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Abstract

We propose in this paper a generic algorithm based on
Ant Colony Optimization to solve multi-objective optimiza-
tion problems. The proposed algorithm is parameterized by
the number of ant colonies and the number of pheromone
trails. We compare different variants of this algorithm on
the multi-objective knapsack problem. We compare also the
obtained results with other evolutionary algorithms from
the literature.

1 Introduction

In many real-life optimization problems there are several
objectives to optimize. For such multi-objective problems,
there is not usually a single best solution but a set of so-
lutions that are superior to others when considering all ob-
jectives. This set is called the Pareto set or non dominated
solutions. This multiplicity of solutions is explained by the
fact that objectives are generally conflicting ones. For ex-
ample, when choosing a second-hand car to buy, we want it
to be in good state, but also to be cheap. Therefore, a car
v with price p and state s is better than a car v′ with price
p′ > p and state s′ < s, but it is not comparable with a car
v′′ with price p′′ > p and state s′′ > s (or inversely, with
price p′′ < p and state s′′ < s).

More formally, a multi-objective optimization problem
(MOP) is defined by a quadruplet (X, D,C, F ) such that X
is a vector of n decision variables, i.e., X = (x1, . . . , xn);
D is a vector of n value sets defining the domains of the
decision variables, i.e., D = (d1, . . . , dn); C is a set of
constraints on X , i.e., a set of relations restricting the val-
ues that may be simultaneously assigned to the decision
variables; and F is a vector of m ≥ 2 objective functions

F (X) = (f1(X), f2(X), . . . , fm(X)); without loss of gen-
erality, we assume that these different objective functions
have to be minimized (the functions having to be maximized
may be multiplied by −1).

The space of candidate solutions, noted E(X, D,C),
is the set of all value vectors v ∈ D satisfying all the
constraints of C. We define a partial order relation on
this set as follows: a solution v ∈ E(X, D,C) domi-
nates a solution v′ ∈ E(X, D,C), noted v ≺ v′, iff v
is at least as good as v′ for each of the m criteria to op-
timize, and strictly better than v′ for at least one of these
criteria, i.e., iff ∀i ∈ {1, . . . ,m}, fi(v) ≤ fi(v′) and
∃i ∈ {1, . . . ,m}, fi(v) < fi(v′).

The goal of a MOP (X, D,C, F ) is to find the
Pareto set of all non-dominated solutions, i.e., {v ∈
E(X, D,C)|∀v′ ∈ E(X, D,C),¬(v′ ≺ v)}.

In this article, we propose an approach based on Ant
Colony Optimization (ACO) for solving this kind of prob-
lems. We recall in the next section the basic idea of ACO,
and we describe the main features of ACO algorithms for
solving multi-objective problems. Section 3 introduces a
generic ACO algorithm for multiobjective problems, which
is a generalization of previous proposed approaches. Sec-
tion 4 introduces four different instantiations of this generic
algorithm, and section 5 describes the multi-objective knap-
sack problem and shows how to solve this problem with
our generic algorithm. Experimental results comparing the
four proposed instantiations with other state-of-the-art ap-
proaches are presented in Section 6.

2 Ant Colony Optimization

The basic idea of Ant Colony Optimization (ACO) [7]
is to model the problem to solve as the search for a min-
imum cost path in a graph, and to use artificial ants to



search for good paths. The behavior of artificial ants is in-
spired from real ants: they lay pheromone on components
(edges and/or vertices) of the graph and they choose their
path with respect to probabilities that depend on pheromone
trails that have been previously laid by the colony; these
pheromone trails progressively decrease by evaporation. In-
tuitively, this indirect stigmergetic communication means
aims at giving information about the quality of path com-
ponents in order to attract ants, in the following iterations,
towards the corresponding areas of the search space.

Artificial ants also have some extra-features that do not
find their counterpart in real ants. In particular, they are usu-
ally associated with data structures that contain the memory
of their previous actions, and they may apply some daemon
procedures, such as local search, to improve the quality of
computed paths. In many cases, pheromone is updated only
after having constructed a complete path and the amount
of pheromone deposited is usually a function of the quality
of the complete path. Finally, the probability for an artifi-
cial ant to choose a component often depends not only on
pheromone, but also on problem-specific local heuristics.

The first ant algorithm to be applied to a discrete opti-
mization problem has been proposed by Dorigo in [6]. The
problem chosen for the first experiments was the Traveling
Salesman Problem and, since then, this problem has been
widely used to investigate the solving capabilities of ants.
The ACO metaheuristic, described e.g. in [7], is a gener-
alization of these first ant based algorithms, and has been
successfully applied to different hard combinatorial opti-
mization problems such as quadratic assignment problems
[20], vehicle routing problems [3, 9], constraint satisfaction
problems [18], or maximum clique problems [19].

ACO for multiobjective problems

Recently, different papers have introduced ACO al-
gorithms for multiobjective problems. These algorithms
mainly differ with respect to the three following points.

Pheromone trails. The quantity of pheromone laying on
a component represents the past experience of the colony
with respect to choosing this component. When there is
only one objective function, this past experience is defined
with respect to this objective. However, when there are sev-
eral objectives, one may consider two different strategies.
A first strategy is to consider a single pheromone structure,
as proposed in [14, 10, 15, 2]. In this case, the quantity
of pheromone laid by ants is defined with respect to an ag-
gregation of the different objectives. A second strategy is
to consider several pheromone structures, as proposed in
[13, 5, 9, 3, 4]. In this case, one usually associates a differ-
ent colony of ants with each different objective, each colony
having its own pheromone structure.

Solutions to reward. When updating pheromone trails,
one has to decide on which of the constructed solutions lay-
ing pheromone. A first possibility is to reward solutions that
find the best values for each criterion in the current cycle,
as proposed in [5, 9, 4]. A second possibility is to reward
every non-dominated solution of the current cycle. In this
case, one may either reward all the solutions in the Pareto
set, as proposed in [2] or only the new non-dominated solu-
tions that enter in the set in the current cycle, as proposed in
[13].

Definition of heuristic factors. When constructing so-
lutions, at each step a candidate is chosen relatively to
a transition probability which depends on two factors: a
pheromone factor and a heuristic factor. The definition
of the pheromone factor depends on the definition of the
pheromone trails, as discussed in the first point. For the def-
inition of the heuristic factor, two different strategies have
been considered. A first strategy is to consider an aggrega-
tion of the different objectives into a single heuristic infor-
mation, as proposed in [5, 3, 10]. A second strategy is to
consider each different objective separately, as proposed in
[14, 13, 9, 2, 4]. In this case, there is usually one different
colony for each objective.

3 A generic ACO algorithm for multiobjec-
tive problems

In this section, we present a generic ACO framework for
multi-objective problems. This algorithm will be instanti-
ated into different variants that are described next.

The generic algorithm, called m-ACO, is implicitely pa-
rameterized by the MOP (X, D,C, F ) to be solved. We
shall consider that ants build solutions within a construction
graph G = (V,E) the definition of which depends on the
problem to be solved, and that pheromone trails are associ-
ated with vertices and/or edges of this graph. We shall also
assume that a heuristic information ηi is defined for every
objective function fi ∈ F .

m-ACO is also parameterized by the number of ant
colonies #Col and the number of considered pheromone
structures #τ . Figure 1 describes the generic framework
of m-ACO(#Col,#τ ). Basically, the algorithm follows the
MAX-MIN Ant System scheme [20]. First, pheromone trails
are initialized to a given upper bound τmax. Then, at each
cycle every ant constructs a solution, and pheromone trails
are updated. To prevent premature convergence, pheromone
trails are bounded within two given bounds τmin and τmax

such that 0 < τmin < τmax. The algorithm stops iterating
when a maximum number of cycles has been performed.



Algorithme m-ACO(#Col,#τ ):
Initialize all pheromone trails to τmax

repeat
for each colony c in 1..#Col

for each ant k in 1..nbAnts
construct a solution

for i in 1..#τ
update the ith pheromone structure trails
if a trail is lower than τmin then set it to τmin

if a trail is greater than τmax then set it to τmax

until maximal number of cycles reached

Figure 1. Generic ACO algorithm for MOP

Construction of a solution S:
S ← ∅
Cand ← V
while Cand 6= ∅ do

choose vi∈Cand with probability pS(vi)
add vi at the end of S
remove from Cand vertices that violate constraints

end while

Figure 2. Solution construction

3.1 Solution construction

Figure 2 describes the algorithm used by ants to con-
struct solutions in a construction graph G = (V,E) the def-
inition of which depends on the problem (X, D,C, F ) to
solve. At each iteration, a vertex of G is chosen within a set
of candidate vertices Cand; it is added to the solution S and
the set of candidate vertices is updated by removing vertices
that violate constraints of C. The vertex vi to be added to
the solution S by ants of the colony c is randomly chosen
with the probability pc

S(vi) defined as follows:

pc
S(vi) =

[τ c
S(vi)]α.[ηc

S(vi)]β∑
vj∈Cand [τ c

S(vj)]α.[ηc
S(vj)]β

where τ c
S(vi) and ηc

S(vi) respectively are the pheromone
and the heuristic factors of the candidate vertex vi, and α
and β are two parameters that determine their relative im-
portance. The definition of these two factors depends on the
problem to be solved and on the parameters #Col and #τ ;
they will be detailed later.

3.2 Pheromone update

Once all ants have constructed their solutions,
pheromone trails are updated as usually in ACO algo-
rithms: first, pheromone trails are reduced by a constant

factor to simulate evaporation; then, some pheromone is
laid on components of the best solution. More precisely,
the quantity τ i(c) of the ith pheromone structure laying on
a component c is updated as follows:

τ i(c)←− (1− ρ)× τ i(c) + ∆τ i(c)

where ρ is the evaporation factor, such that 0≤ ρ ≤ 1, and
∆τ i(c) is the amount of pheromone laid on the component
c. The definition of this quantity depends on the parameters
#Col and #τ ; it will be detailed later.

4 Description of 4 variants of m-ACO

We now describe four different variants of our generic
algorithm, that consider different numbers of colonies and
pheromone structures.

4.1 Variant 1: m-ACO1(m+1,m)

For this variant, the number of colonies #Col is set to
m + 1 and the number of pheromone structures is set to
m, where m = |F | is the number of objectives to opti-
mize: each colony considers a single different objective, us-
ing its own pheromone structure and heuristic information
to build solutions; an extra multi-objective colony is added,
that aims at optimizing all objectives.

Definition of pheromone factors. The pheromone factor
τ i
S(vj) considered by the ith single-objective colony, that

aims at optimizing the ith objective function fi, is defined
with respect to the ith pheromone structure; depending on
the considered application, it may be defined as the quan-
tity of pheromone laying on vertex vj or as the quantity of
pheromone laying on edges between vj and some vertices
in the partial solution S.

The pheromone factor τm+1
S (vj) considered by the extra

multi-objective colony is the pheromone factor τ r
S(vj) of

the rth single-objective colony, where r is randomly cho-
sen. So this colony considers, at each construction step, a
randomly chosen objective to optimize.

Definition of heuristic factors. The heuristic factor
ηi

S(vj) considered by the ith single-objective colony, that
aims at optimizing the ith objective function fi, is the ith

heuristic information defined by ηi.
The heuristic factor ηm+1

S (vj) considered by the ex-
tra multi-objective colony is the sum of heuristic infor-
mations associated with all objectives, i.e., ηm+1

S (vj) =∑m
i=1 ηi

S(vj).



Pheromone update. For each single-objective colony,
pheromone is laid on the components of the best solution
found by the ith colony during the cycle, where quality of
solutions is evaluated with respect to the ith objective fi

only. Hence, let Si be the solution of the ith colony that
minimizes fi for the current cycle, and let Si

best be the so-
lution of the ith colony that minimizes fi over all solutions
built by ants of the ith colony since the beginning of the run
(including the current cycle). The quantity of pheromone
deposited on a solution component c for the ith pheromone
structure is defined as follows

∆τ i(c) = 1
(1+fi(Si)−fi(Si

best)
if c is a component of Si

∆τ i(c) = 0 otherwise

The multi-objective colony maintains a set of solutions:
a best solution for each objective. It lays pheromone on each
pheromone structure relatively to the correspondent objec-
tive with the same formulae defined for the other colonies.

4.2 Variant 2: m-ACO2(m+1,m)

This second variant is very similar to the first one, and
considers m + 1 colonies and m pheromone structures:
a single-objective colony is associated with every differ-
ent objective, and the behavior of these single-objective
colonies is defined like in variant 1; there is also an extra
multi-objective colony, that aims at optimizing all objec-
tives. The only difference between variants 1 and 2 lays
in the way this multi-objective colony exploits pheromone
structures of other colonies to build solutions. For this
multi-objective colony, the pheromone factor τm+1

S (vj) is
defined as the sum of every pheromone factor τ c

S(vj) of ev-
ery colony c ∈ {1, ...,m}, thus aggregating all pheromone
information into one value.

4.3 Variant 3: m-ACO3(1,1)

In this instantiation of m-ACO, there is only one colony
and one pheromone structure, i.e., #Col = 1 and #τ = 1.

Definition of pheromone factors. The pheromone factor
τ1
S(vj) considered by ants of the single colony is defined

with respect to the single pheromone structure; depending
on the considered application, it may be defined as the quan-
tity of pheromone laying on vertex vj or as the quantity of
pheromone laying on edges between vj and some vertices
in the partial solution S.

Definition of heuristic factors. The heuristic factor
η1

S(vj) considered by the single colony is the sum of
heuristic informations associated with all objectives, i.e.,
η1

S(vj) =
∑m

i=1 ηi
S(vj).

Pheromone update. Once the colony has computed a set
of solutions, every non-dominated solution (belonging to
the Pareto set) is rewarded. Let SP be this set of non-
dominated solutions. The quantity of pheromone deposited
on a solution component c is defined as follows

∆τ1(c) = 1 if c is a component of a solution of SP

∆τ1(c) = 0 otherwise

Every component belonging to at least one solution of the
Pareto set receives a same amount of pheromone. Indeed,
these components belong to non comparable solutions.

4.4 Variant 4: m-ACO4(1,m)

In this last variant, there is only one colony but m
pheromone structures, i.e., #Col = 1 and #τ = m.

Pheromone factor. At each step of a solution construc-
tion, ants randomly choose an objective r ∈ {1, ...,m} to
optimize. The pheromone factor τ1

S(vj) is defined as the
pheromone factor associated with the randomly chosen ob-
jective r.

Heuristic factor. The heuristic factor η1
S(vj) considered

by the single colony is the sum of heuristic informations
associated with all objectives, i.e., η1

S(vj) =
∑m

i=1 ηi
S(vj).

Pheromone update. Once the colony has computed a set
of solutions, the m best solutions with respect to the m dif-
ferent objectives are used to reward the m pheromone struc-
tures. Let Si be the solution of the colony that minimizes
the ith objective fi for the current cycle, and let Si

best be
the solution that minimizes fi over all solutions built by
ants since the beginning of the run (including the current
cycle). The quantity of pheromone deposited on a solution
component c for the ith pheromone structure is defined by

∆τ i(c) = 1
(1+fi(Si)−fi(Si

best))
if c is a component of Si

∆τ i(c) = 0 otherwise

5 Application to the multi-objective knap-
sack problem

We show in this section how our generic algorithm m-
ACO may be applied to the multi-objective knapsack prob-
lem (MOKP). This problem is one of the most studied prob-
lems in the multi-objective community. The goal is to max-
imize a vector of profit functions while satisfying a set of
knapsack capacity constraints. More formally, an MOKP is
defined as follows:

maximize fk =
∑n

j=1 pk
j xj ,∀k ∈ 1..m

subject to
∑n

j=1 wi
jxj ≤ bi,∀i ∈ 1..q

xj ∈ {0, 1},∀j ∈ 1..n



where m is the number of objective functions, n the num-
ber of objects, xj is the decision variable associated to the
object j, q is the number of resource constraints, wi

j is the
quantity of resource i consumed by object j, bi is the total
available quantity of the resource i, pk

j is the profit associ-
ated to the object j relatively to objective k.

We have studied in [1] different strategies for the defi-
nition of the pheromone structure for the multidimensional
uniobjective knapsack. Indeed, to solve knapsack problems
with ACO, the key point is to decide which components
of the constructed solutions should be rewarded, and how
to exploit these rewards when constructing new solutions.
Given a solution of a knapsack problem, which is a set of
selected objects S = {o1, . . . , ok}, one can consider three
different ways of laying pheromone trails:

• A first possibility is to lay pheromone trails on each ob-
ject selected in S. In this case, the idea is to increase
the desirability of each object of S so that, when con-
structing a new solution, these objects will be more
likely to be selected.

• A second possibility is to lay pheromone trails on each
couple (oi, oi+1) of successively selected objects of S.
In this case, the idea is to increase the desirability of
choosing object oi+1 when the last selected object is
oi.

• A third possibility is to lay pheromone on all pairs
(oi, oj) of different objects of S. In this case, the idea
is to increase the desirability of choosing together two
objects of S so that, when constructing a new solution
S′, the objects of S will be more likely to be selected
if S′ already contains some objects of S. More pre-
cisely, the more S′ will contain objects of S, the more
the other objects of S will be attractive.

Our goal in this new paper is to compare different strate-
gies for solving multi-objective problems so that we re-
port experiments with only one of these three different
pheromone structures. We have chosen the first one, that
associates a pheromone trail with every object, as it offers a
good compromise between solution quality and CPU time.

The heuristic information ηi
S(vj) used for an objective i

for a candidate object vj is defined as follows:

ηi
S(vj) =

pi(vj)
wi(vj)

where pi(vj) is the profit of the object vj relatively to the
objective i and wi(vj) is the weight of the object vj .

6 Experimental results

Experimentations are done on instances of the MOKP
defined in [21]. We compare the different variants on in-

α β ρ #Ants #Cycles
m-ACO1(m+1,m) 1 4 0.1 30 100
m-ACO2(m+1,m) 1 4 0.1 10 100

m-ACO3(1,1) 1 8 0.01 10 3000
m-ACO4(1,m) 1 4 0.01 100 3000

Table 1. Parameter settings

stances with 2 objectives, 2 constraints, and 100, 250, and
500 objects respectively.

Parameters have been set as displayed in Table 1.
We compare also the proposed approaches with the fol-

lowing evolutionary algorithms: SPEA [21], FFGA [8],
NSGA [17] , HLGA [11], NPGA [12], and VEGA [16].

The considered instances and the results of the
different evolutionary algorithms are accessible at
http://www.tik.ee.ethz.ch/∼zitzler/testdata.html.

To compare performances, we use the C measure intro-
duced in [21]: given two sets of solutions X ′ and X ′′,

C(X ′, X ′′) =
|{a′′ ∈ X ′′ : ∃a′ ∈ X ′, a′ � a′′}|

|X ′′|

When C(X ′, X ′′) = 1, all points in X ′′ are dominated by
or equal to points in X ′, whereas when C(X ′, X ′′) = 0,
none of the points in X ′′ are covered by the set X ′. Note
that both C(X ′, X ′′) and C(X ′′, X ′) have to be considered,
since C(X ′, X ′′) is not equal to 1− C(X ′′, X ′).

6.1 Comparison of the different m-ACO variants

Table 2 compares the four m-ACO variants with the C
measure. This table first shows that m-ACO4(1,m) is always
better than both m-ACO1(m+1,m) and m-ACO2(m+1,m)
with respect to the C measure: some solutions of both m-
ACO1(m+1,m) and m-ACO2(m+1,m) are covered by solu-
tions of m-ACO4(1,m) (up to 12.5% for m-ACO1(m+1,m)
for the instance with 500 objects), whereas no solution
of m-ACO4(1,m) is covered neither by solutions of m-
ACO1(m+1,m) nor by solutions of m-ACO2(m+1,m).

When comparing m-ACO4(1,m) with m-ACO3(1,1), we
note that no one is strictly better than the other for instances
with 100 and 250 objects, as each variant has found so-
lutions that are covered by the other variant. However,
for the instance with 500 objects, m-ACO4(1,m) is bet-
ter than m-ACO3(1,1) as 9.17% of the solutions found by
m-ACO3(1,1) are covered by solutions of m-ACO4(1,m)
whereas no solution of m-ACO4(1,m) is covered by a so-
lution of m-ACO3(1,1).

Let us now compare the two multi-colony approaches
m-ACO1(m+1,m) and m-ACO2(m+1,m). We note that no
variant is better than the other for the instance with 100 ob-



100.2 250.2 500.2
Compared variants min avg max min avg max min avg max

C(m-ACO4(1,m) , m-ACO1(m+1,m)) 0 0.0114 0.0454 0 0.0975 0.2758 0 0.125 0.4167
C(m-ACO1(m+1,m) , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , m-ACO2(m+1,m)) 0 0.0683 0.1463 0 0.1684 0.5 0 0.0857 0.2142
C(m-ACO2(m+1,m) , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , m-ACO3(1,1)) 0 0.0048 0.0476 0 0.0449 0.1633 0 0.0917 0.3611
C(m-ACO3(1,1) , m-ACO4(1,m)) 0 0.0081 0.04286 0 0.0078 0.0649 0 0 0

C(m-ACO1(m+1,m) , m-ACO2(m+1,m)) 0 0.0219 0.0976 0.0312 0.1521 0.2812 0 0.1353 0.2353
C(m-ACO2(m+1,m) , m-ACO1(m+1,m)) 0 0.0293 0.0811 0 0 0 0 0.0036 0.0357
C(m-ACO1(m+1,m) , m-ACO3(1,1)) 0 0.0179 0.1026 0 0 0 0 0.0204 0.1136

C(m-ACO3(1,1) , m-ACO1(m+1,m)) 0 0.0081 0.0429 0 0.1355 0.3333 0 0.0132 0.0714
C(m-ACO3(1,1) , m-ACO2(m+1,m)) 0 0.0756 0.1951 0 0.1654 0.4231 0.0588 0.1176 0.1765

C(m-ACO2(m+1,m) , m-ACO3(1,1)) 0 0 0 0 0 0 0 0.0094 0.0937

Table 2. Comparison of the 4 variants of m-ACO: each line successively displays the names of the
two compared variants, and the min, average and max values of the C measure for these two variants
(over 10 runs) for instances with 100, 250, and 500 objects.

jects: each variant has around 2% (on average) of its so-
lutions that are covered by solutions of the other variant.
However, for the larger instances with 250 and 500 objects,
m-ACO1(m+1,m) is clearly better than m-ACO2(m+1,m):
more than 13% of the solutions of m-ACO2(m+1,m) are
covered by solutions of m-ACO1(m+1,m) whereas the so-
lutions of m-ACO1(m+1,m) are nearly never covered by so-
lutions of m-ACO2(m+1,m).

Finally, we also note that m-ACO3(1,1) is better than m-
ACO2(m+1,m) whereas it is not really comparable with m-
ACO1(m+1,m).

6.1.1 Compromise surface

To compare variants of m-ACO, Figures 3, 4, and 5 display
the compromise surfaces found by m-ACO1(m+1,m), m-
ACO3(1,1), and m-ACO4(1,m) for the instances with 100,
250, and 500 objects respectively. We do not display results
for m-ACO2(m+1,m) as it is covered by m-ACO1(m+1,m).
The Pareto surfaces displayed in these figures correspond to
all the non-dominated solutions found over 10 runs.

These figures show that the non-dominated solutions
found by m-ACO4(1,m) are better than the ones found by
m-ACO1(m+1,m) and m-ACO3(1,1). Indeed, the surface
returned by m-ACO4(1,m) is on top of the one returned by
m-ACO1(m+1,m) except a small portion at the extremity of
the front. For the instance with 100 objects, the difference
between these fronts is slight. But for the instances with
250 and 500 objects, the front returned by m-ACO4(1,m) is
clearly better. For the instances with 100 and 250 objects,
the surface of m-ACO4(1,m) is superposed in a big portion
with the one of m-ACO3(1,1) but it is larger.

We can conclude that the results found by comparing
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Figure 3. Instance with 100 objects.

these variants with the C measure are confirmed by the
Pareto fronts displayed in this section. So, m-ACO4(1,m) is
generally better than the other variants especially for large
instances.

6.2 Comparison of m-ACO4(1,m) with evolution-
ary algorithms

We now compare the best variant, m-ACO4(1,m), with
state-of-the-art evolutionary algorithms relatively to the C
measure.

Table 3 shows that m-ACO4(1,m) is always better than
the algorithms FFGA, NSGA, NPGA, HLGA and VEGA



100.2 250.2 500.2
Compared variants min avg max min avg max min avg max

C(m-ACO4(1,m) , FFGA) 0.75 0.95 1 1 1 1 1 1 1
C(FFGA , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , VEGA) 0 0.07222 0.1111 0.1052 0.51 0.7895 1 1 1
C(VEGA , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , SPEA) 0 0.02857 0.1429 0 0 0 0.0625 0.1687 0.25
C(SPEA , m-ACO4(1,m)) 0 0.0215 0.0741 0 0.0005 0.0159 0 0 0

C(m-ACO4(1,m) , NSGA) 0 0.059 0.1026 0.1538 0.3289 0.4615 0.9 0.99 1
C(NSGA , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , HLGA) 0.15 0.25 0.35 0.3077 0.7666 1 1 1 1
C(HLGA , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

C(m-ACO4(1,m) , NPGA) 0.1111 0.12 0.3333 0.1667 0.7356 0.8889 1 1 1
C(NPGA , m-ACO4(1,m)) 0 0 0 0 0 0 0 0 0

Table 3. Comparison of m-ACO4(1,m) with evolutionary algorithms: each line successively displays
the names of the two compared algorithms, and the min, average and max values of the C measure
for these two algorithms (over 10 runs) for instances with 100, 250, and 500 objects.
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Figure 4. Instance with 250 objects.

for all the tested instances. The C measure is equal to one
in several combinations. For these cases, the non dominated
solutions of m-ACO4(1,m) dominate all the non dominated
solutions returned by the other algorithm.

When comparing m-ACO4(1,m) with SPEA, we note
that, for the 100 objects instance, there are non dominated
solutions returned by m-ACO4(1,m) that dominate others
returned by SPEA, and also there are solutions from SPEA
that dominate others returned by m-ACO4(1,m). For the
250 objects instance, non dominated solutions of SPEA
slightly dominate ones of m-ACO4(1,m). But for the 500
objects instance, non dominated solutions returned by m-
ACO4(1,m) dominate the ones returned by SPEA. So we
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Figure 5. Instance with 500 objects.

can conclude that m-ACO4(1,m) finds better results than
SPEA for large instances.

7 Conclusion

We have proposed in this paper a generic ACO algorithm
for solving multiobjective optimization problems called m-
ACO. This algorithm is parameterized by the number of
ant colonies and the number of pheromone trails. We have
tested four variants of this algorithm on the multiobjec-
tive knapsack problem (MOKP). We have found that m-
ACO4(1,m), where m is the number of criteria to opti-
mize, returns globally the best results. This variant is based



on new idea relatively to state-of-the-art ACO approaches.
In fact, it uses a single colony with several pheromone
trails. At each construction step, an ant randomly chooses a
pheromone trail corresponding to an objective to optimize.
The basic ideas of the other variants was used in other state-
of-the-art algorithms: using a single or several colonies with
respectively single or several pheromone structures. Never-
theless, these variants have some specificities. For example
in m-ACO(m+1,m), there are m colonies with m pheromone
structures but there is also an extra multiobjective colony
that considers a randomly chosen objective at each con-
struction step.

We have compared the variant m-ACO4(1,m) with sev-
eral evolutionary algorithms (EA) proposed in the literature
for solving the MOKP. We have found that our algorithm m-
ACO4(1,m) returns generally the best results for all the con-
sidered algorithms. More precisely, m-ACO4(1,m) finds in
the Pareto set solutions that dominate others from the Pareto
sets returned by the tested EA. But these algorithms, ex-
cept the SPEA algorithm, don’t find solutions that dominate
others returned by m-ACO4(1,m). SPEA finds better solu-
tions than m-ACO4(1,m) for the small instances, but for the
largest instance tested m-ACO4(1,m) finds better results.
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