On the complexity of two-dimensional signed majority cellular automata - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

On the complexity of two-dimensional signed majority cellular automata

Résumé

We study the complexity of signed majority cellular automata on the planar grid. We show that, depending on their symmetry and uniformity, they can simulate different types of logical circuitry under different modes. We use this to establish new bounds on their overall complexity, concretely: the uniform asymmetric and the non-uniform symmetric rules are Turing universal and have a P-complete prediction problem; the non-uniform asymmetric rule is in-trinsically universal; no symmetric rule can be intrinsically universal. We also show that the uniform asymmetric rules exhibit cycles of super-polynomial length, whereas symmetric ones are known to have bounded cycle length.
Fichier principal
Vignette du fichier
GMPT-thresholdDyn-JCSS.pdf (23.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01472161 , version 1 (20-02-2017)
hal-01472161 , version 2 (09-01-2019)

Licence

Identifiants

  • HAL Id : hal-01472161 , version 1

Citer

Eric Goles, Pedro Montealegre, Kévin Perrot, Guillaume Theyssier. On the complexity of two-dimensional signed majority cellular automata. 2017. ⟨hal-01472161v1⟩
1122 Consultations
255 Téléchargements

Partager

More