Unstable manifold expansion for Vlasov-Fokker-Planck equation - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2018

Unstable manifold expansion for Vlasov-Fokker-Planck equation

Résumé

We investigate the bifurcation of a homogeneous stationary state of Vlasov-Newton equation in one dimension, in presence of a small dissipation mod-eled by a Fokker-Planck operator. Depending on the relative size of the dissipation and the unstable eigenvalue, we find three different regimes: for a very small dissipa-tion, the system behaves as a pure Vlasov equation; for a strong enough dissipation, the dynamics presents similarities with a standard dissipative bifurcation; in addition, we identify an intermediate regime interpolating between the two previous ones. This work relies on an unstable manifold expansion, performed using Bargman representation for the functions and operators analyzed. The resulting series are estimated with Mellin transform techniques.
Fichier principal
Vignette du fichier
version1.pdf (374.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01484226 , version 1 (07-03-2017)

Identifiants

Citer

Julien Barré, David Métivier. Unstable manifold expansion for Vlasov-Fokker-Planck equation. Nonlinearity, 2018, 31 (10), pp.4667-4691. ⟨10.1088/1361-6544/aad3d8⟩. ⟨hal-01484226⟩
188 Consultations
134 Téléchargements

Altmetric

Partager

More