Polynomial Silent Self-Stabilizing p-Star Decomposition
Résumé
We present a silent self-stabilizing distributed algorithm computing a maximal p-star decomposition of the underlying communication network. Under the unfair distributed scheduler, the most general scheduler model, the algorithm converges in at most 12∆m + O(m + n) moves, where m is the number of edges, n is the number of nodes, and ∆ is the maximum node degree. Regarding the move complexity, our algorithm outperforms the previously known best algorithm by a factor of ∆. While the round complexity for the previous algorithm was unknown, we show a 5 [n/(p+1)] + 5 bound for our algorithm.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...