Ant Colony Optimization for Multi-objective Optimization Problems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2007

Ant Colony Optimization for Multi-objective Optimization Problems

Résumé

We propose in this paper a generic algorithm based on Ant Colony Optimization metaheuristic (ACO) to solve multi-objective optimization problems (PMO). The proposed algorithm is parameterized by the number of ant colonies and the number of pheromone trails. We compare different variants of this algorithm on the multi-objective knapsack problem. We compare also the obtained results with other evolutionary algorithms from the literature.
Fichier principal
Vignette du fichier
v2.pdf (179.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01502167 , version 1 (24-03-2020)

Identifiants

  • HAL Id : hal-01502167 , version 1

Citer

Ines Alaya, Christine Solnon, Khaled Ghedira. Ant Colony Optimization for Multi-objective Optimization Problems. 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Oct 2007, Patras, Greece. pp.450-457. ⟨hal-01502167⟩
209 Consultations
2288 Téléchargements

Partager

More