Analyzing Emotional States Induced by News Articles with Latent Semantic Analysis - Archive ouverte HAL
Communication Dans Un Congrès Année : 2012

Analyzing Emotional States Induced by News Articles with Latent Semantic Analysis

Diana Lupan
  • Fonction : Auteur
  • PersonId : 960881
Stefan Trausan-Matu
  • Fonction : Auteur
  • PersonId : 885902

Résumé

Emotions are reflected both in verbal and written communication. If in the first case they can be easier to trace due to some specific features (body language, voice tone or inflections), in the second it can be quite tricky to grasp the underlying emotions carried by a written text. Therefore we propose a novel automatic method for analyzing emotions induced by texts, more specifically a reader's most likely emotional state after reading a news article. In other words, our goal is to determine how reading a piece of news affects a person's emotional state and to adjust these values based on his/her current state. From a more technical perspective, our system (Emo2 – Emotions Monitor) combines a context independent approach (actual evaluation of the news employing specific natural language processing techniques and Latent Semantic Analysis) with the influences of user's present emotional state estimated through his/her specific feedback for building a more accurate image of a person's emotional state.
Fichier principal
Vignette du fichier
AIMSA2012preprint.pdf (521.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01487441 , version 1 (12-03-2017)

Identifiants

Citer

Diana Lupan, Mihai Dascalu, Stefan Trausan-Matu, Philippe Dessus. Analyzing Emotional States Induced by News Articles with Latent Semantic Analysis. Proc. 15th Int. Conf. on Artificial Intelligence: Methodology, Systems, Applications (AIMSA 2012) , 2012, Varna, Bulgaria. pp.59-68, ⟨10.1007/978-3-642-33185-5_7⟩. ⟨hal-01487441⟩

Collections

UGA TICE LSE TEL
176 Consultations
450 Téléchargements

Altmetric

Partager

More