
denominator of the modular polynomials for ` = 2 (which is an inert prime). One can check
that the quadratic forms have discriminant −16× 5 and −16× 4 respectively.

As previously, if we write the pullbacks of the Streng invariants in function of J1 and J2
and if we put J1 = 0, then we obtain φ∗ε i1 = −27J2/8, φ∗ε i2 = 3J2/32 and φ∗ε i3 = 0 and we
deduce that J1 = 0 is equivalent to φ∗εh4 = 0. This can also be deduced by the first equality
of Theorem 2.13.

Case K = Q(
√

5) and ` = 3 (H9∩H5): D3(J1, J2) = 321(J3
1−2J2

1J
2
2−1000J2

1J2+50000J2
1 +

J1J
4
2 +1800J1J

3
2−864J5

2 )(4J4
1 +12J3

1J
2
2 +8748J3

1J2+12882159J3
1 +30132J2

1J
3
2 +34698942J2

1J
2
2 +

10857300264J2
1J2+2339378717616J2

1−820125J1J
4
2 +34031907000J1J

3
2−29524500000J5

2 )(4J7
1−

12J6
1J

2
2−19236J6

1J2+119497519J6
1 +12J5

1J
4
2 +56972J5

1J
3
2−387805052J5

1J
2
2−278163835056J5

1J2+
35953243171744J5

1−4J4
1J

6
2−55980J4

1J
5
2 +449730698J4

1J
4
2 +943837290960J4

1J
3
2−133230692691392

J4
1J

2
2 + 6651010132099840J4

1J2 + 13001634695104256J4
1 + 18500J3

1J
7
2 − 215193500J3

1J
6
2 −

1170430882000J3
1J

5
2 + 388324233980000J3

1J
4
2 − 32395226716512000J3

1J
3
2 + 32609375J2

1J
8
2 +

635091750000J2
1J

7
2 − 718632513000000J2

1J
6
2 + 34620677424000000J2

1J
5
2 − 124875000000J1J

9
2 +

601911000000000J1J
8
2 − 182250000000000J10

2 )

H([4, 0, 5]) J3
1 − 2J2

1J
2
2 − 1000J2

1J2 + 50000J2
1 + J1J

4
2 + 1800J1J

3
2 − 864J5

2
H([5, 4, 8]) 4J4

1 + 12J3
1J

2
2 + 8748J3

1J2 + 12882159J3
1 + . . .

H([5, 2, 9]) 4J7
1 − 12J6

1J
2
2 − 19236J6

1J2 + 119497519J6
1 + . . .

The variety H([4, 0, 5]) is associated to the denominator for ` = 5 (ramified), H([5, 4, 8])
to ` = 3 (inert) and H([5, 2, 9]) to ` = 11 (split). And again the discrimant of these quadratic
forms are respectively −16× 5, −16× 9 and −16× 11.
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The fact that the denominators for β = ` = 3 do not correspond to the full H5 ∩ H9 is
that the latter is the locus of abelian surfaces with real multiplication by OK which admit
a 3-isogeny to a split abelian surface, while the former requires that the 3-isogeny to a split
abelian surface is compatible with the real multiplication (so its kernel is stable under the
action of OK). Hence it is not surprising that we only get a component.

Remark 5.8. We can see that H([5, 4, 8]) appears in H9 ∩H8 and in H9 ∩H5 so that we have
two description of this variety.

More generally it seems from these computations that the component Lβ of the denominator
of the β-modular polynomials corresponds to only one H(q); so it describes an irreducible curve
in H∆K

∩ Hm2 . It would be interesting to know if this is true in general, or only due to the
small discriminants of the real quadratic fields in our examples. Secondly, if the denominator is
indeed a H(q), then it would be nice to have an intrinsic way to compute this q. This quadratic
form seems to have discriminant −16 × L, where L is the norm of β. Does this determine q
completely?
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