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Abstract

We present a silent self-stabilizing distributed algorithm computing a maximal p-star decomposition of the
underlying communication network. Under the unfair distributed scheduler, the most general scheduler
model, the algorithm converges in at most 12∆m +O(m + n) moves, where m is the number of edges, n is
the number of nodes, and ∆ is the maximum node degree. Regarding the move complexity, our algorithm
outperforms the previously known best algorithm by a factor of ∆. While the round complexity for the
previous algorithm was unknown, we show a 5

⌊
n

p+1

⌋
+ 5 bound for our algorithm.

1. Introduction

Fault-tolerance is among the most important requirements for distributed systems. Self-stabilization is
a fault-tolerance technique that deals with transient faults. It was first introduced by Dijkstra [1]. Starting
in an arbitrary configuration, a self-stabilizing distributed system converges to a legitimate configuration in
finite time by itself, i.e., without any external intervention. This makes self-stabilization an elegant approach
for non-masking fault-tolerance [2].

An H-decomposition of a graph G subdivides a graph into disjoint components which which are iso-
morphic to H. A p-star is a complete bipartite graph K1,p with one center node and p leaves. One of the
famous and well studied graph decompositions in literature is star decomposition [3, 4, 5]. A decomposition
of a graph into stars is a way of expressing the graph as the union of disjoint stars [6]. The problem of
star decomposition has several applications including scientific computing, scheduling, load balancing and
parallel computing [7], important nodes detection in social networks [8]. Decomposing a graph into stars is
also used in parallel computing and programming. This decomposition offers similar feature as Master-Slave
paradigm, used in grids [9] and P2P infrastructures [10].
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Related Work
Self-stabilizing algorithms have been proposed for a large variety of graph theoretical problems such as

finding minimal dominating sets [11], maximal matchings [12, 13], independent sets [14], spanning trees [15],
etc. The graph decomposition problem is defined on a graph G = (V, E), where V is the set of nodes and E
is the set of edges, such that the graph G is decomposed into smaller components having specific properties.
These properties are often defined on the size of the partitions (clusters), on their shape (subgraphs) or both
(patterns). Graph partitioning into clusters was considered by [16] and [17]. In [18], authors considered a
particular graph partitioning problem that consists of decomposing the graph into partitions of order k. [18]
considered a particular graph decomposition problem that consisted in partitioning a graph with k2 nodes
into k partitions of order k. The proposed algorithm relies on self-stabilizing spanning tree construction
and converges within 3(h + 1) steps where h is the height of the spanning tree. Furthermore, [16], [17]
and [19] focused on decomposing the graph into clusters while [20] considered decomposition of graphs into
triangles. Other self-stabilizing algorithms were proposed for graph colorings [21, 22] that can be considered
as decompositions into independent sets.

Observe that the maximal node-disjoint p-star decomposition problem when restricted to p = 1 is
equivalent to maximal matching problem in graphs. Thus the general problem when p ≥ 1 is NP-complete
since generalized matching and general graph factor problems were proved to be NP-complete in [23] and
[24] respectively. The maximal matching problem has received much interest due the abundant number of
applications in fields as diverse as transversal theory, assignment problems, network flows, and scheduling.
Many studies have addressed this problem even in the field of self-stabilization [12, 25, 13, 26]. The best
known move complexity for maximal matching problem is O(m) and was obtained by [27].

The first self-stabilizing algorithm for the p-star decomposition problem was proposed in [28]. It finds
a maximal decomposition into node-disjoint p-stars. The decomposition is maximal in the sense that the
nodes not part of any p-star cannot form a p-star. However, the algorithm proposed in [28] always converges
to a unique legitimate configuration according to the input graph and does not guarantee a polynomial move
complexity. An improvement was proposed in [29] where authors dealt with the uniqueness of legitimate
state and proved their algorithm to converge within O(∆2m) moves under the unfair distributed scheduler
where m is the number of edges and ∆ is maximum node degree in the graph. A bound on the round
complexity of the algorithm was not given.

Our Results
In this paper, we improve the move complexity of the previous algorithm to 12∆m+O(m+n) and prove

an O(n) bound on the round complexity. The algorithm is proven correct and analyzed under the unfair
distributed scheduler, the most powerful adversary. The algorithm does not converge to a unique legitimate
configuration. In fact, there is a legitimate configuration for any valid maximal p-star decomposition.

The paper is organized as follows : Computation model is defined in Section 2, then details of the p-star
decomposition algorithm are presented in Section 3. Proofs of correctness and convergence are given in
Sections 4 and 5, respectively.

2. Model of Computation

We model the distributed system as a simple undirected graph G = (V, E), where V is a set of nodes,
and E is a set of edges representing the communication links. We denote by N(v) the set of all neighbors
of v in G, i.e., N(v) contains all nodes that can communicate with v. We call N(v) the open neighborhood
and denote the closed neighborhood by N [v] = N(v) ∪ {v}.

A distributed algorithm defines a set of shared variables and a set of rules for each node. In this paper,
we only discuss uniform algorithms, i.e., each nodes has the same set of variables and executes the same set
of rules. The (ordered) tuple of the values assigned to the variables of a node is called the local state. The
(ordered) tuple of all local states constitutes the current configuration of the distributed system. Each rule
is given in the form guard(v)→ action, where guard(v) is a Boolean predicate over the variables within the
closed neighborhood of node v. The action may read all shared variables within the closed neighborhood



3 THE P -STAR DECOMPOSITION ALGORITHM 3

but may modify only the variables of v itself. We say that a rule is enabled, if its guard evaluates to true.
We say that a node is enabled, it any of its rules is enabled. For the algorithm given in this paper, at most
one rule per node is enabled at a time.

Executions of a distributed algorithm are represented by a sequence of configurations e = 〈c0, c1, c2, . . .〉,
where c0 is called the initial configuration. Executions are organized in steps. The i-th step, where ci is
reached from ci−1, denoted by ci−1 → ci, consists of three phases. In the first phase, an adversarial scheduler
selects a non-empty set Si of nodes that are enabled in ci−1. In the second phase, all selected nodes perform
the action of an enabled rule and compute their new local state. The computed local state is then made
visible to neighboring nodes in the third phase. This model is called composite atomicity. If a node was
selected, then we say that the node has made a move during that step. The sequence 〈S1, S2, S3, . . .〉 is
called the schedule of e.

Three scheduler models are commonly discussed in the literature. The central scheduler selects exactly
one enabled node per step. The synchronous scheduler selects all enabled nodes in each step. The most
general model is the distributed scheduler, where the adversary may chose any non-empty of enabled nodes. A
scheduler may satisfy certain fairness properties. We say that a scheduler is fair, if it selects any continuously
enabled process after a finite number of steps. An unfair scheduler may indefinitely delay the move of a
node as long as there are other enabled nodes. The algorithm given in this paper is proven correct and
analyzed under the most general model, i.e., the unfair distributed scheduler.

A set CS of configurations is closed if any step from a configuration of CS reaches a configuration of
CS . By extension, a predicate Pr on configurations is said closed if the set of configurations verifying Pr is
closed.

A distributed algorithm is called self-stabilizing, if it satisfies the following requirements:
• Any execution reaches a legitimate configuration after a finite number of steps. (Convergence)
• The set of legitimate configurations is closed. (Closure)

The legitimacy of a configuration typically expresses that the output of the algorithm is correct.
The algorithm given in this paper is silent, i.e., any execution eventually reaches a terminal configuration

in which no node is enabled. Note that for any silent self-stabilizing algorithm, terminal configurations
are also legitimate. Its runtime complexity is analyzed with respect to two different metrics: the move
and the round complexity. The move complexity is defined as

∑
i |Si|. The round complexity is obtained

by partitioning the execution e into asynchronous rounds as follows: The first round is the minimal prefix
〈c0, c1, . . . , cx〉 of e such that V \D0 ⊆

⋃x
i=1 Di ∪ Si, where Di is the set of nodes that are not enabled in

ci. The second round of e is the first round of the remaining suffix 〈cx, cx+1, cx+2, . . .〉, and so forth. One
asynchronous round allows each node that was enabled at the beginning of the round to make a move, unless
the node becomes disabled due to a move by a neighbor.

3. The p-Star Decomposition Algorithm

In this section we describe the implementation of the p-star decomposition algorithm. First we give an
overview of how the algorithm works. Assume that some nodes are already a member of a star, while others
are not. Nodes indicate to their neighbors whether they are a member of a star or not. In addition, each
node indicates whether it may be viable center of a new star. That is the case only if the node itself and p
of its neighbors are not a member of a star, yet.

Nodes keep track of the viable centers within the closed neighborhood. Unless they are a member of a star,
they invite the viable center having the minimum identifier to form new p-star. The invitation is updated
as needed if the set of viable centers within the closed neighborhood changes. Directing the invitation at
the viable center with the minimum identifier makes sure that no deadlocks can occur. Eventually, a viable
center is invited by itself and at least p neighbors. Such a viable center v then picks p neighbors as the
leaves of the star and assigns them to a new p-star centered at v.

In the remainder of this section, we present the shared variables and predicates used by the algorithm.
Then, the rules are presented.
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3.1. Variables and Predicates
Algorithm 1 gives an overview over the variables, their domain, their meaning, and the predicates that

the algorithm uses. Node v is the center of a p-star if and only if v verifies correctCenter(v). The set stored
in the shared variable leaves(v) contains the p neighbors of v belonging to the star centered in v. So star(v),
as defined below, is the set of nodes in the p-star centered in v.

Definition 1. star(v) = ∅ if leaves(v) = ∅ and star(v) = {v} ∪ leaves(v) otherwise.

For any p-star centered in v, the following statements are proven (Observation 1, Lemma 2):
• The shared variable center is equal to v for every node in star(v);
• Every node in star(v) verifies the predicate correctLeaf or correctCenter ;
• The star is well formed, i.e., the star contains v and p neighbors of v.

The values of the shared variables center and leaves in its neighborhood are enough to allow a node v
to determine the value of the predicates correctCenter(v) and correctLeaf (v); so they suffice to compute the
value of isInStar(v).

Algorithm 1 Shared Variables, Predicates, Macros and Guard predicates
Shared variables of each node v ∈ V
• center(v) — a node identifier or ⊥

The center of the p-star that v belongs to or the viable center that v invites to form new p-star. The value ⊥ is
used if v is not a member of a p-star and is not inviting any node.

• leaves(v) — a set of up to p node identifiers
The set is empty if v is not the center of a p-star.
Otherwise it contains the leaves of the p-star.

• inStar(v) ∈ Boolean
Indicates whether v is a member of a p-star.

• viableCenter(v) ∈ Boolean
Indicates whether v is a viable center for a new p-star.

• lockedCenter(v) ∈ Boolean
Indicates whether the value of center(v) is locked or not.

Predicates
• isCenter(v) ≡ |leaves(v)| = p
• incorrectCenter(v) ≡ (leaves(v) 6= ∅) ∧

((center(v) 6= v) ∨ (∃u ∈ leaves(v) : center(u) 6= v) ∨
¬isCenter(v) ∨ (leaves(v) 6⊆ N(v)))

• correctLeaf (v) ≡ (center(v) ∈ N(v)) ∧
isCenter(center(v)) ∧ (v ∈ leaves(center(v))

• correctCenter(v) ≡ isCenter(v) ∧ ¬incorrectCenter(v)
• isInStar(v) ≡ correctLeaf (v) ∨ correctCenter(v)
• isViableCenter(v) ≡ ¬isInStar(v) ∧ (|{ u ∈ N(v) | ¬inStar(u) }| ≥ p)

Macros
• bestCenter(v) is the element of {u ∈ N [v] | viableCenter(u) ∧ leaves(u) = ∅}

having the smallest identifier or ⊥ if the set is empty
• potentialLeaves(v) is the set {u ∈ N(v) | center(u) = v ∧ lockedCenter(u)}

Guard Predicates
• starToUpdate(v) ≡ ¬isInStar(v) ∧ (|potentialLeaves(v)| ≥ p) ∧ (v = center(v))
• centerToUpdate(v) ≡ ¬isInStar(v) ∧ (center(v) 6= bestCenter(v) ∨ ¬lockedCenter(v))
• variablesToUpdate(v) ≡ (inStar(v) 6= isInStar(v)) ∨ (viableCenter(v) 6= isViableCenter(v)) ∨

incorrectCenter(v)
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Observation 1.
leaves 6= ∅ ∧ ¬incorrectCenter(v) ⇒ correctCenter(v)
leaves(v) = ∅ ⇒ ¬incorrectCenter(v)
variablesToUpdate(v)⇒ v is enabled
incorrectCenter(v)⇒ v is enabled

Algorithm 2 : p-star rules on v

Procedures
• updateBooleans(v) : inStar(v) := isInStar(v);

viableCenter(v) := isViableCenter(v);
• updateVariables(v) : if incorrectCenter(v) then leaves(v) := ∅;

updateBooleans(v);
Rules

RA(v) : starToUpdate(v) −→
leaves(v) := subset of potentialLeaves(v) with exactly p elements;
updateBooleans(v);

RI(v) : ¬starToUpdate(v) ∧ centerToUpdate(v) ∧ ¬lockedCenter(v) −→
lockedCenter(v) := true;
center(v) := bestCenter(v);
updateVariables(v);

RGI(v) : ¬starToUpdate(v) ∧ centerToUpdate(v) ∧ lockedCenter(v) −→
lockedCenter(v) := false;
updateVariables(v);

RU(v) : ¬starToUpdate(v) ∧ ¬centerToUpdate(v) ∧ variablesToUpdate(v) −→
updateVariables(v);

Lemma 2. Every node v verifying ¬incorrectCenter(v) and star(v) 6= ∅ satisfies the following assertions:

|star(v)| = p + 1 (1)
star(v) ⊆ N [v] (2)

center(u) = v ∀u ∈ star(v) (3)
correctLeaf (u) = true ∀u ∈ leaves(v) (4)

isInStar(u) = true ∀u ∈ star(v) (5)

Proof. We have leaves(v) 6= ∅ and ¬incorrectCenter(v). According to Observation 1, v verifies
correctCenter(v).
By definition of correctCenter(v), we have leaves(v) ⊆ N(v), |leaves(v)| = p, so assertions (1) and (2) are
verified.
Assertion (3) is verified by v because we have ¬incorrectCenter(v). We conclude that assertion (4) is
verified. So assertion (5) is also verified. �

3.2. p-Star Construction
The shared variable inStar allows nodes to determine whether they are a viable center of a new p-star.

If a node v and at least p neighbors of v are not a member of a p-star, then v may become the center of a
new p-star (i.e., v verifies the predicate isViableCenter).

The shared variable viableCenter(v) informs neighbors of node v that in the current configuration, v may
become the center of an new p-star. The shared variables inStar and viableCenter are updated by any rule
during the execution of procedure updateBooleans. Note that if the value of inStar(v) or viableCenter(v) is
not accurate, then v is enabled (Observation 1).
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In the remainder of the algorithm presentation, we will study the behavior of nodes (v, u) that are not
in a p-star (i.e., nodes in CS).

Definition 2.
Let S be the set of nodes belonging to a p-star, i.e., S =

⋃
v∈V star(v). Then CS = V \S is the complement

of S, i.e., the nodes that do not belong to a p-star.

The macro bestCenter(v) returns the viable center that v should invite to create a new p-star. If v is
not connected to a viable center, then ⊥ is returned. More precisely, bestCenter(v) chooses the node having
the smallest identifier among the viable centers at a distance less than 2 from v. In particular, we have
viableCenter(u) and leaves(u) = ∅ if bestCenter(v) = u.

To invite u, node v sets its shared variable center to u via rule RI. Rule RI is the only rule modifying the
value of center(v). If rule RI is enabled for node v, then ¬lockedCenter(v) is verified. Node v is enabled if
lockedCenter(v) 6= true or center(v) 6= bestCenter(v) because centerToUpdate(v) is verified. So v will invite
node bestCenter(v) to be the center of its star or it will set center(v) to ⊥ if it is isolated (rule RI).

The set potentialLeaves(v) contains the neighbors of v that can safely be in the p-star centered at v if
the p-star is created during the next step. Any node of this set invites v to be the potential center and
they cannot update their variable center during the next step because the value of their shared variable
lockedCenter is true. To change the value of center , a node with must first execute rule RGI before it can
change center using rule RI in a subsequent step.

Let v be a node of CS . If the size of potentialLeaves(v) is at least p and center(v) = v then v can form
a p-star centered in itself by executing rule RA.

3.3. p-Star Stability
The execution of rule RA by some node v builds a p-star. After this move, v is the center of a p-star

containing p members of potentialLeaves(v), as proven in Lemma 4. The p-star stays unchanged (i.e., the
set star(v) stays unchanged) along any execution, which is proven in Lemma 3.

Lemma 3. Let c be a configuration where v verifies correctCenter(v). Along any execution from c, the
predicate correctCenter(v) is verified. The set leaves(v) stays unchanged along any execution from c.

Proof. Only a move of a node in star(v) may change the value of the predicates isCenter(v) and
incorrectCenter(v) or the set leaves(v).

According to Lemma 2 and the definitions of correctCenter(v) and star(v), the nodes of star(v) verify
the predicate isInStar . For these nodes, only rule RU may be enabled.

The action of rule RU does not change the value of leaves(v) and center(v) since incorrectCenter(v) =
false in c. For a node u of leaves(v), the action of rule RU does not change the value of center(u).
So the values of leaves(v), isCenter(v), and incorrectCenter(v) stay unchanged. �

Lemma 4. If a node v executes rule RA during the step c1 → c2, then correctCenter(v) is verified in c2.

Proof. In c1, potentialLeaves(v) is a set of at least p nodes of N(v) and any node u of potentialLeaves(v)
verifies center(u) = v and lockedCenter(u).

Let u be a neighbor of v with u ∈ potentialLeaves(v) in c1. In c1, u is disabled with respect to rule RI.
Hence center(u) cannot change during the step c1 → c2. So in c2, leaves(v) is a set of p distinct nodes of
N(v) and any node of leaves(v) verifies center(u) = v. Also center(v) = v in c2, according to rule RA. Thus,
correctCenter(v) is verified in c2. �

4. Correctness of Terminal Configurations

In this section we establish that any terminal configuration represents a maximal p-star decomposition
of the graph. More precisely, we prove that S contains only well formed disjoint p-stars and S is maximal,
i.e., no p-star can be added to S.
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Lemma 5. Let u, v be two nodes verifying the predicate ¬incorrectCenter . Then the sets star(v) and star(u)
are disjoint.

Proof. The claim is trivial if either star(u) or star(v) is empty. According to Lemma 2, center(w) = u
(resp. center(x) = v) for all w ∈ star(u) (resp. for all x ∈ star(v)). Thus star(u) and star(v) cannot
intersect. �

Definition 3. PS denotes the set of nodes of CS having at least p neighbors in CS (definition 2), i.e.,
PS = {z ∈ CS | |N(z) ∩ CS | ≥ p}.

Lemma 6. In any terminal configuration, we have
• leaves(z) = ∅, for any node z in CS
• isInStar(u) = false for any node x in CS
• viableCenter(z) = true for any node z in PS
• viableCenter(x) = false for any node x not in PS

Proof. Let w be a node of CS. According to the definition of S, w /∈
⋃

v∈V leaves(v) and leaves(w) = ∅.
So, we have ¬isCenter(w) and ¬correctLeaf (w). According to Observation 1, for any node w of CS,
isInStar(w) = inStar(w) = false because w is disabled.

Let z be a node of PS. z has at least p neighbors having their shared variable inStar set to false. Thus
isViableCenter(z) is verified. According to Observation 1, viableCenter(z) = true, because z is disabled.

Let CPS denote the set of nodes of CS having at most p − 1 neighbors in CS (i.e., CPS = CS \ PS =
{z ∈ CS | |N(z) ∩ CS | < p}). Let cz be a node of CPS . Node cz does not have p neighbors having their
shared variable inStar set to false. ¬isViableCenter(cz) is verified. So, viableCenter(cz) = false.
Let u be a node of S. According to Lemma 2, isInStar(u) = inStar(u) = true. So, viableCenter(u) = false
because u is disabled.
We conclude that for any node not in PS, viableCenter(x) = false. �

PS is the set of nodes that could be the center of a star set containing only nodes that are not yet in a
p-star.

Lemma 7. In any terminal configuration, PS is empty.

Proof. Assume that PS is not empty. Let cz be the node of PS having the smallest identifier. Consider
any node w ∈ CS ∩N [cz]. We have bestCenter(w) = cz and isInStar(w) = false are according to Lemma 6.
As w is disabled, ¬centerToUpdate(w) is verified (Observation 1). We have lockedCenter(w) = true and
center(w) = bestCenter(w) = cz.
As |CS ∩N(cz)| ≥ p, starToUpdate(cz) is verified; so node cz is enabled with respect to rule RA. That is a
contradiction to the assumption that the configuration is terminal. Thus PS is empty. �

Theorem 8. In any terminal configuration, S =
⋃

v∈V star(v) is a valid maximal p-star decomposition.

Proof. According to Observation 1, any node v verify the predicate
¬incorrectCenter(v) in a terminal configuration.

According to Lemma 2, and the definition of star , star(v) is empty or is a p-star centered to v in a
terminal configuration. According to Lemma 5, the star sets are pairewise disjoint.

According to Lemma 7 and the definitions of PS, and S is maximal. �

5. Move Complexity

5.1. Number of RA and RU moves per node
Lemma 9. Every node v executes rule RA at most once.
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Proof. After v executes rule RA, it verifies the predicate correctCenter(v) (Lemma 4). From a configuration
where correctCenter(v) is verified this predicate stays verified along any execution (Lemma 3). So along any
execution, v may perform only the rule RU, because isInStar(v) is always verified (Lemma 2). �

Lemma 10. For every node v, ¬incorrectCenter(v) is a closed predicate.

Proof. Assume ¬incorrectCenter(v) is verfied in configuration c. According to Observation 1, in c, we have
leaves(v) = ∅ or isCenter(v). Assuming that isCenter(v) in c, the claim follows from Lemma 3. Assume
that leaves(v) = ∅ in c. Only the action of rule RA sets leaves(v) to a non-empty set. The claim follows
from Lemmas 3 and 4. �

Lemma 11. If a node v makes a move, then ¬incorrectCenter(v) is verified by the configuration reached
immediately after this move.

Proof. Consider a step c1 → c2 that contains a move of v. If v executes rule RA, then the claim follows
from Lemma 4. If ¬incorrectCenter(v) is verified in c1 the claim follows from Lemma 10

Assume that v executes rules RI, RGI, or RU from a configuration c1 where incorrectCenter(v) is verified.
The procedure updateVariables(v) empties the set leaves(v) during the step c1 → c2. So, in c2 we have
leaves = ∅. According to Observation 1, ¬incorrectCenter(v) is verified in c2. �

Lemma 12. Consider a step c1 → c2 in which correctLeaf (v) changes from false to true. Let u be the node
such that center(v) = u in c2. Then node u executes rule RA during the step.

Proof. The proof is by contradiction, i.e., assume that node u has not executed rule RA during the
step. The action of rules RI, RGI, or RU, if they change leaves(u), assign the empty set to leaves(u). As
v ∈ leaves(u) in c2, we conclude that u does not update its set leaves during this step.

So correctLeaf (v) could change from false to true during this step only if center(v) changes and leaves(u)
does not change. That implies that v executed rule RI during the step. However, rule RI can only set
center(v) to u if bestCenter(v) = u which implies that leaves(u) = ∅ in c1 and in c2. That is a contradiction
to v ∈ leaves(u) in c2. �

Lemma 13. Consider a step c1 → c2 in which correctLeaf (v) changes from false to true. Along any
execution starting in c2, correctLeaf (v) stays verified.

Proof. Let u be the node such that u = center(v) in c2. During the step c1 → c2, u performs the rule RA
(Lemma 12). So in c2, node u = center(v) verifies the predicate correctCenter(u) (Lemma 4). According to
Lemma 3, v belongs to leaves(u) along any execution from c2. In c2, star(v) 6= ∅ and ¬incorrectCenter(v),
so correctLeaf (v) stays verified along any execution (Lemma 2). �

Lemma 14. For each node v, the value of isInStar(v) changes at most 2 times.

Proof. Consider a step c1 → c2 in which isInStar(v) changes from false to true. This is either due to the
fact that correctLeaf (v) became true, or correctCenter(v) became true.

correctCenter(v) is closed (Lemma 3). correctLeaf (v) stays verified after that step (Lemma 13).
So isInStar(v) may change from false to true at most once; then it keeps the value true. Thus

〈true, false, true〉 is the maximum sequence of values that isInStar(v) may assume. �

Accounting for an initial inconsistencies, we obtain the following result.

Corollary 15. Each node v changes the variable inStar(v) at most 3 times.

Lemma 16. For each node v, the value of isViableCenter(v) changes at most 3 deg(v) + 2 times.

Proof. isViableCenter(v) may change its value each time a neighbors u ∈ N(v) change its value of
inStar(v). By Corollary 15, this may occur at most 3 deg(v) times. Furthermore, isViableCenter(v) may
also change its value if isInStar(v) changes. By Lemma 14, this can occur at most 2 times. �
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Accounting for an initial inconsistencies, we obtain the following result.

Corollary 17. Each node v changes the variable viableCenter(v) at most 3 deg(v) + 3 times.

Lemma 18. Each node v executes the rule RU at most 3 deg(v) + 5 times.

Proof. By definition of variablesToUpdate(v), rule RU is only enabled if variables inStar(v) or
viableCenter(v) need updating or if incorrectCenter(v) = true. The first execution of rule RU may be
triggered by initial inconsistencies. Note that by Lemmas 11 and 10, incorrectCenter(v) never becomes
true after the first move of v.

Thus all further executions of RU are caused by changes of isInStar(v) and isViableCenter(v). The latter
can occur at most 3 deg(v) + 2 + 2 times by Lemmas 14 and 16. �

5.2. Number of RGI and RI moves per node
Lemma 19. Per node, the variable leaves(v) changes at most 2 times.

Proof. Rule RA is the only rule assigning a non-empty set to leaves(v). By Lemma 9, rule RA can only
be executed once by v and afterwards, leaves(v) does not change. All other rules set leaves(v) to the empty
set if they modify leaves(v). Thus leaves(v) can only change twice: once to the empty set and once to a
non-empty set. �

Lemma 20. For every node v, the value of bestCenter(v) changes at most deg(v)(3∆ + 5) + 3 deg(v) + 5
times.

Proof. bestCenter(v) changes only if the set of nodes u ∈ N [v] satisfying the condition (i) viableCenter(u)∧
leaves(u) = ∅ changes. By Corollary 17 and Lemma 19, the condition (i) changes its value at most 3 deg(u)+
3 + 2 ≤ 3∆ + 5 times on any execution. The claim follows as N [v] contains exactly deg(v) nodes plus v. �

Lemma 21. Rule RGI is executed at most deg(v)(3∆ + 5) + 3 deg(v) + 5 + 1 times.

Proof. By definition of centerToUpdate(v), rule RGI is enabled only if center(v) 6= bestCenter(v) and
lockedCenter(v) = true. When the algorithm assigns true to lockedCenter(v) (rule RI), then it also assigns
bestCenter(v) to center(v). So center(v) 6= bestCenter(v) when lockedCenter(v) = true is either due to
initial inconsistencies or due to the fact that bestCenter(v) has changed. By Lemma 20, the latter can only
happen deg(v)(3∆ + 5) + 3 deg(v) + 5 times. �

Lemma 22. Rule RI is executed at most deg(v)(3∆ + 5) + 3 deg(v) + 5 + 2 times.

Proof. For rule RI to be enabled, it must holds that lockedCenter(v) = false. When executed, rule RI
changes lockedCenter(v) to true and only rule RGI set to false this variable. So any execution of rule RI
is either due to an initial inconsistency or must be preceded by an execution of rule RGI. The latter can
happen at most deg(v)(3∆ + 5) + 3 deg(v) + 5 + 1 times by Lemma 21. �

Theorem 23 (Upper bound on the number of moves). The algorithm terminates after at most
12∆m +O(m + n) moves.

Proof. By Lemma 9, rule RA can be executed at most 1 time. By Lemma 18, rule RU is executed at most
3 deg(v) + 5 times. Rule RGI can be executed at most deg(v)(3∆ + 5) + 3 deg(v) + 6 times by Lemma 21,
and 22 rule RI is executed at most deg(v)(3∆ + 5) + 3 deg(v) + 7 times. So each node v makes at most

2 deg(v)(3∆ + 5) + 9 deg(v) + 19 = 6 deg(v)∆ + 19 deg(v) + 19 moves.

The total number of moves over all nodes is then bounded by∑
v∈V (6∆ deg(v) + 19 deg(v) + 19) = 12∆m + 38m + 19n

�



6 ROUND COMPLEXITY 10

6. Round Complexity

The proofs of the round complexity utilize the notion of attractors [30]. An attractor A is a set of
configuration that is closed under the execution of the algorithm. That is, for any execution, configurations
subsequent to a configuration of A are also in A. A self-stabilizing always has two attractors: the set of all
configurations and the set of all legitimate configurations.

Let C denote the set of all configurations. First we will establish that attractor A0, as defined below, is
reached in a single round.

Definition 4. A0 = {c ∈ C | ∀v ∈ V : ¬incorrectCenter(v)}

6.1. Properties of A0

The following corollary is a direct consequence of the Observation 1 and Lemmas 10 and 11.

Corollary 24. After at most one round of execution starting in any configuration, A0 has been reached and
A0 is closed under any execution of the algorithm.

6.2. Properties of executions starting in A0

In the following, we establish that in any configuration of A0, at most nbMaxStars nodes verify the
predicate isCenter .

Definition 5. nbMaxStars = b n
p+1c.

The following corollary follows from the definition of A0, and star and Lemmas 3 and 2.

Corollary 25. In A0, isCenter is a closed predicate. In A0, if isCenter(v) is verified, then |star(v)| = p+1.

Corollary 26. In any execution from A0, the rule RA is performed at most nbMaxStars times.

Proof. Let c be a configuration of A0 According to Corollary 25, if isCenter(v) is verified in c then
|star(v)| = p + 1. According to Lemma 5, in c, if u 6= v then star(u) is disjoint of star(v). So, in c, the
number of nodes satisfying the predicate isCenter is bounded by nbMaxStars.
According to Corollary 25, in A0 the predicate isCenter is closed.
Thus, the rule RA is performed at most nbMaxStars times along any execution in A0. �

6.3. Properties of RA-restricted executions starting in A0

We call a step c1 → c2 RA-restricted, if no node executes rule RA during that step. Similarly, we say that
a round is RA-restricted if it consists of only RA-restricted steps. In the remainder we study executions
starting in configurations of A0. We show that any such execution contains at most 4 consecutive RA-
restricted rounds, i.e., after 4 consecutive RA-restricted rounds, either a terminal configuration is reached
or in the following round at least one node executes rule RA. In any execution starting in A0, there are at
most nbMaxStars RA-unrestricted rounds (Corollary 26). So the number total of rounds, in any execution
from A0 is at most 5nbMaxStars + 4.

First, we establish that the value of leaves(v) and isInStar(v) for any node v in a configuration of A0
stays unchanged during any execution till no node performs the RA action.

Lemma 27. Consider an RA-restricted step c1 → c2 with c1 ∈ A0. For any node v, the value of leaves(v)
does not change during this step.

Proof. The rules RI, RGI and RU modify leaves(v) if incorrectCenter(v) = true in c1. We have
incorrectCenter(v) = false in c1 ∈ A0. Thus, leaves(v) does not change during this step. �

Lemma 28. Consider a step c1 → c2 with c1 ∈ A0. If correctCenter(v) changes from false to true, then
node v executed rule RA during this step.
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Proof. The proof is by contradiction, i.e., assume that node v has not executed rule RA during the
step. ¬incorrectCenter(v) and ¬correctCenter(v) are verified in c1. So leaves(v) = ∅ in c1 (according to
Observation 1). According to Lemma 27, in c2, we have leaves(v) = ∅. So isCenter(v) is not verified in c2.
�

Lemma 29. isInStar(v) is a closed under any RA-restricted step c1 → c2 with c1 ∈ A0.

Proof. Let v be a node that verifies isInStar(v) in c1. Either correctCenter(v) or correctLeaf (v) is verified,
by definition of isInStar .

If correctCenter(v) is verified in c1, then according to Lemma 3 correctCenter(v) is also verified in c2.
So isInStar(v) is verified in c2 (Lemma 2).

Let u = center(v). If correctLeaf (v) is verified, then leaves(u) 6= ∅ in c1. So by definition of A0 and
Observation 1 we have correctCenter(u) in c1 and thus in c2 (Lemma 3). Since v ∈ leaves(u) in c2 by
Lemma 27, we have correctLeaf (v) in c2 by Lemma 2. �

Lemma 30. Consider an RA-restricted step c1 → c2 with c1 ∈ A0. For every node v, the value of
isInStar(v) does not change during this step.

Proof. Let v be a node. A change of isInStar(v) from false to true implies that either correctLeaf (v) or
correctCenter(v) changes from false to true. According to Lemmas 12 and 28, such a change occurs only if
a node performs the rule RA during this step. Since this step is RA-restricted, this cannot occur.
According to Lemma 29, a change of the value of isInStar(v) from true to false cannot happen in A0. �

Definition 6. A1 = {c ∈ A0 | ∀v ∈ V : inStar(v) = isInStar(v)}

6.4. Properties of A1

Lemma 31. Let c be a configuration of A0 and c1 the configuration reached after one RA-restricted round
from c. We have c1 ∈ A1 and A1 is closed under any RA-restricted step.

Proof. By Corollary 24, the set A0 is closed and thus c1 ∈ A0. Let v be a node with inStar(v) 6= isInStar(v)
in c. Node v is enabled as long as this inequality holds and no node executes rule RA. Thus node v performs
a move during the first RA-restricted round. After the move of v, we have inStar(v) = isInStar(v). This
equality stays verify until a node does the RA action (Lemma 30). �

Lemma 32. Consider an RA-restricted step c1 → c2 with c1 ∈ A1. For every node v, the value of
isViableCenter(v) does not change during this step.

Proof. The value of isViableCenter(v) may only changes when the value of inStar(u) for some node
u ∈ N(v) changes. As c1 ∈ A1 we have inStar(u) = isInStar(u) for all nodes u ∈ V . So no node changes
the value of its inStar variable during this step. �

Definition 7. A2 = {c ∈ A1 | ∀v ∈ V : ¬variablesToUpdate(v)}

6.5. Properties of A2

Lemma 33. Let c be a configuration of A0 and c2 the the configuration reached after two RA-restricted
rounds from c. We have c2 ∈ A2 and A2 is closed under any RA-restricted step.

Proof. After the first RA-restricted round from c, the configuration c1 ∈ A1 is reached (Lemma 31). Since
A1 is closed we have c2 ∈ A1.

Let v be a node with isViableCenter(v) 6= viableCenter(v) in c1. As long as this inequality holds and
no node performs RA action, the node v is enabled. Thus node v performs a move during the second RA-
restricted round. After the move of v, we have isViableCenter(v) = viableCenter(v). This equality stays
verify until a node does the RA action (Lemma 32). �
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Lemma 34. Consider an RA-restricted step c1 → c2 with c1 ∈ A2. For every node v, the value of
bestCenter(v) does not change during this step.

Proof. The value bestCenter(v) can only change if viableCenter(u) or leaves(u) change for some u ∈ N [v].
Since c1 ∈ A2 we have viableCenter(u) = isViableCenter(u) for all nodes u ∈ V . By Lemma 32 we know that
the value of isViableCenter(u) does not change during this step for all nodes u ∈ V . Also, by Lemma 27,
we know that the set leaves(u) does change for any node u ∈ V . Therefore, the value bestCenter(v) does
change during this step. �

Definition 8. A3 = {c ∈ A2 | ∀v ∈ V : ¬centerToUpdate(v)}

6.6. Properties of A3
Lemma 35. Let c be a configuration of A0 and c3 be the configuration reached after four RA-restricted
rounds from c. We have c3 ∈ A3 and A3 is closed under any RA-restricted step.

Proof. After two RA-restricted rounds from c, the configurations c2 ∈ A2 is reached (Lemmas 33). Since
A2 is closed the have c3 ∈ A2.

Let v be a node with centerToUpdate(v) = true in c2. Without loss of generality, assume that
lockedCenter(v) = true in c2. Node v is enabled as long as centerToUpdate(v) = true holds and no node
performs RA action. Thus node v makes an RGI move during the third RA-restricted round. After the
move of v, we have lockedCenter(v) = false. So node v remains enabled until it performs another move or
RA action is performed.

Let v be a node with centerToUpdate(v) = true, and lockedCenter(v) = false in c3 (the configuration
reached after 3 RA-restricted rounds from c). Before the end of the fourth RA-restricted round, v executes
rule RI which updates center(v) with the value of bestCenter(v) and sets lockedCenter(v) to true. After
that move, centerToUpdate(v) = false holds as bestCenter(v) does not change (Lemma 34). �

Lemma 36. Consider a configuration of A3. Each node is either disabled or only enabled with respect to
rule RA.

Proof. Let v be a node. By definition of A3 we have centerToUpdate(v) = false. Thus v is disabled with
respect to rules RI and RGI. Also, by definition of A2 ⊇ A3 we have variablesToUpdate(v) = false. Thus
rule RU is disabled. So v is either disabled or enabled with respect to rule RA. �

Combining Lemmas 35, and 36 yields the following result.

Corollary 37. Any execution starting in A0 contains at most 4 consecutive RA-restricted rounds.

Theorem 38 (Upper bound on the number of rounds). The algorithm terminates after at most
5(nbMaxStars + 1) = 5(

⌊
n

p+1

⌋
+ 1) rounds.

Proof. By Corollary 24, any non-restricted execution reaches A0 after at most 1 round. Afterwards, an
execution of rule RA occurs at least every 5 rounds by Corollary 37. Also by Corollary 37, any trailing suffix
not containing any executions of rule RA can be at most 4 rounds in length.

By Corollary 26, there are at most nbMaxStars rounds having a RA action along any execution starting
in A0. This completes the proof. �

7. Conclusion

We studied in this paper the problem of decomposing a graph into node-disjoint p-stars from a self-
stabilization point of view. This problem is a generalization of maximal matching problem in graphs.
We proposed a new self-stabilizing algorithm for maximal p-star decomposition problem performing better
than both previously proposed algorithms. In fact, we improve the move complexity to O(∆m) instead of
O(∆2m) in [29] and solve the uniqueness legitimate configuration problem that [28] suffered from, without
losing linearity of round complexity. As future work, we aim to generalize the proposed algorithm to the
weighted p-star decomposition problem.
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