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1 Laboratoire MAPMO, Université d’Orléans, UMR CNRS 7349, rue de Chartres,
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Abstract. We investigate the bifurcation of a homogeneous stationary state of

Vlasov-Newton equation in one dimension, in presence of a small dissipation mod-

eled by a Fokker-Planck operator. Depending on the relative size of the dissipation

and the unstable eigenvalue, we find three different regimes: for a very small dissipa-

tion, the system behaves as a pure Vlasov equation; for a strong enough dissipation,

the dynamics presents similarities with a standard dissipative bifurcation; in addition,

we identify an intermediate regime interpolating between the two previous ones. This

work relies on an unstable manifold expansion, performed using Bargman representa-

tion for the functions and operators analyzed. The resulting series are estimated with

Mellin transform techniques.

Keywords: Vlasov-Fokker-Planck equation; unstable manifold expansion; Bargman

representation; Mellin transform.

1. Introduction

Vlasov equation describes the behavior of a system of particles when the force felt by

each particle is dominated by the mean-field created by all the others, while collisions

are negligible. It plays of course a fondamental role in plasma physics and astrophysics,

but also appears in many others fields, such as free electron lasers [1], non linear op-

tics [2], sound propagation in bubbly fluids [3]. . . Vlasov equation does not possess any

mechanism driving the dynamics towards thermal equilibrium, as it neglects collisional

effects, as well as noise and friction. This induces a range of unusual behaviors: among

those, we will be particularly interested in the peculiar bifurcations close to a weakly

unstable stationary state, see [4], and [5] for a recent review.

While the collisionless hypothesis may be a very good approximation for the time

scale considered, some kind of relaxation mechanism is usually present, even if small. For

plasmas [6] and self gravitating systems [7], collisionnal effects provide this relaxation
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mechanism; for cold atoms in a magneto-optical trap, there is a rather strong friction

and velocity diffusion [8]; the dynamics of cold atoms in a cavity, although conservative

in a first approximation, do contain friction and dissipation terms [9]. It is then natural

to investigate the effect of a small relaxation mechanism on the specificities of the Vlasov

dynamics. This is not a new endeavor: indeed only a few years after the prediction of

Landau damping, Lenard and Bernstein have studied how a small velocity diffusion

[10], modeled by a Fokker-Planck operator, would affect Landau’s linear analysis. Their

work has been since then complemented by many others: see [11, 12] in the context

of plasma physics, or [13] for more general potentials. These studies all deal with the

linearized Vlasov equation. In this paper, keeping the Fokker-Planck modeling for the

relaxation mechanism, we address the question of the non linear dynamics close to a

weakly unstable homogeneous stationary state.

In particular we will investigate how the peculiarities of Vlasov bifurcations survive

a small Fokker-Planck dissipation. It was shown by J.D. Crawford that unstable

manifold expansions for Vlasov equation are plagued by singularities [14, 15] when the

real part of the unstable eigenvalue λ tends to 0. To be more specific, the dynamics on

the unstable manifold reduces to the following equation, where A is the amplitude of

the unstable mode:
dA

dt
= λA− c3(λ)|A|2A+O(A5). (1)

It turns out that c3, sometimes called the ”Landau coefficient”, is negative and diverges

as λ−3 in the λ→ 0+ limit, the divergences of the subsequent terms in the series being

even more severe. These ”Crawford singularities” should be regularized by the Fokker-

Planck operator, and we will study what is their fate in the different regimes defined by

the two small parameters, Re(λ) and the dissipation, which we will call γ. From now

on, we assume λ is real, and thus replace Re(λ) by λ.

Our results include the identification of the following three regimes, characterized

by different behaviors of the Landau coefficient:

i) When γ � λ3, c3 ∝ λ−3: the dissipation essentially has no effect.

ii) When λ3 � γ � λ3/4, c3 ∝ λγ−4/3: the dissipation induces a qualitative change in

the dynamics; it provides a cut-off for the filamentation in velocity space. Nevertheless,

the non linear terms are still dominated by highly oscillating modes in velocity, as in

the first regime.

iii) When λ3/4 � γ, c3 does not diverge. Nevertheless, we expect that the higher non

linear orders may still show some weak singularities. A new qualitative change occurs:

the nonlinear terms are now dominated by slowly oscillating modes in velocity.

The knowledge of c3, combined with (1), allows us to guess the scaling of the saturation

amplitude, ie the amplitude of the perturbation reached over timescales of order 1/λ.

These results are crucial to analyze a bifurcation of Vlasov equation in presence of a

small dissipation, and are summarized on Fig. 1.

A similar interplay between a bifurcation in a continuous Hamiltonian system and

a small dissipation has already been studied in the context of the weak instability of
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Figure 1. Schematic representation of the paper’s main results. On the horizontal

axis: the linear instability rate λ; on the vertical axis: the saturation amplitude (ie the

amplitude reached by the perturbation over timescales of order 1/λ). The dissipation

coefficient γ is fixed. This picture assumes that both γ and λ are small. For λ� γ1/3,

the trapping scaling Asat ∝ λ2, characteristic of Vlasov regime, appears. For λ� γ4/3,

the normal dissipative scaling Asat ∝ λ1/2 is recovered. In between we predict a plateau

with saturation amplitude Asat ∝ γ2/3.

a 2D shear flow [16, 17], described by Euler equation plus a small viscosity. Regimes

i) and ii) are found in this context [17]; regime iii), as well as the boundary between

regimes ii) and iii), appear to be different, we will comment on this later. It is known

(see for instance [18], as well as for in [19, 20] in a fluid dynamics context) that in the

precise scaling regime γ ∝ λ3, the viscosity enters the equations at the same order as

the ”inviscid terms”: this is compatible with [17] and our results.

In addition, while it is also known that the effective dynamics close to the bifurcation

threshold in regime i) is infinite dimensional, we conjecture that it is possible to define

a finite dimensional reduced dynamics in regimes ii) and iii). In other words, we expect

that in regimes ii) and iii) (1) can be safely truncated at cubic order when λ tends to

0, despite the nonlinear singularities of higher order coefficients. A precise investigation

of this conjecture is beyond the scope of this work.

Although we will limit ourselves to the simplest possible setting, in 1D and with

periodic boundary conditions, the computations needed to answer these questions are

fairly involved. To carry them out, we will make use of the Bargman representation of

the Heisenberg algebra‡; this strategy appears to be new in this context. We obtain

‡ We are indebted to Gilles Lebeau for this idea. An alternative strategy is to use in a non linear
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an intricate expression as a series for the Landau coefficient c3; we then analyze this

series in the different scaling regimes, sometimes with the help of the Mellin transform;

however, one part of this expression, which we expect to be negligible, has resisted our

analysis.

The article is organize as follows: In section 2 we introduce more precisely the

Vlasov-Newton Fokker-Planck equation and set the problem. In section 3, we solve the

linearized Vlasov-Newton Fokker-Planck equation in Bargman representation, providing

the dispersion relation, eigenvectors and adjoint eigenvectors. This recovers already

known results with a new method. We then turn to the case where the homogeneous

stationary solution is weakly unstable, and provide a non linear unstable manifold

expansion of the dynamics 3.3. This allows us to discuss the effect of the Fokker-Planck

operator on the Crawford’s singularities, our main result. We conclude with several

remarks and open questions. Several technical parts are detailed in appendices.

2. Setting: the Vlasov-Newton Fokker-Planck equation

2.1. The equation

Our starting point is the Vlasov-Newton-Fokker-Planck equation, which describes,

through their phase-space density F (x, v, t), particles interacting through Newtonian

interaction, and subjected to a friction and velocity diffusion. To keep the following

computations as simple as possible, we stick to one dimension. For later convenience,

we also normalize the length of the space interval to 2π. The equation reads:

∂tF + v∂xF − ∂xφ = γ∂v (vF + ∂vF ) , ∆φ = c

(∫
Fdv − 1

)
. (2)

We take c > 0, which corresponds to a Newtonian (attractive) interaction, and c < 0

to a Coulombian (repulsive) one. We have chosen our units so that kBT = 1, hence

f0(v) = 1
(2π)3/2

e−v
2/2 is a stationary solution of this equation. It would be always stable

for a repulsive interaction; since we are interested in the weakly unstable case, we assume

c > 0. Our equation can be seen as a 1D self-gravitating model with periodic boundary

conditions. Similar models have received attention as toy models for cosmology [21, 22],

or to describe the dynamics of a cloud of trapped cold atoms [23].

We write F (x, v, t) = f0(v) + f(x, v, t) and we will study f , the perturbation. The

equation for f reads:

∂tf = −v∂xf + ∂xφ[f ]f ′0(v) + ∂xφ[f ]∂vf + γ∂v (vf + ∂vf) , ∆φ = c

∫
fdv . (3)

context the velocity Fourier transform used in [10, 11, 12].
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2.2. Linear and non linear parts

We split the right hand side of (3) in a linear and a non linear part:

∂tf = L · f +N (f),

with

L · f = − v∂xf + ∂xφ[f ]f ′0(v) + γ∂v (vf + ∂vf)

N (f) = ∂xφ[f ]∂vf.

We change the unknown function from f to g = ev
2/4f , in order to symmetrize the

Fokker-Planck operator. Then

∂tg = L · g +N(g), (4)

with

L · g = ev
2/4Le−v

2/4 · g , N(g) = ev
2/4N(e−v

2/4g).

Fourier transforming (4) with respect to the space variable, we obtain:

∂tĝk = Lk · ĝk + N̂(g)k,

with

Lk · ĝk = γ

((
1

2
− v2

4

)
ĝk + ∂2v ĝk

)
− ikvĝk +

ic

k(2π)3/2
ve−v

2/4

∫
ĝk(w)e−w

2/4dw .

and

N̂(g)k = ev
2/4
∑

l

i(k − l) ̂φ[e−v2/4g]k−l∂v(e
−v2/4ĝl).

With p = v/
√

2, we obtain with a small abuse of notation, since we do not change the

name of the functions):

Lk · ĝk =
γ

2

(
(1− p2)ĝk + ∂2p ĝk

)
− ik
√

2pĝk +
2ic

k(2π)3/2
pe−p

2/2

∫
ĝk(q)e

−q2/2dq

= γ

[
−HOH − i

k
√

2

γ
p

]
ĝk +

ic

2πk
〈E0, ĝk〉L2E1

= γ

[
−HOH −

ik

γ

(
a+ a†

)]
ĝk +

ic

2πk
〈E0, ĝk〉L2E1 , (5)

where we have introduced the harmonic oscillator Hamiltonian on L2

HOH =
1

2

(
−∂2p + p2 − 1

)
,

and the annihilation and creation operators on L2

a =
1√
2

(∂p + p) , a† =
1√
2

(−∂p + p) .
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The (En)n∈N are the normalized eigenstates of HOH in L2. In particular

E0 =
1

π1/4
e−p

2/2 , E1 =

√
2

π1/4
pe−p

2/2.

The nonlinear operator reads:

N̂(g)k = ep
2/2
∑

l 6=k

[ −i
(k − l)c

(∫
e−p

2/2ĝk−l(p)dp

)
∂p

(
e−p

2/2ĝl

)]

=
∑

l 6=k

[ −i
(k − l)c

(∫
e−p

2/2ĝk−l(p)dp

)
(∂p − p)ĝl

]

=
∑

l 6=k

[ −i
(k − l)c

(∫
e−p

2/2ĝk−l(p)dp

)
(−
√

2a†)ĝl

]

=
∑

l 6=k

[
ic
√

2π1/4

(k − l) 〈E0, ĝk−l〉a†ĝl
]

(6)

2.3. Bargman space

We see on (5) and (6) that the linear and nonlinear parts of the equation have a rather

simple expression in terms of the Hermite functions, eigenfunctions of the harmonic

oscillator. To exploit this remark, we shall use the Bargman representation which is

particulary adapted to this problem, and which we quickly describe here. First we define

the Bargman transform, which transforms an L2(R) function into an holomorphic one:

(Bϕ)(z) =
1

(π)3/4

∫

R
e−p

2/2+
√
2pzϕ(p)dp.

Let Hz be the space of holomorphic functions u(z) such that
∫∫
|u(z)|2e−|z|2dzdz̄ < +∞.

Equipped with the following scalar product:

〈u, v〉Hz =

∫∫
ū(z)v(z)e−|z|

2

dzdz̄,

Hz is a Hilbert space. Furthermore the Bargman transform B is an isometry between

L2(R), with the standard scalar product, andHz. We shall use the following orthonormal

basis (en)n∈N of Hz:

en(z) =
1√
π

zn√
n!
.

From now on, we shall only use scalar products on Hz, and denote them simply by

〈·, ·〉. In Bargman representation, the annihilation, creation and harmonic oscillator

Hamiltonian operators are particularly simple:

a = ∂z , a
† = z , HOH = z∂z.
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The spectrum of HOH is N, and we see that the (en) are eigenfunctions of HOH. We can

deduce that the Bargman transform maps the normalized Hermite functions (En)n∈N
into the (en)n∈N. In particular, the ground state E0 = π−1/4e−p

2/2 is mapped onto

e0 = π−1/2.

3. Linear study

3.1. Dispersion relation and main eigenvector

The longest wavelength k = 1 mode is the most unstable, hence we study the operator

L1. From now on we forget the index 1, and we write L = L1. Starting from (5), we

write in Bargman representation

L · g = γ

[
−HOH −

i

γ

(
a+ a†

)]
g +

ic

2π
〈e0, g〉e1

Proposition 3.1 Let the functions Jn be as defined in the Appendix A. The roots of

the equation

Λ(γ, λ) = 1− c

2πγ2
J1(1/γ,−λ/γ). (7)

are eigenvalues of L. The eigenvector G associated to such an eigenvalue λ is G =∑
nGnen, with, for any n ≥ 1

Gn = − c

2π
G0

1√
n!

(−i
γ

)n
(λ/γ)Jn(1/γ,−λ/γ),

and G0 an arbitrary constant.

Proof. The equation defining λ and G is:

−γ
[
HOH +

i

γ
(a+ a†)

]
G+

ic

2π
〈e0, G〉e1 = λG

which can be rewritten, using the notation Gn =< en, G >:

[
B(−i

√
2/γ) +

λ

γ

]
G =

ic

2πγ
G0e1,

where we have introduced the operator B(iξ) (following the notations in [24]):

B(iξ) = HOH −
iξ√

2

(
a+ a†

)
.

We will now rely on the precise study of B(iξ) in [24] to proceed; the important

definitions are given in appendix. Hence

G =
ic

2πγ
G0

[
B(−i

√
2/γ) +

λ

γ

]−1
· e1.
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We now express G in Bargman representation, using the notations and results of [24]

for R(ξ, λ), the resolvant of B(iξ) (the ψβα functions are defined in the appendix):

R(ξ, λ) · zβ = [B(iξ)− λ]−1 · zβ =
∑

α∈N

ψβα(ξ, λ)zα.

Then G = ic/(2πγ)G0R(−
√

2/γ,−λ/γ) · (z/√π), that is, for all n

Gn =
ic

2π3/2γ
G0

√
n!
√
πψ1

n(−
√

2/γ,−λ/γ).

For n = 0, this yields the dispersion relation

Λ(γ, λ) = 1− ic

2πγ
ψ1
0(−
√

2/γ,−λ/γ) = 0.

Now ψ1
0(ξ, λ) = (iξ/

√
2)J1(|ξ|/

√
2, λ) (the Jn functions are defined in the appendix).

Hence

Λ(γ, λ) = 1− c

2πγ2
J1(1/γ,−λ/γ). (8)

The roots of Λ are the eigenvalues of L. Furthermore, from [24] Eqs. (16.4.69) and

(16.4.63), we have for n > 1

ψ1
n(ξ, λ) =

1

n!

(
iξ√

2

)n−1
(−λ)Jn(|ξ|/

√
2, λ).

Hence for n > 1

Gn =
ic

2πγ
G0

1√
n!

(−i
γ

)n−1
(λ/γ)Jn(1/γ,−λ/γ).

Remark: This computation of the dispersion relation (8) recovers the result of

[10, 11, 12, 13], obtained by other means. In the limit γ → 0, the dispersion relation

(8) reduces to

Λ(0, λ) = 1− c

2π

∫ +∞

0

e−s
2/2−λssds,

which can be shown to coincide with the classical direct computation of the analytically

continued dispersion relation from the linearized Vlasov equation; a root of Λ(0, λ) = 0

with Re(λ) > 0 is an eigenvalue of the linearized Vlasov operator, whereas a root with

Re(λ) < 0 is a Landau pole, or a ”resonance”. Hence, the roots of Λ(γ, λ) = 0, which are

always true eigenvalues of the linearized Vlasov-Fokker-Planck operator when γ > 0,

approach the eigenvalues and Landau poles of the linearized Vlasov operator when

γ → 0+. This can be seen as a kind of ”stochastic stability” for the resonances of the

linearized Vlasov operator, a phenomenon studied in other contexts: in fluid dynamics

[20], for Pollicott-Ruelle resonances [25, 26], or for a Schrödinger operator [27].

Finally, we also see that Gn vanishes in the limit λ→ 0 for any n > 0, which yields

G ∝ e0 in this limit. This is consistent with the standard computation at γ = 0.

Remark: We shall normalize the G eigenvector such that φ̂k=1[Ge
ix] =

−c
√

2
∫
G(p)e−p

2/2dp = 1. Hence from now on we take G0 = −1/(c
√

2π1/4).
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3.2. Adjoint eigenvector

We shall use later the projection on the eigenvector G, provided by the corresponding

adjoint eigenvector. The adjoint linear operator is

L† · h = γ

[
−HOH + i

√
2

γ

]
h− ic

2π
〈e1, h〉e0.

Proposition 3.2 Let λ ∈ R be a real eigenvalue of L. Then the eigenvector of L†

associated with the eigenvalue λ is G̃ =
∑

n G̃nen, with

G̃n = − c

2π
G̃1

1√
n!

(
i

γ

)n+1

Jn(1/γ,−λ/γ),

with G̃1 an arbitrary constant.

Proof. The eigenvalue equation reads (recall that we assume that the eigenvalue is

real):

−γ[B(i
√

2/γ) + λ/γ]G̃ =
ic

2π
G̃1e0,

thus

G̃ = − ic

2πγ
G̃1R(

√
2/γ,−λ/γ) · e0;

this translates as

G̃n = − ic

2πγ

√
n!G̃1ψ

0
n(
√

2/γ,−λ/γ) , with ψ0
n(ξ, λ) =

1

n!

(
iξ√

2

)n
Jn(|ξ|/

√
2, λ).

Remark: For n = 1, the computation above yields the dispersion relation again

1 +
ic

2πγ
ψ0
1(
√

2/γ,−λ/γ) = 0.

Since ψ0
1(ξ, λ) = (iξ/

√
2)J1(|ξ|/

√
2, λ), this second expression for the dispersion

coincides with the first one (8).

P, the projection on Geix is defined as P · u = <G̃,û1>

<G̃,G>
Geix. It will play a role in the

nonlinear analysis; hence we need to control the scalar product < G̃,G >.

Proposition 3.3 The scalar product < G̃,G > has a finite non zero limit when

γ → 0, λ→ 0 (G0 and G̃1 are kept fixed).

Proof.

< G̃,G > =
∑

n

G̃∗nGn

= G̃∗1G0
ic

2πγ
J0(1/γ,−λ/γ) + G̃∗1G0

ic

2πγ
(λ/γ)J1(1/γ, λ/γ)

+ G̃∗1G0

∑

n>1

(( c

2π

)2 (λ/γ)

n!

(
i

γ

)2n+1

J2
n(1/γ,−λ/γ)

)

(9)
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By the remark after Lemma Appendix A.2, yJ0(y,−λy) and y2J1(y,−λy) have a finite

limit when 1/γ = y →∞. Hence the first and second terms are not singular.

We now want to estimate the series, for y →∞ and λ → 0. According to Lemma

Appendix A.2, we introduce three characteristic values N2 = λ−2, N3 = y2/3 and

N4 = y2. Using Lemma Appendix A.2 and Stirling formula, we can approximate for all

n . N3,
y2n+2J2

n(y,−λy)

n!
by

√
πe−λ

√
n

√
n

.

Indeed, if n� λ−2 this is item ii), and if n� λ−2 this is item i), since in this latter case

λ
√
n� 1. Furthermore, for n� N3 = y2/3, and n� y2, item iii) in Lemma Appendix

A.2 tells us that
y2n+2J2

n(y,−λy)

n!
� e−λ

√
n

√
n

Hence the term in the series is at most equivalent to
√
π(−1)ne−λ

√
n/
√
n, which is a

convergent series for any λ > 0. From Appendix B.1, we know that it has a finite limit

when λ → 0+. Finally for n � N4 = y2, item iv) ensures that the term in the series

is small, at least as an exponential; hence this large n part of the series is not singular

either.

Remark: From this computation, we will be able to conclude in the next section

that the normalization does not play any role in the divergences of the expansion; it

does play a role of course to determine the precise value of the coefficients. Interestingly,

the normalization factor is directly related to the derivative of the dispersion relation, as

in the pure Vlasov case[15]and Kuramoto models [28, 36]; this suggests that this holds

with some generality. More precisely, we have (see Appendix C):

< G̃,G >= G0G̃
∗
1

ic

2π
∂λΛ(γ, λ).

From now on we choose G̃1 = −2
√

2π5/4i

∂λΛ(λ)
, so that 〈G̃, G〉 = 1.

3.3. Non linear analysis

3.3.1. Preliminary remarks The Vlasov equation has an uncountable infinity of stable

stationary states, and the asymptotic state reached by a growing perturbation is in

general unknown; it is precisely one of the goals of expansions such as Crawford’s to

approximate this final state. However, as soon as a Fokker-Planck operator acts, no

matter how small, the stable stationary states reduce to the stable and metastable

thermodynamical equilibria. Then the possible final states of the dynamics are

essentially known, and the question of their selection is much easier. The main question

is now how the final state is reached, and this dynamics may still be non trivial. Indeed

there are two dimensionless parameters λ, the linear growth rate, and γ, the relaxation

rate related to the Fokker-Planck operator. We will see that the interplay between these

two parameters defines different dynamical regimes.
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h

Geix

(A,A∗)

(
Geix

)∗

Figure 2. Schematic picture of a generic point of the unstable manifold h and its

projection on the unstable eigenspace Ph; the coordinates of the projections are A,A∗.

3.3.2. The unstable manifold We follow here a standard route to perform the unstable

manifold expansion. There are two unstable eigenvectors, associated with the same

real eigenvalue λ > 0, that are complex conjugate of each other; we will keep for these

eigenvectors the notations Geix and G∗e−ix. The unstable manifold is two dimensionnal,

its tangent plane at g = 0 is spanned by the two unstable eigenvectors. We associate

to each point h of the unstable manifold its projection onto the unstable eigenspace

Ph = AGeix + A∗G∗e−ix: this provides a parameterization of the manifold, at least

locally. Fig.2 provides a schematic picture.

Assuming this schematic picture is correct, any function on the unstable manifold

can be expanded in spatial Fourier series as follows:

h = AGeix+A∗G∗e−ix+ |A|2H(0)(p)+A2H(2)(p)e2ix+(A∗)2H(−2)(p)e−2ix+O((A,A∗)3).

(10)

Indeed, the symmetries of the problem severely constrain the form of the expansion,

see [28, 29] for details. Hence, at leading non linear order only the Fourier coefficients

−2, 0, 2 play a role. They are computed in the following proposition.

Proposition 3.4 At leading non linear order, the formal expansion of the unstable

manifold is determined by the functions H(0) = U + U∗, with U =
∑

n Unen, U0 = 0,

U1 = i G0

γ+2λ
, and, for n ≥ 2

Un = −G0
c

2π

n

γn+ 2λ

1√
n!

(−i
γ

)n−2
λ

γ2
Jn−1(1/γ,−λ/γ) (11)
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and H(2) =
∑

nH
(2)
n en with

H(2)
n = − (i/γ)

∑

k

( √
m!√

(k − 1)!
Gk−1ψ

k−1
n (2/γ,−2λ/γ)

)
+

ic

4πγ
H

(2)
0

√
n!ψ1

n(2/γ,−2λ/γ)

H
(2)
0 =

1

1− ic
4πγ

ψ1
0(2/γ,−2λ/γ)

∑

k

Gk−1
ψk−10 (2/γ,−2λ/γ)√

(k − 1)!
(12)

Proof. We assume the function g, which evolves under the full nonlinear dynamics, is

on the unstable manifold. The non linear terms for the relevant Fourier modes k = 0, 2

are

N̂(g)0 = i|A|2a†G− i|A|2a†G∗

N̂(g)2 = − iA2a†G

The dynamical equation for g reads

ȦGeix + Ȧ∗G∗e−ix + (ȦA∗ + Ȧ∗A)H(0) + 2ȦAH(2)e2ix + . . . = λAGeix + λA∗G∗e−ix

+|A|2L0H
(0) + A2L2H

(2)e2ix + cc+ N̂(g)1e
ix + cc+ N̂(g)0 + N̂(g)2e

2ix + cc+ . . .(13)

We first pick up the k = 0 Fourier component, to write an equation for H(0):

2λH(0) = L0H
(0) + (ia†G+ cc);

the k = 2 Fourier component furnishes an equation for H(2):

2λH(2) = L2H
(2) − ia†G.

Recalling that L0 = −γHOH, we solve for H(0). We have H(0) = U + U∗, with

U =
∑

n≥0 Unen solution of

(−γHOH − 2λ)U = −i
∑

n

Gna
†en.

This is particularly simple, as en is a basis of eigenvectors for the operator on the l.h.s.

as well as for a†. Since a†en =
√
n+ 1en+1 we obtain U0 = 0 and for n ≥ 1

Un = iGn−1

√
n

γn+ 2λ

= −G0
c

2πγ

n

γn+ 2λ

1√
n!

(−i
γ

)n−2
λ

γ
Jn−1(1/γ,−λ/γ)

We now turn to H(2). We have, using the notation B(iξ) = HOH − (iξ/
√

2)(a+ a†):

[B(−2i
√

2/γ) + 2λ/γ]H(2) = −(i/γ)a†G+
ic

4πγ
PH(2).

Thus, with the notation R(ξ, λ) = [B(iξ)− λ]−1:

H(2) = −(i/γ)R(−2
√

2/γ,−2λ/γ)a†G+
ic

4πγ
H

(2)
0 R(−2

√
2/γ,−2λ/γ)e1.
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We now use

R(ξ, λ)en =
∑

m

√
m!√
n!
ψnm(ξ, λ)em and a†G =

∑

n≥1

√
nGn−1en

to compute H
(2)
n for any n:

H(2)
n = − (i/γ)

∑

k≥1

( √
n!√

(k − 1)!
Gk−1ψ

k
n(2/γ,−2λ/γ)

)
+

ic

4πγ
H

(2)
0

√
n!ψ1

n(2/γ,−2λ/γ)

H
(2)
0 =

1

1− ic
4πγ

ψ1
0(2/γ,−2λ/γ)

∑

k

Gk−1
ψk0(2/γ,−2λ/γ)√

(k − 1)!

This provides an explicit, but difficult to manipulate, expression for the H
(2)
n .

3.3.3. The c3 coefficient The leading non linear term for k = 1 is at order A3:

N̂(g)1 = |A|2A
(
−ia†(U + U∗) + ia†H(2) + ic

√
2π1/41

2
〈e0, H(2)〉a†G∗

)
(14)

Projecting (13) on Geix, we obtain the main equation

Ȧ = λA+ 〈G̃, N̂(g)1〉 = λA+ (c
(1)
3 + c

(2)
3 + c

(3)
3 )|A|2A. (15)

where the c(i) for i = 1, 2, 3 correspond to the three terms on the r.h.s. of (14).

Proposition 3.5 The Landau coefficent c3 is given by the following expressions

c
(1)
3 = − i〈G̃, a†(U + U∗)〉,
c
(2)
3 = i〈G̃, a†H(2)〉,

c
(3)
3 =

icπ1/4〈e0, H(2)〉√
2

〈G̃, a†G∗〉,

and

〈G̃, a†(U + U∗)〉 =
−ic
π∂λΛ

λ
∑

n≥3,n odd

n(n− 1)

γ(n− 1) + 2λ

1

γ2nn!
Jn−2

(
1

γ
,−λ

γ

)
Jn

(
1

γ
,−λ

γ

)
,

〈G̃, a†G∗〉 = G̃∗1G0 −
c2G̃∗1G

∗
0

4π2
λ
∑

n≥2

n

γ2n+1n!
Jn−1

(
1

γ
,−λ

γ

)
Jn

(
1

γ
,−λ

γ

)
.

Proof. These are simple computations using Props. 3.1, 3.2, 3.4, and G0G̃
∗
1 =

2π/(ic∂λΛ).
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3.3.4. Asymptotic analysis of c3 Our final task is to investigate the behavior of c3 in

the joint limit γ → 0+, λ→ 0+. We first deal the series in c
(1)
3 .

Proposition 3.6 Assume λ→ 0+ and γ → 0+:

• if λ� γ1/3, then c
(1)
3 diverges as 1/λ3; more precisely, c3 ∼ (−1/4)λ−3;

• if γ4/3 � λ� γ1/3, then c
(1)
3 < 0, and it diverges as λγ−4/3;

• if λ� γ4/3, then c
(1)
3 does not diverge.

Proof. First, a simple computation shows that

∂λΛ(λ = 0) =
c

2
√

2π
.

Since the series is positive, the sign of c
(1)
3 is clear from Prop. 3.5.

The proof then relies on the remark that there are three characteristic values for n:

N1 = λ/γ, N2 = 1/λ2, and N3 = (1/γ)2/3. According to lemma Appendix A.2, the

smallest between N2 and N3 provides an effective cut-off for the potentially diverging

series. And the prefactor n(n− 1)/[γ(n− 1) + 2λ] is equivalent to n/γ (resp. n2/(2λ))

for n� N1 (resp. n� N1).

Regime λ� γ1/3: the ordering is N2 � N3 � N1, we have

c
(1)
3 ∼ −

c

π∂λΛ
2λ
∑

n odd

n(n− 1)

γ(n− 1) + 2λ

1

n!

(
1

γ

)n+1

Jn(1/γ,−λ/γ)

(
1

γ

)n−1
Jn−2(1/γ,−λ/γ)

∼ − c

2π∂λΛ

∑

n odd

n2

e−nnn
√

2πn

√
πe−n/2+

1
2
n lnn−λ

√
n
√
πe−(n−2)/2+

1
2
(n−2) ln(n−2)−λ

√
n−2

∼ − c

2
√

2π∂λΛ

∑

n odd

√
ne−2λ

√
n. (16)

From the first to the second line, we have neglected γ(n − 1) in front of 2λ (because

N2 � N1), used Stirling formula, and the asymptotics of Appendix A for yp+1Jp. From

Appendix B.1 with α = 1/2, we know the following asymptotics when t→ 0+

∑

n≥1

t1/2e−t
√
n ∼ 4

t3
and

∑

n≥1

(−1)nt1/2e−t
√
n = O(1).

Taking the difference, we obtain

∑

n≥1,n odd

t1/2e−t
√
n ∼ 2

t3

We conclude

c
(1)
3 ∼ −

c

2
√

2π∂λΛ

2

(2λ)3
∼ − 1

4λ3

Regime λ� γ1/3: the ordering is N1 � N3 � N2. We have to compare the sum

up to N1, with prefactor n2/(2λ), and the sum between N1 and N3, with prefactor n/γ.

The sum up to N1 gives a contribution N
3/2
1 = (λ/γ)3/2 (if λ � γ, this contribution
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disappears). The sum between N1 and N3 gives a contribution λN
1/2
3 /γ = λγ−4/3. Since

λ� γ1/3, the latter contribution always dominates, and the series is of order λγ−4/3 (it

may be possible to compute the coefficient in front of the diverging factor, but since we

will not use it, we do not pursue this route). If λ � γ4/3, this diverging contribution

disappears.

The following proposition ensures that c
(3)
3 never provides the leading order.

Proposition 3.7 Assume λ→ 0+ and γ → 0+:

• if λ� γ1/3, then the series part in c
(3)
3 diverges as 1/λ;

• if λ� γ1/3, then the series part in c
(3)
3 behaves as λγ−2/3. In particular, it diverges

(slower than 1/λ) if λ� γ2/3, and tends to 0 for λ� γ2/3.

Proof: We set again y = 1/γ, a large parameter. We introduce again N2 = 1/λ2 and

N3 = y2/3. Then, according to Appendix A, when n� N2 and n� N3

yn+1Jn(y,−λy)n−n/2en/2 −→
y,n,1/λ→∞, n�N2,n�N3

√
π.

Using Stirling formula and simplifying, we obtain, for large n, n� N2 and n� N3

ny2n+1

n!
Jn−1 (y,−λy) Jn (y,−λy)→ cste

Furthermore, the smaller between N2 and N3 acts as a cut-off, since the term in the

series becomes negligible for n� N2 or n� N3. Hence we have two cases:

i) λ� γ1/3 corresponds to N2 � N3. Then the series is ∼ λN2 ∼ 1/λ.

ii) λ� γ1/3 corresponds to N2 � N3. Then the series is ∼ λN3 ∼ λγ−2/3.

In view of the expression for H(2) given in 3.4, it is clear that the expression of c
(2)
3

is fairly complicated. As a consequence, we have not been able to provide an asymptotic

analysis of c
(2)
3 when λ→ 0 and γ → 0. Nevertheless, in all cases we are aware of where

a similar unstable manifold expansion has been carried out, the contribution of H(2) is

asymptotically negligible (see [15] for Vlasov equation without dissipation, [29, 36] for

variants of the Kuramoto model, [17] for weakly viscous Euler equation). The following

assumption seems then reasonable:

Assumption: The c
(2)
3 term is never dominant with respect to c

(1)
3 , c

(3)
3 in the asymptotic

regimes (λ, γ)→ (0, 0).

Putting together this assumption, Props.3.6 and 3.7, we obtain our final result for

the Landau coefficient c3, announced in the introduction and that we repeat here. First,

we see that at least in regime i) and ii) (ie γ4/3 � λ) c3 is negative, which suggests a

supercritical bifurcation.

Different regimes for the Landau coefficient c3:

i) When γ � λ3, c3 ∼ (−1/4)λ−3;

ii) When λ3 � γ � λ3/4, c3 ∝ λγ−4/3;

iii) When λ3/4 � γ, c3 does not diverge.
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Based on these results and Eq.(15), we may now conjecture the scaling of the saturation

amplitude Asat for the instability:

• When γ � λ3, Asat ∝ λ2 (this is the standard ”trapping scaling”);

• When λ3 � γ � λ3/4, Asat ∝ γ2/3;

• When λ3/4 � γ, Asat ∝ λ1/2 (this is the standard scaling for a dissipative

supercritical bifurcation).

Final remarks:

(i) In regime i), we recover not only the trapping scaling, but also the universal −1/4

prefactor, obtained without dissipation in [15].

(ii) Notice that in regimes i) and ii), the dominant contribution to c3 is a diverging

series; this means that high order Hermite coefficients (ie large n), corresponding to

highly oscillating velocity profiles, provide the dominant contribution. In regime ii),

the dissipation γ plays a role in the cut-off of the diverging series, contrary to regime

i). In regime iii), high order Hermite coefficients have a negligible contribution.

(iii) It is interesting to compare more precisely with the literature on weakly unstable

2D shear flows. In [17], the regimes i) c3 ∝ λ−3 and ii) c3 ∝ λγ−4/3 also appear.

However, the regime iii) c3 = O(1) is different, and the boundary between regimes

ii) and iii) is different too. A possible explanation is that when the dissipative time

scale is shorter than the linear instability time scale (ie λ� γ), it is necessary to add

an external force to maintain the background shear flow. By contrast, maintaining

the gaussian velocity distribution in the present Vlasov-Fokker-Planck setting does

not require any extra force, since it is stationary for the dissipation operator.

(iv) The λ ∼ γ1/3 boundary already appeared in the literature on Vlasov or 2D Euler

equations: in the derivation of the Single Wave Model, taking γ ∝ λ3 is the right

scaling to ensure that dissipation enters in the equation at the same order as the

”Vlasov terms” [19, 18, 20]. This is consistent with our finding that for γ � λ3, the

dissipation has no effect at leading order, while for γ � λ3 it qualitatively modifies

the problem.

(v) For λ � γ1/3, c3 behaves as in the pure Vlasov case; it seems safe to conjecture

that this conclusion remains true at higher orders as well, and that c2p+1 diverges

as 1/λ4p−1.

(vi) In the pure Vlasov case, it is known that rescaling time and amplitude as A(t) =

λ2α(λt), all terms in the expansion in powers of A contribute at the same order to

the equation for α [15]; it is thus impossible to safely truncate the series to obtain a

simple ordinary differential equation, which is usually understood as a manifestation

of the fact that the effective dynamics close to the bifurcation is actually infinite

dimensional [5]. Here, we may conjecture that as soon as γ � λ3 under a rescaling

A(t) = γ2/3α(λt), the series can be safely truncated, yielding an effective ordinary

differential equation for the reduced dynamics. While a full investigation of this
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conjecture is beyond the scope of this work, we present in Appendix D a partial

computation for the 5th order coefficient, which supports it.

(vii) It is worth noting that the bifurcation of the standard Kuramoto model [30],

which shares some similarities with Vlasov equation, do not present the same

kind of divergences [28, 29], and has been tackled at a rigorous mathematical

level [31, 32, 33]. One may then wonder if the regimes ii) and iii) of Vlasov-

Fokker-Planck equation may be also amenable to a mathematical treatment. All

these conjectures go well beyond the scope of this work.
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Appendix A. The Jn and ψβα functions

We summarize here some results of [24]. Define the functions

Jn(y, λ) =

∫ 1

0

ty
2−λe(1−t)y

2

(1− t)ndt
t
.

The functions ψβα define the resolvent (B(iξ)− λ)−1 in Bargman representation:

(B(iξ)− λ)−1zβ =
∑

α∈N

ψβαz
α.

Prop. 16.4.4 in [24] provide the following expression:

Proposition Appendix A.1 For any β ∈ N
∑

α∈N

ψβα(ξ, λ)zα =
∑

k,β1+β2=β

Jk+β1

(
|ξ|/
√

2, λ
)

(β1 + β2)!

k!β1!β2!

(
izξ/
√

2
)k (
−z + iξ/

√
2
)β1

zβ2 (A.1)

We will need to study, for large n, y (y will be taken to be 1/γ) and 1/λ

an(y, λ) = yn+1Jn(y,−yλ)

= yn+1

∫ 1

0

ey
2(1−t+ln t)+λy ln t (1− t)n

t
dt

= yn+1

∫ 1

0

ey
2(x+ln(1−x))+λy ln(1−x) xn

1− xdx

= yn+1

∫ 1

0

eϕ(x)dx

with ϕ(x) = y2(x+ ln(1− x)) + λy ln(1− x) + n lnx− ln(1− x) (A.2)
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Lemma Appendix A.2 Depending on how n, y and 1/λ tend to infinity, there are

several regimes:

Case i) If n3/2y−1 � 1 and λ
√
n� 1:

lim
y,n,λ−1→∞

n3/2y−1�1,λ
√
n�1

an(y, λ)en/2−
1
2
n lnn =

√
π.

Case ii) If n3/2y−1 � 1 and λ
√
n� 1:

lim
y,n,λ−1→∞

n3/2y−1�1,λ
√
n�1

an(y, λ)en/2−
1
2
n lnneλ

√
n =
√
π.

Case iii) If n3/2y−1 � 1, ny−2 � 1: then for any quantity C(n, y) such that

C(n, y)� n3/2y−1 (note in particular that C(n, y) can tend to infinity almost as fast as

n3/2y−1)

lim sup
y,n,1/λ→∞
n3/2y−1�1

an(y, λ)en/2−
1
2
n lnneλ

√
neC(n,y) ≤ 1

Case iv) If ny−2 � 1: then there is α > 0 such that

lim sup
y,n,1/λ→∞
ny−2≥1

an(y, λ)en/2−
1
2
n lnneαn ≤ 1

Remark: For cases iii) and iv) we do not seek to be as precise as for cases i and ii); we

will only need the fact that for n3/2y−1 � 1, an(y, λ)en/2−
1
2
n lnn is small enough.

Proof: Our starting point is (A.2). Let us first assume that the integral is concentrated

close to x = 0, which will be checked self consistently below. Then it is legitimate to

Taylor expand around x = 0; we have

ϕ(x) = y2
(
−x

2

2
− x3

3

)
− λxy + n lnx− λyx

2

2
+ . . .

Higher order terms will not contribute to the final result. We differentiate in order to

find the maximum:

ϕ′(x) = y2
(
−x− x2

)
− λy +

n

x
− λyx+ . . .

At leading order, we obtain x∗ = x0 =
√
n/y. This is compatible with the above

hypotheses as soon as n� y2, that is for cases i), ii) and iii). At following order, we

write x∗ = x0 + x1, and get

x1 = − n

2y2
if n� λy , x1 = − λ

2y
if n� λy.

Introducing into the expansion for ϕ, we obtain

ϕ(x∗) = −1

2
n+

1

2
n lnn− n ln y − λ√n− 1

3

n3/2

y3
+ smaller terms.
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Furthermore, the second derivative is

ϕ”(x∗) = −2y2 + o
(
y2
)
.

We approximate now the computation of an as a gaussian integral

an(y, λ) ' yn+1eϕ(x
∗)

∫ 1

0

e−
1
2
ϕ”(x∗)(x−x∗)2dx

' yn+1eϕ(x
∗)

∫ y(1−x∗)

−yx∗
e−u

2

du

' √πe−n/2+
1
2
n lnne−λ

√
ne−

1
3
n3/2

y esmaller terms. (A.3)

The ”smaller terms” are at most of order n2/y2, which may be a large or small quantity.

Case i): λ
√
n � 1 and n3/2

y
� 1. Hence the two corresponding exponentials can be

replaced by one, and the same thing is valid for the ”smaller terms”.

Case ii): λ
√
n � 1 and n3/2

y
� 1. Hence the ”smaller terms” exponential can be

replaced by one, and we have to keep the e−λ
√
n term.

Case iii): n3/2

y
� 1.The ”smaller terms” may be much larger than 1, but are necessarily

much smaller than n3/2/y; hence we can remove them, at the expense of replacing n3/2/y

by any slightly smaller function C(n, y); we keep λ
√
n, which may be large or small.

Case iv): When n � y2, ϕ reaches its maximum at x∗ close to 1. At leading order

x∗ ∼ 1 − y2/n, ϕ′′(x∗) ∼ −n2/y2, and ϕ(x∗) ∼ y2 ln(y2/n). A gaussian approximation

yields

an(y, λ) ∼ yney
2 ln(y2/n)+o(y2 ln(y2/n));

now writing yn = nn/2(y2/n)n/2, we have

an(y, λ)e−
1
2
n lnn+n/2 ∼ en/2+(y2+n/2) ln(y2/n) � Ce−αn,

where the last inequality is because ln(y2/n)→ −∞.

Remark: We will also use the fact that for any n, an(y, λ) has a finite limit when

y →∞, λ→ 0 and n fixed. It is an easy extension of case i) above.

Appendix B. Analytic continuation of Dirichlet series and Mellin transform

For α > −1 a real number, we want to study the behavior as λ→ 0+ of the functions

ϕ+
α (λ) =

∑

n≥1

nαe−λ
√
n and ϕ−α (λ) =

∑

n≥1

(−1)nnαe−λ
√
n.

They fall in the category of Dirichlet series

f(λ) =
∑

n≥0

cng(µnλ), (B.1)

with µn =
√
n, cn = nα or cn = (−1)nnα, and g(y) = e−y. We have the following:
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Proposition Appendix B.1 Let α > −1.

ϕ+
α (λ) ∼

λ→0+

Γ
(
2(α + 1)

)

λ2(α+1)
, ϕ−α (λ) →

λ→0+
Cα.

Proof: We use Mellin transforms:

Definition Appendix B.2 Let f be a locally integrable function on R+. Its Mellin

transform Mf is defined as

Mf(s) =

∫ ∞

0

f(x)xs−1dx.

Under appropriate conditions on f , this integral can sometimes be guaranteed to

converge on a strip in C, α < Re(s) < β, called ”the fondamental strip”. On this

strip, Mf is analytic, and it may be meromorphically continuable in a larger strip, or in

C. The important point is that the poles of this meromorphic continuation are in direct

correspondence with the asympototic behavior of f(x): a real simple pole σ on the left

of the fundamental strip contributes in the asymptotic expansion a term Rσx
−σ, where

Rσ is the residue of (the continued) Mf(s) at the pole σ (see [35]).

A straightforward computation shows that for a Dirichlet series (B.1)

Mf(s) = F (s)Mg(s),

with

F (s) =
∑

n

cn
µsn
.

We now specialize this to our case. First we note that the Mellin transform of the

exponential is defined for Re(s) > 0, and is the Γ function. Then, for Re(s) > 2(α+ 1)
∑

n≥1

nα

ns/2
= ζ(s/2− α)

∑

n≥1

(−1)nnα

ns/2
= − η(s/2− α), (B.2)

where ζ is the Riemann ζ function and η is the Dirichlet η function. We conclude that

for Re(s) > max[0, 2(α + 1)] > 2(α + 1)

Mϕ+
α (s) = ζ(s/2− α)Γ(s),

Mϕ−α (s) = − η(s/2− α)Γ(s).

From these expressions, it is clear that Mϕ+
α and Mϕ−α can be meromorphically

continued to the whole complex plane. It is known that Γ(s) has simple poles at

s = 0 and the negative integers. Since the Riemann ζ(z) function has its rightmost

pole at z = 1, which is simple and with residue 1, the continued Mϕ+
α has its rightmost

pole at s = 2(α + 1) (remember α > −1), with residue 2Γ
(
2(α + 1)

)
. Exploiting the
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correspondence between these poles and the asymptotic behavior of the functions ϕ+
α (λ)

and ϕ−α (λ) when λ→ 0+, we obtain:

ϕ+
α (λ) ∼ 2Γ(2(α + 1))λ−2(α+1).

Similarly, since the Dirichlet η function is holomorphic (see for instance [34]), the

continued Mϕ−α has simple poles at 0 and the negative integers. For ϕ−α , the dominant

pole (ie the one with the largest real part) is then 0, it is simple, hence we conclude that

the dominant term in the asymptotic expansion of ϕ−α is a constant. In other words, ϕ−α
has a finite limit when λ→ 0+.

Appendix C. Computation of the normalization factor 〈G̃, G〉

The dispersion relation reads, with y = 1/γ:

Λ(y, λ) = 1− y2c

2π
J1(y,−λy) = 0. (C.1)

Introducing the definition of the function J1:

∂λΛ(y, λ) = −y
3c

2π

∫ 1

0

ty
2+λye(1−t)y

2

(1− t) ln t
dt

t

=
y3c

2π

∫ 1

0

ty
2+λye(1−t)y

2

(1− t)
∑

n≥1

(1− t)n
n

dt

t

=
yc

2π

∑

n≥1

y2Jn+1(y,−λy)

n
.

(C.2)

We now make use of the recurrence relation (16.4.63) in [24]:

For n > 0 : n(Jn − Jn−1) + y2Jn+1 + λyJn = 0 ,

and

for n = 0 : y2J1 + λyJ0 = 1. (C.3)

We obtain

∂λΛ(y, λ) =
yc

2π

∑

n≥1

y2Jn+1(y,−λy)

n
= − yc

2π

∑

n≥1

(
Jn − Jn−1 +

λy

n
Jn

)

=
yc

2π

(
J0(y,−λy)− λy

∑

n≥1

Jn(y,−λy)

n

)
,

(C.4)
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where we have used lim
n→∞

Jn(y,−yλ) = 0 (see Appendix A). Coming back to 〈G̃, G〉:

〈G̃, G〉 =
∑

n

G̃∗nGn =
∑

n

icy

2π
G̃∗1

1√
n!

(−iy)nJn(y,−λy)Gn

= G0G̃
∗
1

(
icy

2π
J0(y,−λy) +

(
icy

2π

)2

(λy)
∑

n≥1

1

n!
(−iy)2n−1J2

n(y,−λy)

)

= G0G̃
∗
1

icy

2π

(
J0(y,−λy)− c

2π
(λy)

∑

n≥1

(−y2)n
n!

J2
n(y,−λy)

)
(C.5)

Now we re-express the series, with a = y2 + λy:

∑

n≥1

(−y2)n
n!

J2
n(y,−λy) =

∫ 1

0

∫ 1

0

(ut)a−1ey
2(1−t+1−u)

∑

n≥1

((−y2)(1− t)(1− u))n

n!
du dt

=

∫ 1

0

∫ 1

0

(ut)a−1ey
2(1−t+1−u)

(
e−y

2(1−t)(1−u) − 1
)
du dt

=

∫ 1

0

ta−1ey
2(1−t)

∫ 1

0

ua−1ey
2(1−u)t du dt− J2

0 (y,−λy)

=

∫ 1

0

ta−1ey
2(1−t)

(
ety

2 (
ty2
)−a

γ(a, ty2)
)
dt− J2

0 (y,−λy)

= y2ey
2

(y2)−a
∫ 1

0

γ(a, y2t)

t
dt− J2

0 (y,−λy)

= −y2ey2(y2)−a
∫ 1

0

e−y
2t(y2t)a−1 ln t dt− J2

0 (y,−λy)

=
∑

n≥1

Jn(y,−λy)

n
− J2

0 (y,−λy);

(C.6)

we have used the incomplete Gamma function [37] γ(a, z) =
∫ z
0
ta−1e−tdt (not to be

confused with the friction parameter γ), and an integration by part to get the sixth

equality. Replacing in (C.5) we get

〈G̃, G〉 = G0G̃
∗
1

icy

2π

(
J0(y,−λy)

(
1 + λy

c

2π
J0(y,−λy)

)
− λy c

2π

∑

n≥1

Jn(y,−λy)

n

)

(C.7)

Using (C.3) with (C.1) gives

〈G̃, G〉 = G0G̃
∗
1

ic2y

(2π)2

(
J0(y,−λy)− λy

∑

n≥1

Jn(y,−λy)

n

)

= G0G̃
∗
1

ic

2π
∂λΛ(λ).

(C.8)

We had set G0 = −1/(c
√

2π1/4). Hence we choose G̃1 = −2
√

2π5/4i

∂λΛ(λ)
, so that 〈G̃, G〉 = 1.



Unstable manifold expansion for Vlasov-Fokker-Planck equation 23

Appendix D. A first computation at 5th order

The dominant term for c3 comes for H(0), the zeroth Fourier coefficient of h. Actually,

H(0) can be expanded as

H(0)(p) = H(0,0) + |A|2H(0,1) +O(|A|4),

and only the leading order H(0,0) contributes to c3. H
(0,1) can be computed by pushing

further the non linear expansion, and identifying the terms with the same powers in A

and A∗. One obtains the following equation

(4λ− L0) ·H(0,1) = u,

where u is a source term depending on things we have already computed. In particular,

u contains a term equal to −2c3H
(0,0). We call H

(0,1)
0 the solution of

(4λ− L0) ·H(0,1)
0 = −2c3H

(0,0),

and we make the assumption that the leading contribution to c5 is given by

〈G̃, a†H(0,1)
0 〉.

There are several other terms contributing to c5; we expect that they are never dominant,

but have no proof.

Since H(0,0) = U + U∗, we now solve the equation in X

(4λ− L0) ·X = U,

where we recall that U =
∑

n≥0 Unen. Writing X =
∑

nXnen, we obtain

Xn =
Un

γn+ 4λ
= −G0

c
√

2

2πγ

n

(γn+ 2λ)(γn+ 4λ)

1√
n!

(−i
γ

)n−2
λ

γ
Jn−1(1/γ,−λ/γ).

We now have to compute 〈G̃, a†X〉 =
∑

n G̃
∗
n

√
nXn−1. Using Prop.3.2, we have to

estimate a series, whose term An is (with C a constant whose precise value may vary,

and which is of no consequence regarding the asymptotic behavior of the series):

An = C
λy2n(n− 1)

[(n− 1) + 4λy][(n− 1) + 2λy]

1

n!
yn+1Jn(y,−λy)yn−1Jn−2(y,−λy);

we have used here the notation y = 1/γ. For n large, we use Stirling formula for the

1/n!, and Appendix A for the yl+1Jl terms. According to Appendix A, we have to

distinguish different cases, depending on the size of n with respect to the characteristic

values N2 = 1/λ2, and N3 = y2/3; furthermore, another characteristic value for n ap-

pear: N1 = λy.
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Case 1: λ� γ1/3, 1� N2 � N3 � N1

In this case, for 1� n� N2, we also have n� N3, and

1

n!
yn+1Jn(y,−λy)yn−1Jn−2(y,−λy) ∼ Cn−3/2,

hence for 1� n� N2

An ∼ Cn1/2λ−1.

The sum of these terms up to N2 gives a contribution Cλ−1N
3/2
2 ∼ Cλ−4. For n� N2,

An is very small, and this gives a non diverging contribution to the series. Including the

overall c3 factor which behaves as λ−3, we find finally

c5 ∼ Cλ−7.

This is consistent with the results of [15] for γ = 0.

Case 2: γ � λ� γ1/3, 1� N1 � N3 � N2

In this case, for 1 � n � N1, we also have n � N2 and n � N3, thus, thanks to

Appendix A
1

n!
yn+1Jn(y,−λy)yn−1Jn−2(y,−λy) ∼ Cn−3/2;

hence for 1� n� N1

An ∼ Cn1/2λ−1.

The sum of these terms up to N1 gives a contribution Cλ−1N
3/2
1 ∼ C(λy3)1/2.

For N1 � n� N3, we have

An ∼ Cλy2n−3/2.

The sum of these terms from N1 to N2 gives a contribution (notice this is a convergent

series, we estimate it by its first term) Cλy2N
−3/2
1 = C(y/λ)1/2. Since λ� 1/y, this is

smaller than the contribution from the sum up to N1, and we neglect it. For n � N3,

An is very small and does not contribute a diverging term. Overall, including the factor

c3 ∼ Cλy4/3, we find

c5 ∼ Cλ3/2y17/6.

For λ ∝ y−1/3, this coincides with the previous case.

Case 3: λ� γ, N1 � 1� N3 � N2

As above, for n � N3, An is very small and these values do not contribute. For

1 ≤ n� N3, we are always in the n� N1 regime, thus we have, using Appendix A

An ∼ Cλy2n−3/2.

This is a convergent series; hence we estimate its sum from n = 1 to n ' N3 by its

first term λy2. To include the factor c3, we have to distinguish γ4/3 � λ � γ, where

c3 ∼ Cλy4/3, and λ� γ4/3, where c3 = O(1).
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Case 3a: γ4/3 � λ� γ

c5 ∼ Cλ2y10/3.

Case 3b: λ� γ4/3

c5 ∼ Cλy2.

In the standard situation where only one, or two, eigenvalues cross the imaginary

axis at the bifurcation point, while the others keep a finite, negative, real part, the

coefficients c3, c5, . . . do not diverge. In this case, if c3 < 0 (ie supercritical bifurcation),

the reduced dynamics suggests that the amplitude A first grows then saturates at a value

Asat ∝ λ1/2, when the linear growth and the non linear term −c3|A|2A balance. For this

amplitude, it is clear that the next nonlinear term c5|A|4A is of order λ5/2, which is much

smaller than λA and c3|A|2A. This suggests that the series for the reduced dynamics

can be truncated at order A3, still providing an exact description for the evolution of A

in the limit λ→ 0.

For λ � γ1/3, the situation is exactly as in the pure Vlasov case [15], and is very

different. The O(A3) non linearity suggests a saturation amplitude Asat ∼ λ2; hence

c5|A|4A ∼ λ−3 is of the same order of magnitude as the two first terms. The series

then cannot be safely truncated, no matter how small λ is. It is natural to conjecture

that this is related to the fact that one should look for an infinite dimensional reduced

dynamics in this case [5].

For γ � λ� γ1/3, the O(A3) non linearity suggests a saturation amplitude Asat ∼
y2/3. This yields with Case 2 above c5|A|4A ∼ (λ3y)1/2, while λA, c3|A|2A = O(λy2/3).

Hence c5|A|4A is negligible at saturation for any γ � λ� γ1/3, which suggests that the

series can be truncated, and that the dynamics can be reduced to finite dimension.

For λ� γ the c5 divergence is even weaker; thus, as in Case 2 we expect that the

series can be truncated and the dynamics reduced to finite dimension.
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