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Abstract

We study the complexity of signed majority cellular automata on the planar
grid. We show that, depending on their symmetry and uniformity, they can
simulate different types of logical circuitry under different modes. We use this
to establish new bounds on their overall complexity, concretely: the uniform
asymmetric and the non-uniform symmetric rules are Turing universal and
have a P-complete prediction problem; the non-uniform asymmetric rule is in-
trinsically universal; no symmetric rule can be intrinsically universal. We also
show that the uniform asymmetric rules exhibit cycles of super-polynomial
length, whereas symmetric ones are known to have bounded cycle length.

Keywords: cellular automata dynamics, majority cellular automata, signed
two-dimensional lattice, Turing universal, intrinsic universal, computational
complexity

1. Introduction

In this paper we study the dynamics of signed majority (synchronous)
cellular automata in two dimensional regular grids with the von Neumann
neighborhood. They are a particular case of threshold automata, i.e. each
local function being a threshold one. Concretely, each cell carries a −1 or
a 1 and evolves depending on whether the pondered sum of its neighbors is
positive or not.This class contains the well-known majority vote (all positive
weights) and minority vote (all negative weights) cellular automata [1, 2].
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We consider both uniform and non-uniform weights and distinguish between
symmetric and non-symmetric ones (i.e. whether the mutual weights of two
neighboring cells are equal).

To our knowledge the first models taking into account majority functions
in discrete networks were related with the physical problems of spin glasses
and bootstrap percolation. The spin glasses problem appears in statisti-
cal mechanics as a model of magnetization. Roughly speaking, two spins
of magnetic atoms Si and Sj are coupled via an interaction wijSiSj. The
sign of wij may be ±1. Spins change trying to minimize the global quan-

tity −1
2

∑N
i,j=1 wijxixj. The ground state corresponds to the minimum of

a quadratic expression over {−1,+1}n. Algorithms, and complexity char-
acterization of such discrete problems have been given, e.g., [3, 4]. Among
the local strategies to find the minimum, the most usual corresponds to the
local majority, i.e. the spin takes the most represented orientation in its
neighborhood.

The majority operator appears also in the bootstrap percolation problem
[5]. Given a grid with a proportion of sites in state 1, such that a site in state
1 remains forever in this state, the bootstrap percolation problem consists in
determining the proportion of 1’s necessary to contaminate the whole grid
with this state when strict majority is applied at every node.

For the majority operator, it was proved that the class of symmetric
threshold networks updated in parallel admits only fixed points and cycles
of period two [6]. Further, at the heart of this proof, lies an energy operator
associated to the automaton (and similar to the spin glasses energy) which
drives the parallel dynamics. For the particular case of symmetric signed ma-
jority functions, since states belong to the hypercube {−1,+1}n and weights
belong to the set {−1, 0, 1}, convergence occurs in time O(n2) where n is
the size of the network. Signed majority has also been used to model arti-
ficial neural networks. In [7, 8] Shingai studied the dynamical behavior of
one and two dimensional grid with von Neumann neighbors and bounded
border conditions. He proved that in a bounded one-dimensional threshold
automata every possible cycle has period less than four and in the two di-
mensional case there exists a bounded asymmetric threshold automaton with
unbounded cycles.

On the other hand in [1] C. Moore introduced a decision problem for the
majority automaton acting in a d-dimensional grid: given an initial config-
uration, determine if a specific cell will change its state during the parallel
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dynamics within some time bound. In this context, he proved that for d ≥ 3
this problem is P-complete by reducing to the monotone circuit problem, i.e.
with specific configurations of the automaton it is possible to convey infor-
mation and to built logical gates as well as crossover in order to simulate
arbitrary monotone circuits which is a well know P-complete problem. The
two dimensional case with von Neumann neighborhood remains open. Re-
cently, for bootstrap percolation, it was proved that the associated decision
problem is in the class NC [9]. Further, it was also proved that the same
decision problem for the usual majority is P-complete over planar graphs
[10].

Our study follows this line of research and establishes new results con-
cerning the complexity of these kind of systems inspired by physics or biology.
However, following the trend of natural computing, we also consider them
as potential computing devices and aim at classifying them according to the
type of computations they can handle. In order to do this, we put a new
look on the embedding of Boolean circuits into cellular automata. Since the
first constructions of von Neumann in the 60s, encoding of logical circuits
into CA has been the main tool to show various kind of complexity hardness
or universality results [1, 11, 12]. Usually, a global hardness result is claimed
(P-completeness of prediction, Turing universality, etc) but a specific circuit
construction is hidden in the proof. We argue that, on the contrary, the
focus should be put on the circuit simulation itself. For instance, there is
no general implication between P-completeness and Turing-universality al-
though a suitable circuit simulation implies both: proofs factorize well at the
level of circuit simulation. More importantly, we can identify two modes of
simulation depending on whether a logical gate gadget can be re-used reli-
ably several times or is corrupted after the first passage of information. In
particular, we establish that in the re-usable case there is a generic solution
to crossing of information (Theorem 4) and that simulating AND plus OR
gates is enough (even in our planar setting) to yield intrinsic universality
[13, 14].

But our main contribution is to establish various universality and hard-
ness results within the class of signed majority cellular automata:

• We first show that uniform signed rules can be partitioned in three
equivalence classes, called symmetric, antisymmetric and asym-
metric uniform rules. This implies that the study of the uniform rules
is reduced to the study of three local functions.
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• any asymmetric uniform rule is Turing-universal and has a P-complete
prediction problem;

• the symmetric non-uniform one is also Turing-universal and has a
P-complete prediction problem, but is provably not intrinsically uni-
versal, like any symmetric rule (uniform or not).

• the non-uniform signed majority CA is intrinsically universal;

Besides, we show that asymmetric uniform rules posses super-polynomial
cycles, contrary to symmetric rules which have only cycles of length at
most two.

The paper is organized as follows: in Section 2, we introduce the neces-
sary formalism around the objects we study and notions of complexity and
universality. In Section 3, we develop a generic toolbox to derive complexity
results from the existence of circuit simulations in any cellular automata. In
Sections 4 and 5, we present our results about uniform and non-uniform rules
respectively. We conclude and give some research perspectives in section 6.

2. Preliminaries

2.1. Signed Majority Cellular Automata

In this paper we study cellular automata (CA) defined over a regular two
dimensional lattice and a von Neumann neighborhood, i.e. for a cell v with
coordinates (i, j) ∈ Z2, the neighbors of v, are N [v] = {v, vn, ve, vs, vw} where
vn = (i, j + 1), ve = (i + 1, j), vs = (i, j − 1), vw = (i − 1, j). We will also
consider finite cell spaces with periodic boundary conditions, in that case the
cell space will be of size N = n2 and the above neighborhood is taken modulo
n.

A two dimensional regular lattice is called a signed regular lattice if there
exists a sign matrix W = (wuv)u,v∈Z2 where for each pair of neighbors u, v, the
value wuv ∈ {−1, 1} is called the sign of (u, v). A signed majority automaton
(smca) is defined as a cellular automaton A = (Q,FW ) defined over a signed
regular lattice with sign matrix W , with state set Q = {−1, 1} and where
the rule is defined as FW : {−1, 1}Z2 → {−1, 1}Z2

where

FW (x) = u 7→
{

1 if
∑

v∈N [u]wuvxv > 0,

−1 otherwise.
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Let v = (i, j) be a cell in a signed majority automaton, and let wc, wn, we, ws
and ww the signs of the edges (v, v), (vn, v), (ve, v), (vs, v) and (vw, v) respec-
tively. We say that Wv = (wc, wn, we, ws, ww) is the sign vector of cell v. A
smca is called uniform (usmca) if each cell has the same sign vector. If
the sign matrix W = (wuv) is such that wuv = wvu for each pair of neigh-
bors u, v then the corresponding signed majority CA is called symmetric. If
the condition wuv = −wvu holds for any pair of neighbors then the CA is
called anti-symmetric. A signed majority CA which is not symmetric nor
anti-symmetric is called asymmetric,

usmca are classical cellular automata over state set Q = {−1, 1} and von
Neumann neighborhood because the same local transition map is applied
in each cell. In order to have a common formalism, we will also see the
non-uniform signed majority CA (nsmca) as a classical cellular automaton
over state set Q′ = Q6 and von Neumann neighborhood where a cell not
only stores its own state but also its sign vector: the dynamics consists in
applying the signed majority locally according to the sign vector which stays
unchanged during the evolution. Finally, we can also consider the symmetric
nsmca through a single classical cellular automaton of state set Q′ still with
with von Neumann neighborhood with the following modification: each cell
u stores a sign vector (wuv)v∈N [u], but when applying the signed majority at
u, we use the sign vector (w′uv = wuvwvu)v∈N [u] and hence the dynamics is
guaranteed to correspond to a symmetric signed majority.

When considering a finite cell space (or equivalently a periodic initial
configuration on the Z2 lattice), the number of possible configurations is finite
and thus the evolution eventually enters a cycle whose length is between 1
(fixed-point) and qN where q is the size of the alphabet and N the size of the
cell space. The following theorem (which is a direct corollary of [6, 15, 16])
illustrates an essential difference between symmetric and asymmetric cases.

Theorem 1 (Main theorem of [6, 15]). If F is a symmetric signed majority
cellular automaton (uniform or not) and x is a periodic configuration of size
n, then there exists t = O(n2), such that either F t(x) = F t+1(x) (fixed-point)
or F t(x) = F t+2(x) (cycle of length 2).

2.2. Computational Complexity and Intrinsic Universality

In this paper we aim at analyzing the complexity of the behavior of the
considered systems but also their ability to compute or simulate other sys-
tems. The two aspects are of course correlated and we will use various tools
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and notions to account for their complexity and universality. To measure
the computational complexity we will use the standard classes: NC (polyno-
mial circuits of polylogarithmic depth), P (deterministic polynomial time),
PSPACE (polynomial space) through the corresponding classical truth ta-
ble reductions (AC0, LOGSPACE, PTIME respectively). Moreover, we
will consider the following canonical problems for each system F .

• prediction problem Pred for F

input a finite partial input configuration c, a marked cell z , a time
step t

question what is the the value of F t(c)z if it is completely determined
by c.

• f -cycle problem for F where f is a non-decreasing function such that
1 ≤ f(n) ≤ 2O(n)

input an input periodic configuration c of period n× n
question is the length of the temporal cycle reached from c strictly

greater than f(n)?

It is well-known (see for instance [17]) that for general cellular automata
(even of dimension one) the first problem is always in P and can be P-
complete, while the second is always in PSPACE and can be PSPACE-
complete. Interestingly, the prediction problem is in fact NC (or LOGSPACE)
for a large class of CAs [18].

We now quickly review the basic concepts of intrinsic simulation the-
ory for cellular automata (see [19, 14] for an in depth introduction). The
general idea is to formalize a very strict notion of simulation (or reduction)
between cellular automata that preserves computational complexity of vari-
ous aspects of the CA and also many of its dynamical properties. In essence,
F is simulated by G if some space-time rescaling of F can be embedded as
a subsystem in some space-time rescaling of G. It therefore relies on two
definitions: subsystem embedding and rescaling.

If F and G are CAs, we denote by F / G the fact that F is obtained by
restriction and projection of the states of G, formally: ∃π : Q ⊆ QG → QF

surjective such that
π ◦G = F ◦ π
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where π : QZ2 → QZ2

F is the cell-wise application of π. / is our notation for
subsystem embedding.

Given a rectangular shape ~m = (m1,m2) and any alphabet Q we define

the following bijection from QZ2
to
(
Qm1m2

)Z2

:

B~m(x)(z1, z2) =
(
x(z1, z2), . . . , x(z1+m1−1, z2), x(z1, z2+1), . . . , (z1+m1−1, z2+m2−1)

)
which just recodes any configurations by blocks of shape m1 by m2. Now if
t is a positive integer and ~z ∈ Z2, we define the rescaling of F of parameters
~m and t as the CA F<~m,t> = B~m ◦ F t ◦B−1

~m .
We finally say thatG simulates F , denoted F ≤ G, if there are parameters

~m,t, ~m′ and t′ such that F<~m,t> / G< ~m′,t′>. We also say that G strongly
simulates F if there are parameters ~m and t such that F / G<~m,t>. Then, a
CA G is intrinsically universal1 if for any CA F we have F ≤ G. It can be
shown that an intrinsically universal CA can in fact strongly simulate any
CA [19].

This definition isn’t an attempt to formalize the definitive notion of uni-
versality. It is rather a pragmatic choice: strict enough to allow us to prove
negative results and separation of classes [19, 14], and natural enough to en-
compass many constructions of the literature [13] and make intrinsic univer-
sality actually a common property [20, 21]. This approach was also success-
fully adopted to study other systems like self-assembly tilings [22, 23, 24].

3. CAs vs. Circuits: Complexity and Universality Toolbox

In this section, we develop a formal toolbox to deal with circuit simulation
in CA in great generality. In particular we define two modes of simulation
that fundamentally differ in the hardness result they imply:

• in the re-usable mode, simulation of monotone gates (AND, OR) is
equivalent to intrinsic universality even for a planar lattice, and in
particular there is a generic solution to crossing of information;

1In the standard definition, the possibility to compose F or G with translations is
added to the definition of rescaling: we remove this aspect from this paper to simplify and
thus get a less general notion of intrinsic universality. However, everything can also be
done up to translation everywhere.
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• in the weaker mode (no re-usability), intrinsic universality is gener-
ally not guaranteed and crossing is essential to have P-completeness of
prediction and Turing-universality.

This section considers 2D CAs in all generality. In the remainder of
the paper we will show that, within the natural class of signed majority
automata, we have examples for both modes, including ones that are provably
not capable of re-usable simulation while able to simulate any circuitery in
the weaker mode. This shows the interest of focusing on the simulation
mode. Our framework is formalized in two steps: first, we consider the
intermediate object of dynamical circuits which adds to classical Boolean
circuits a dynamical aspect; second, we define how a dynamical circuit can be
concretely embedded in a CA in a very generic way without any supposition
on how information is encoded.

3.1. Dynamical circuit simulations

A dynamical circuit is a particular kind of Boolean network with a DAG
structure and marked input/output nodes.

Definition 2. A dynamical circuit is a directed acyclic graph where each
node has in-degree at most 2. The input nodes are the nodes with in-degree
0. The output nodes are the nodes with out-degree 0. Moreover, each node v
is labeled by some function fv : {0, 1}di(v) → {0, 1}, where di(v) denotes the
in-degree of v. For each input node v, fv is the constant function equal to 0.
The set of gates of a dynamical planar graph is the set of functions fv. At
each time step t, each node v of the graph contains some Boolean information
bv(t) ∈ {0, 1}. The (synchronous) dynamics of the graph defines the value
of node v at time t + 1 by bv(t+ 1) = fv

(
bv1(t), bv2(t)

)
where v1 and v2 are

the incoming neighbors of v, and similarly for vertex with in-degree different
from 2. If p is the number of input nodes and q the number of output nodes,
the dynamical circuit computes the function f : {0, 1}p → {0, 1}q, defined by

f
(
x1, . . . , xp) =

(
bv1(T ), . . . , bvq(T )

)
where T is the depth of the DAG (size of the longest directed path) and
values on nodes are initialized by:

bv(0) =

{
xi if v is the ith input node,

0 otherwise.
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Finally, we say that a dynamical circuit is layer-synchronous if nodes of level
i+ 1 only have incoming neighbors of level i, where the level is defined by
the DAG structure of the graph starting at level 0 for input nodes.

Remark 3. When the dynamical circuit is “layer-synchronous” then the com-
puted function is exactly the same as the one computed by the classical
Boolean circuit corresponding to the same DAG: indeed, the computation
progresses level by level until it reaches the output gates synchronously. Be-
sides, the condition on the input nodes functions ensures that the input is
given as an “impulse”: at time zero input gates receive the input bits, at
time one they are reset to zero.

The interest of the definition above relies in the following which is to
be compared to the well-known result [25] in the classical circuit complexity
setting.

Theorem 4. There is a planar dynamical circuit that realizes the crossing
function

χ(x, y) = (y, x)

using only monotone (AND,OR) gates, and such that inputs and outputs are
on the outer face of the graph arranged in the order XIN , YIN , XOUT , YOUT .
This implies that the functions computed by monotone dynamical circuits can
be computed by monotone planar dynamical circuits. Moreover the dynamical
planar monotone circuit value problem is P-complete.

Proof. First, by chaining either AND or OR gates, we can make “delayed”
wires that transmit the information but in a given number of steps. Second,
using again the wire toolkit, we can make new variants of the OR and AND
gates were the inputs come to any pair of sides.

Then we can realize the following kind of planar dynamical graphs with
arbitrarily chosen length of wires, depicted in Figure 1. Two segments with
different length on the drawings can be transformed into wires with different
delays): If a signal comes at XIN it will duplicate, arrive at A and B at the
same time, then at C and D at the same time and then the AND gate at the
bottom will be triggered and send a signal to XOUT .

The same is true for transmission from YIN to YOUT . By monotonicity of
all gates of the gadget the XIN → XOUT transmission is not affected by the
presence of any signal from a potential YIN → YOUT transmission. And the
same is true for Y with respect to X.
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Figure 1: Crossing gadget for planar dynamical circuits with monotone gates.

So, to complete the proof that this gadget realizes crossing, it is sufficient
to check that a XIN → XOUT transmission never triggers the AND gate
which outputs to YOUT (symmetrically for Y with respect to XOUT ). This
AND gate is triggered if and only if at some time both gates B and D
output an electron. By choosing horizontal/vertical lengths in the gadget
such that AB = CD = 2BD = 2AC, the evolution can be characterized by
the following successive configurations concerning presence of electrons in
different parts of the ABCD rectangle:

A A → B A → C B B → D C C → D D
1 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0
3 0 1 1 0 1 0 0 0
4 0 1 0 0 0 1 0 1
5 0 1 0 0 0 0 1 0
6 0 0 0 1 0 0 1 0
7 0 0 0 0 1 0 1 0
8 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0

We can check that the simultaneous presence of an electron in B and D never
occurs, and deduce that when a signal comes only from XIN it never triggers
YOUT .

From the existence of a crossing gadget we deduce P-completeness of the
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dynamical planar monotone circuit value problem using the classical encoding
used for P-completeness of monotone circuit value problem: each Boolean
value b is represented by a positive copy b and a negative copy ¬b; then
negation is realized by swapping b and ¬b (wire crossing) and the AND/OR
gates are realized together with NAND/NOR using De Morgan’s laws.

We now describe two modes of simulation of a set of gates by a cellular
automaton. In the first one, the gates can be used only once and hence it
can only simulate layer-synchronized circuits. The second one asks for each
gate to be re-usable and hence is able to simulate any dynamical circuit.

The basic simulation mechanism works by using square blocks concate-
nated in a grid-like fashion that represent parts of the circuit (either a node
or an edge). The definition doesn’t require any specific way of building this
blocks or representing information shared inside. They communicate infor-
mation with their four neighbors (north, east, south, west) in such a way that
each one implements a Boolean function with at most 2 inputs and at most 2
outputs. In the sequel any building block we consider will compute one of the
following functions (we represent them using type {0, 1}4 → {0, 1}4 in order
to make explicit the position of inputs and outputs among the neighbors in
the order north, east, south, west):

AND(x, ∗, ∗, y) =
(
0,min(x, y), 0, 0

)
OR(x, ∗, ∗, y) =

(
0,max(x, y), 0, 0

)
CROSS(x, ∗, ∗, y) =

(
0, y, x, 0

)
NOP(∗, ∗, ∗, ∗) =

(
0, 0, 0, 0

)
MULTIPLY(∗, ∗, ∗, x) =

(
0, x, x, 0

)
WIREi,o

(
c ∈ {0, 1}4

)
= k ∈ {0, . . . , 3} 7→

{
c(i) if k = o

0 else

for any i 6= o ∈ {0, . . . , 3}. Note that any function f above is such that
f(0, 0, 0, 0) = (0, 0, 0, 0). We denote by Img(f) the set of 4-uple that can be
obtained as an image of f . The WIREi,o functions are just all the possible
ways to read a bit on one side and transmit it to another side. Together with
the NOP and MULTIPLY function they represent the basic planar wiring
toolkit denoted W below. The NOP gate is special in that one considers it
has 4 inputs and 4 outputs.

11



In this paper, in order to simplify statements, we discuss only about gates
which are not part of the wiring toolkit W because we always assume that
gates from W are available in any simulation considered. The following defi-
nition of simulation of a gate set G by a CA precisely requires the considered
CA to actually simulate all gates from the set G ∪W .

Definition 5 (Simulating a gate set). Let G ⊆ {AND,OR,CROSS} be a
set of gates. Let F be a CA with states set Q and N > 0 be an integer.
Consider a set V ⊆ QN×N of patterns, the valid blocks, each of which as a
type fu where f ∈ G ∪W and u ∈ Img(f) and such that, for any fu, there
is some block of V of type fu. If a block B ∈ V has type f(a,b,c,d) for some
f , we say it has north value a, east value b, south value c and west value
d. Finally let ∆ > 0 be some constant. A configuration is valid if it is a
concatenation of valid blocks where output sides of a block must face input
sides of its corresponding neighbors. Given a block B ∈ V of type fu in a
valid configuration, we say that it makes the correct transition if it becomes
a block of type fv after ∆ steps where v = f(n, e, s, w) is the output of f on
the input read from surrounding blocks, precisely: the block at the north of
B has south value n, the block at the east of B has west value e, etc.

Weak simulation. We say that F simulates the set of gates G with
delay ∆ and valid blocks V if for any valid configuration c, the configuration
F∆(c) is valid and for any f ∈ G ∪W , any block of type f(0,0,0,0) in c makes
the correct transition.

Re-usable simulation. The simulation is re-usable if any block in any
valid configuration makes the correct transition.

Remark 6.

• Each block of V has a type f(n,s,e,w) but the definition does not specify
the way information is encoded inside blocks: for instance, the ’north
value’ n is not necessarily determined by the value of a particular cell in
the block, it could be encoded as the parity of the number of occurrences
of some state in the whole block, or as the ith binary digit of π where
i is a sum of some states in the whole block, etc;

• The fact that several valid blocks can have the same type allows some
redundancy in the information encoding; the necessity of this redun-
dancy in block encodings is an open problem in the context of intrinsic
universality (open problem 6 of [14]); in our context it can be under-
stood intuitively as follows: in general, several contexts can force a
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block to evolve to the same type f(n,s,e,w) after ∆ steps, but the infor-
mation flow and the computation happening inside the block can leave
traces of this context inside the block;

• The positions of inputs and outputs around a block to simulate a gate
is not strict for OR, AND and MULTIPLY gates since we can rewire
without crossing to any choice of positions thanks to the symmetry of
this gate; for the CROSS gate, it is sufficient to respect the fact that
inputs and outputs are not interleaved.

In the above definition, blocks are used to simulate gates with at most
2 inputs and at most 2 outputs. We naturally want to concatenate these
blocks in complicated ways to compute more general Boolean functions with
many inputs and outputs. The following lemma says that doing this we are
able to realize any function computable by dynamical circuits corresponding
to the set of gates and the simulation mode. Said differently, the grid layout
and synchronization by wire lengths can be solved in a generic way.

We first formalize how we derive the simulation of functions computed
by circuits from the simulation of their gate set. The intuition is that by
concatenation of valid blocks we can build meta-blocks that have the desired
input/output relation.

Definition 7 (Simulating a Boolean function). Let F be any CA that sim-
ulates a set of gates G with delay ∆ and valid blocks V and consider some
finite function φ : {0, 1}p → {0, 1}k. We say that F simulates φ if there are
integers m ≥ max(p, k) and T , and a collection V of m×m valid patterns of
blocks from V indexed by outputs of φ

V =
⋃

v∈Img(φ)

Bv

where Bv ⊆ V m×m, and such that

1. in each block B ∈ Bv, the k V -blocks starting from the upper-right
corner and going downwards must produce the sequence of bits v when
reading their east value;

2. a block B ∈ B(0,...,0), when in a valid context, becomes B′ ∈ Bφ(u) after
T steps where u is the input of p bits read in the initial configuration
on the left side of B starting from the top.
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The simulation is re-usable if the second condition above is also true for
any block from V .

Lemma 8 (Grid layout and synchronization lemma). Let F be any CA that
simulates a set of gates G with delay ∆ and valid blocks V (Definition 5).
We have:

• if {AND,OR} ⊆ G then F can simulate (Definition 7) any function
computed by a planar monotone layer-synchronous dynamical circuit
with inputs and outputs placed on the outer face in a non-interleaved
way (inputs on one half, outputs on the other half);

• if {AND,OR,CROSS} ⊆ G then F can simulate (Definition 7) any
function computed by a monotone layer-synchronous dynamical circuit;

• if {AND,OR} ⊆ G and the simulation is re-usable then F can simulate
in a re-usable way (Definition 7) any function computed by a monotone
dynamical circuit.

Proof. We proceed by a sequence of transformations of a given circuit that
preserve the computed function. It is important to note that we don’t need
any bound on the size of the final simulation. Moreover we have, by defini-
tion 5, the existence of wires that allows to draw arbitrary discrete paths on
the plane. These two aspects make the proof rather straightforward, without
any technical difficulty.

Given a dynamical circuit C with the corresponding hypothesis in each
case, we proceed like this:

• first, in the case of re-usable simulation, we can suppose that C is
planar by theorem 4.

• we then add as many OR gates with 1 input and out-degree 2 to ensure
out-degree 2 for each gate of C. While doing this we pad when necessary
by useless OR gates (1 input, 1 output) so that there is a constant k
such that each arc in C is encoded as a directed path of length k in the
new circuit C ′. In particular C ′ is layer synchronous if C is, and both
compute the same function;

• then, we consider a grid layout of the graph of C ′: nodes are positioned
at points of Z2 and arcs are polygonal lines. Note that in any case, we
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Figure 2: Compensating for the difference between Euclidian lengths by making zig-zags:
the two paths have the same Z2-length but the Euclidian distances between starting and
ending positions are clearly different.

position inputs and outputs on the outer face without interleaving.
By multiplication of the grid step (embedding Z2 into (kZ)2), we can
choose the minimal distance between two point of interest (node or
crossing between lines) to be as large as we need without changing the
ratio between length of arcs. In particular, we can ensure that the
minimal distance D between two points of interest is much larger than
the ratio α between the longest encoded arc and the shortest encoded
arc; Moreover, we can ensure that each node is on the grid (2Z)2 so
that the ‖ · ‖1-distance between any two nodes is even;

• then, we transform each Euclidean arc by a Z2-path and at each cross-
ing (if any) we put a crossing gate. To do this while ensuring that
all Euclidean arcs are represented by Z2-paths of the exact same Z2-
length (number of steps on the Z2 grid), we use ’fast’ (almost) minimal
Z2-paths for long Euclidean arcs, and ’slow’ zig-zag Z2-paths for short
Euclidean arcs (see Figure 2). The remarks above ensure that we can
do it because:

1. the worst case we have to deal with is a discrete path of length
α times the Euclidean length of its corresponding arc: choosing
D >> α ensure that we can make zig-zags of sufficient width
without collisions;

2. the fine-tuning of distances is possible because everything is even
and we can replace a path of length 2 by a path of length 4 with
same in and out points. Moreover, the Euclidean arcs were chosen
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long enough so that we can modify their corresponding zig-zag
locally on a negligible fraction of their length to implement this
fine tuning.

After this process we get a partial labeling of Z2 with gates from the set
G ∪W . To show formally that the function computed by the circuit C is
simulated by F it remains to complete a big square containing this partial
labeling with NOP gates and rewire inputs and outputs so that they are
horizontally aligned. The rewiring is possible even without crossing gate
since inputs and outputs are on the outer face without interleaving.

In the next section, we give an example of a threshold-like CA that can
realize such simulations. Before this, we derive various consequences of the
existence of each kind of simulation.

3.2. Three flavors of circuit simulation, three levels of complexity

We are now going to deduce various hardness results using the existence
of some circuit simulation. First, the simple fact of simulating wires in the
weakest mode already almost gives NC 1-hardness if one thinks about grid
graph reachability problems. The difficulty is that wires alone do not provide
any means of keeping trace of some passage of information. We therefore
add a FUSIBLE gate, aimed at linking the presence of a signal on a wire at
any time, to the prediction problem Pred of a cell’s state at some precise
time. Indeed, in the particular case of the following AC 0 reduction, the time
window during which the signal we wish to predict may arrive is unbounded,
though the reduction allows only constant time computation.

FUSIBLEi(x ∈ {0, 1}4) = (0, 0, 0, 0) is a gate that contains a particular
cell z such that

F t(c)z =


1 for all t ≥ t0 + ∆

−1 for all t < t0

±1 otherwise

, where t0 is the first time at which x(i) = 1.

Proposition 9. If a 2D CA F can simulate WIREi,o, NOP and FUSIBLEi

for all i, o then its prediction problem Pred is NC 1-hard under AC 0 reduc-
tions.

Proof. The in-degree-one-out-degree-one grid graph reachability problem (11GGR)
has been proven to be NC 1-hard under AC 0 reductions in [26]. We prove
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the proposition by constructing an AC 0 reduction of 11GGR to our pre-
diction problem. Since the composition of two AC 0 algorithms is an AC 0

algorithm, the result will hold.
Let us first formally define 11GGR. A directed grid graph is a directed

graph whose vertices are a subset of N × N, and all edges are of the form
(i, j)→ (i+ b, j) or (i, j)→ (i, j+ b) with b ∈ {−1, 1}. The 11GGR problem
is the following. Given a directed grid graph G of size n×m with in-degree
and out-degree at most 1, and two vertices s and t of G, does there exists a
directed path from s to t in G?

Given such a directed grid graph, the idea of the reduction is straight-
forward: every directed path is encoded by an analogue wire using WIREi,o

gates, s is encoded by a 1 impulse, and t is encoded by a FUSIBLE gate,
all this on a background of NOP gates. More precisely, the reduction maps
every vertex to a gate as follows (see Figure 3 for an illustration):

• s is encoded by a valid block with value 1 on every side;

• t is encoded by a FUSIBLEi gate with i the side of the arc whose head
is t;

• any other vertex v having in-degree and out-degree 1 is encoded by a
WIREi,o gate, where i is the side of the arc whose head is v, and o is
the side of the arc whose tail is v;

• any other point of the n×m rectangle is encoded by a NOP gate;

s
t

reduces to

0

0

0 0 0 0

1 F

Figure 3: Reduction from 11GGR to the prediction problem on a dynamical circuit with
WIREi,o, NOP and FUSIBLEi gates. Wires are indicated by arrows, 1 is a valid block
with value 1 on every side (corresponding to s), F is the FUSIBLE gate whose input is
pointed, and 0 are NOP gates.

The instance of Pred asks for the state of the distinguished cell of the
unique FUSIBLE gate at time (nm + 1)∆, which corresponds to the length
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of the longest possible path plus one additional delay for the fusible to
melt. This reduction can be computed in parallel (each gate separately)
on a CREW-PRAM, using a constant time and nm processors. It can there-
fore be implemented by a family of circuits in the AC 0 class (polynomial
size and bounded depth circuits), according to the time-processors/depth-size
correspondance presented in [27].

When doing circuit simulations in the weak mode one cannot expect
information processing to happen in a fixed region of space since gadget
simulating gates are potentially destroyed after their first use. However, it
is perfectly possible to handle unbounded one-dimensional computations by
having a one-dimensional computation front that progresses in the 2D lattice
during the evolution and therefore fires each gadget at a given position only
once. For instance, the computation front can be diagonal so that the value
of cell z ∈ Z at time t of the 1D computing process is read in the block
(t+ z, t− z) at some time O(t) is the 2D simulating CA. With AND, OR
and crossings gates, it is possible to organize arbitrary computations in that
way.

Proposition 10. If a 2D CA F can simulate a {AND,OR,CROSS} circuitry
then it can simulate any 1D CA with a constant time slowdown, and therefore
it is Turing-universal and its prediction problem Pred is P-complete.

Proof. Consider any finite set Q and any local function f : Q2 → Q. There
is some k and some encoding φ : Q→ {0, 1}k such that φ is injective and
Img(φ) does not contain two comparable strings of bits for the component-
wise order ≺ (e.g. 10 ≺ 11 but 01 6≺ 10). Therefore there is a monotone
function f ′ : {0, 1}k × {0, 1}k → {0, 1}k that simulates f up to the recoding
φ, i.e.

• u1 ≺ v1 and u2 ≺ v2 ⇒ f ′(u1, u2) ≺ f ′(v1, v2);

• ∀q1, q2 ∈ Q, φ(f(q1, q2)) = f ′
(
φ(q1), φ(q2)

)
.

Then there is a monotone layer-synchronous dynamical circuit that computes
f ′ (because there is a classical circuit that does) so, by Lemma 8, f ′ is
computed by F using valid blocks of the circuit simulation. Moreover, using
wires and crossings and the constructions of Lemma 8, we can construct a
valid meta-block that receives inputs x and y on its west and south sides
(respectively) and produces f ′(x, y) both on its north and east sides (see
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figure 4). Using zig-zag wiring techniques as in lemma 8 we can ensure that
all logical connections are realized by paths of the same length so that both
outputs of the meta block are produced at the same time when inputs come in
synchronously. Since f ′ simulates f through the encoding φ, we can associate

X

Y

f ′(X,Y )

Lemma 8

X f ′(X, Y )

f ′(X, Y )

Y

Figure 4: A block simulating the local transition function of a 1D CA.

a set of meta blocks Bq to each q ∈ Q. Then, starting from any configuration
C : Z2 → Q representing a concatenation of aligned meta blocks on a meta
Z2 grid (meta block of type BC(z) at position z ∈ Z2), the CA F simulates
on each diagonal the 1D CA with two neighbors and local transition function
f . Formally, it can be expressed at the meta block level by

F T (C)(i,j) ∈ Bf(C(i−1,j),C(i,j−1))

where T is the time constant common to all meta blocks.
Choosing f and Q appropriately we deduce Turing-universality of F (it

is straightforward to build a 1D CA with 2 neighbors that simulates a given
Turing machine).

Choosing f and Q so that the corresponding 1D CA has a P -complete
prediction problem we deduce P -completeness of the prediction problem of
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F . For instance, we can take the 2-block recoding of elementary CA 110
which is P-complete [28], i.e. Q = {0, 1}2 and f such that:

f
(
(x0, x1), (x2, x3)

)
=
(
f110(x0, x1, x2), f110(x1, x2, x3)

)
.

The reduction of the prediction problem of this 1D CA to the prediction
problem of F is a truth table reduction done as follow: to an input (w, t, z)
for the prediction problem in the 1D CA made of a 1D word w ∈ Q∗ of size n
a time t and a position z ∈ Z we associate the finite set of input (W,Tt, zj)j
where

• W is a n× n pattern of meta blocks which are all the same Bq0 except
on the diagonal where Bwi

is at position (i,−i);

• zj = (K(z + Tt),−Kz) + εj where K is the size of the meta blocks and
{εj} = [0, K − 1]× [0, K − 1] are all the finite positional offsets needed
to visit all cells of the meta block.

The simulation by diagonals ensures that the reduction is correct: knowing
the entire meta-block at meta-position (z + Tt,−z) at time Tt allows to
know its type and therefore the value of cell z after t iteration of the 1D CA
on input w. This reduction is also clearly logspace computable (the size and
complexity of meta blocks is just a constant in the reduction).

The next proposition formalizes what has been present informally in the
literature since a long time[12, 13]: for 2D CA, intrinsic universality is equiv-
alent to the ability to simulate a rich enough re-usable circuitry. Using The-
orem 4, we can state it in a stronger way where only monotone gates are
required.

Proposition 11. A 2D CA F can simulate in a re-usable way the gates
{AND,OR} if and only if it is intrinsically universal. In that case its predic-
tion problem is P-complete and its f -cycle problem is PSPACE-complete
for any f with 1 ≤ f(n) ≤ 2O(n).

Proof. First, if F is intrinsically universal then it is strongly intrinsically
universal [14], so in particular it can strongly simulate any CA which is
well known for its ability to simulate AND OR gates in a re-usable way,
for instance the CA of Banks [12] which has 2 states and von Neumann
neighborhood, or the well-known “Game of Life” [29]. The ability to simulate
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a set of gates is preserved by strong simulation (the simulating CA does if
the simulated CA does).

For the other direction, consider some F that simulates gates {AND,OR}
in a re-usable way. We proceed in a similar way as in proof of Proposi-
tion 10, except that all simulations here are re-usable. Consider any finite
set Q and any f : Q4 → Q. It can be encoded into a monotone function

f ′ :
(
{0, 1}k

)4 → {0, 1}k which can be computed by a dynamical monotone
circuit because it can be computed by a classical monotone circuit. Then,
using lemma 8, we know that F can simulate in a re-usable way f ′ using
valid blocks. From that construction we can obtain, by rewiring and cross-
ing (lemma 8 actually implies that a re-usable crossing meta block is con-
structible), a meta block that receive one input from each side encoding a
state of Q, computes f ′ on this 4-uple and sends the result to each side (see
Figure 5). Since f ′ simulates f through the encoding φ, we can associate a

f ′(E,N,W, S)

f ′(E,N,W, S)

f ′(E,N,W, S)

f ′(E,N,W, S)

S

W

N

E f ′(E,N,W, S)

Lemma 8

E

N

W

S

Figure 5: A block simulating in a re-usable way the local transition function of a 2D CA.

set of meta blocks Bq to each q ∈ Q. Then, starting from any configuration
C : Z2 → Q representing a concatenation of aligned meta blocks on a meta
Z2 grid (meta block of type BC(z) at position z ∈ Z2), the CA F simulates
the CA with von Neumann neighborhood and local transition function f .
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Formally, it can be expressed at the meta block level by

F T (C)(i,j) ∈ Bf(C(i+1,j),C(i,j+1),C(i−1,j),C(i,j−1))

where T is the time constant common to all meta blocks.
Choosing f to be intrinsically universal, we deduce that F is intrinsically

universal. Now consider a 2D CA G with the following properties:

• its states set allows to form structured N ×N patterns, where some
O(N) part encodes an instance of the quantified Boolean formula prob-
lem (QBF) (see for instance [30]), some O(N) part is reserved to all
the necessary computation to test the existence of a solution to the
problem, and a Ω(N ×N) part allows to encode a binary counter of
length Ω(N ×N);

• starting from a valid pattern as above, it starts to search (by brute
force) for a solution to the QBF problem;

• if it doesn’t find any solution, it erases everything with a spreading
state, so that it reaches a fixed point;

• if it finds a solution, it start to increment the binary counter at each step
forever (the counter restart to 0 when its maximal value is reached), so
that it enters a temporal cycle of length Ω(2N×N).

It is straightforward to design such a CA G with a simple enough struc-
ture so that the f -cycle problem of G is PSPACE-complete for any f with
1 ≤ f(n) ≤ 2O(n). Indeed, the CA G converges to a cycle of length 1 (hence
smaller than f(n)), or a cycle of length Ω(2N×N) (hence larger than f(n) for
large enough n) depending on whether the QBF instance has a solution or
not. The fact that QBF is PSPACE-complete (see for instance [30]) allows
to conclude.

4. Uniform Signed Majority Cellular Automata

In this section we will study usmca both in their dynamical properties
and their complexity. Recall that usmca are signed majority cellular au-
tomata where each cell has the same sign vector.

There are 32 possible sign vectors, hence 32 different usmca. However,
from those 32 usmca only 12 are different up to rotation. We subdivide these
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Name Sign vector Group
(wc, wn, we, ws, ww)

F1 (+1,+1,+1,+1,+1) Symmetric
F 1 (−1,−1,−1,−1,−1) Symmetric
F2 (+1,−1,−1,−1,−1) Symmetric
F 2 (−1,+1,+1,+1,+1) Symmetric
F3 (+1,−1,+1,−1,+1) Symmetric
F 3 (−1,+1,−1,+1,−1) Symmetric
F4 (+1,+1,−1,−1,+1) Antisymmetric
F 4 (−1,−1,+1,+1,−1) Antisymmetric
F5 (+1,+1,−1,+1,+1) Asymmetric
F 5 (−1,−1,+1,−1,−1) Asymmetric
F6 (+1,−1,−1,−1,+1) Asymmetric
F 6 (−1,+1,+1,+1,−1) Asymmetric

Table 1: List of the six Symmetric, two Antisymmetric, and four Asymmetric usmcawith
their respective sign vectors.

12 usmca into the following three groups, according to the symmetries of
the sign matrix W = (wuv)u,v∈Z2 . We say that a usmca is symmetric if
W is a symmetric matrix, i.e. wuv = wvu for each pair of cells u, v. On
the other hand, we say that a usmca is antisymmetric if W satisfies that
wuv = −wvu for each pair of cells u, v. When the usmca is neither symmetric
nor antisymmetric, we say that it is asymmetric. There are six Symmetric,
two Antisymmetric, and four Asymmetric usmca, shown in Figures 6, 7 and
8, respectively.

Some rules are equivalent under simple transformations of configurations
and these transformations preserve their ability to simulate gates sets. One
could imagine a lot of simulation-preserving transformations, but the fol-
lowing will be sufficient for our purpose. A block permutation is a bijective
transformation of QZ2

which consists in partitioning the space into n× n
blocks in a Z2-regular way, applying a common permutation π of Qn×n on
each n× n block of the configuration. Such a transformation is given by n, π
and the alignment of blocks. Two CAs F and G are block conjugate if there
is a block permutation Φ such that F ◦ Φ = Φ ◦G. The following lemma
shows that block-conjugacy preserves simuation of gate sets. The informal
intuition of this fact is very simple: if F is block-conjugate to G via Φ and
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Figure 6: The six Symmetric usmca are called, from left to right in the first line F1, F2, F3

and F 1, F 2, F 3 in the second line.
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Figure 7: The Antisymmetric usmca are called from left to right: F4 and F 4.
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Figure 8: The four Asymmetric usmca are called F5, F6 (in the top line) and F 5, F 6 (in
the bottom line).
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can simulate a gate set using a set of valid blocks V , then G simulate the
same gate set using the blocks obtained by applying Φ to the blocks of V .
However there is a technical complication: if the size of blocks of V and the
size of blocks used by Φ are multiplicatively independent then several align-
ments occur. This is solved by expanding blocks of V to a convenient size
which is always possible thanks to the freedom allowed in Definition 5.

Lemma 12. If two CAs F and G are block-conjugate then they can simulate
the same sets of gates under the same mode.

Proof. Let Φ be the block permutation giving the conjugacy F ◦ Φ = Φ ◦G
and denote by n0 the size of blocks it uses. Suppose that G can simulate a
set of gates with valid blocks VG of size N ×N and delay ∆. For each block
B ∈ VG (supposing that B as outputs at north and east, other cases are
similar) we define the corresponding block B′ of size n0N × n0N as follows:

B

↑

...

↑

→ · · · →

where arrows correspond to wires (with input/output positions given by the
arrow) and the blank part is filled with NOP blocks. We get a set V ′G of
blocks and it is straightforward to check that G simulate the same set of
gates with blocks V ′G and delay n0∆ (the type given to B′ is the type of
B). Now let B′′ be the block obtained by applying Φ to B′ with the correct
alignment (the lower-left corner of B′ coincides with the lower-left corner of a
block of Φ). We get a set VF of blocks of size n0N × n0N with the following
property: any concatenation of blocks of VF is the image under Φ of the
corresponding concatenation of blocks of V ′G and, after n0∆ steps of F and
G respectively, this correspondence is preserved between images. We deduce
that F simulate the set of gates under the same mode. The lemma follows
because block-conjugacy is a symmetric relation.

The following lemma shows that there are only 3 essentially different rules
up to block-conjugacy.
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Lemma 13. Let F be a symmetric (resp. antisymmetric, resp. asymmetric)
usmca then F is block-conjugate to F1 (resp. F4, resp. F5).

Proof. Let α : {−1, 1}Z2 → {−1, 1}Z2
be defined as α(x) = −x. We begin

showing that for every i ∈ {1, 2, 3, 4, 5, 6}, any configuration x ∈ {−1, 1}Z2

and any t ≥ 0, we have that F t
i = αt ◦ F t

i. Indeed, notice that if W is the
sign matrix of rule Fi and W is the sign matrix of rule F i, then W = −W .
This implies that for every v ∈ Z2∑

u∈N(v)

wuvxu = −
∑

u∈N(v)

(−wuv)xu ⇒ Fi(x) = −F i(x)

and inductively,∑
u∈N(v) wuv(F

t
i (x))u =

∑
u∈N(v) wuv ·

[
(−1)t · (F t

i(x))u

]
= (−1)t+1

∑
u∈N(v)(−wuv) · (F

t

i(x))u

⇒ F t+1
i (x) = (−1)t+1F

t+1

i (x) = αt+1(F
t+1

i (x)).

Consider now the function β : {−1, 1}Z2 → {−1, 1}Z2
such that

β(x)(i,j) =

{
−x(i,j) if i+ j is even,
x(i,j) if i+ j is odd.

Then F t
1 = β ◦ F t

2 ◦ β and F
t

1 = β ◦ F t

2 ◦ β. Indeed, let W = (wuv)u,v∈Z2

be the sign matrix of F1 (respectively F 1) and W ′ = (w′uv)u,v∈Z2 be the sign
matrix of F2 (respectively F 2). Notice that for every u 6= v we have that
wuv = −w′uv. Then for every v = (i, j) ∈ Z2 if we write

∑
u∈N(v)

wuvxu =


−

 ∑
u∈N(v),u6=v

(−wuv) · xu + wvv(−xv)

 if i+ j is even,∑
u∈N(v),u 6=v

(−wuv) · (−xu) + wvvxv if i+ j is odd.

we obtain F1(x) = β((F2(β(x))) and F 1(x) = β((F 2(β(x))). Since β◦β = id,

then for any t ≥ 0, F t
1 = β ◦ F t

2 ◦ β and F
t

1 = β ◦ F t

2 ◦ β.
Consider finally the function γ : {−1, 1}Z2 → {−1, 1}Z2

such that

γ(x)(i,j) =

{
−x(i,j) if i is even
x(i,j) if i is odd
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Then F t
1 = γ ◦ F t

3 ◦ γ, F
t

1 = γ ◦ F t

3 ◦ γ, F t
5 = γ ◦ F t

6 ◦ γ and F
t

5 = γ ◦ F t

6 ◦ γ.
Indeed, let F = F1 (resp. F 1, F5, F 5) and F ′ = F3 (resp. F 3, F6, F 6),

let W = (wuv)u,v∈Z2 be the sign matrix of F and W ′ = (w′uv)u,v∈Z2 the sign
matrix of F ′ . Clearly for any (i, j), we have that wc = w′c, we = w′e and
ww = w′w, while wn = −w′n and ws = −w′s. If we write for v = (i, j),

∑
u∈N(v)

wuvxu =


− [wc(−xv) + (−wn)xvn + we(−xve)

+(−ws)xvs + ww(−xvw)] if i is even,
wcxv + (−wn)(−xvn) + wexve

+(−ws)(−xvs) + wwxvw if i is odd.

Then clearly F = γ ◦ F ′ ◦ γ, and since γ ◦ γ = id, we conclude that
F t = γ ◦ (F ′)t ◦ γ

Theorem 14. Any symmetric rule can simulate planar monotone layer-
synchronous dynamical circuit, and has a NC 1-hard prediction problem.
However, it cannot simulate re-usable monotone circuitry and is not intrin-
sically universal.

Proof. Figure 9 presents how F1 can simulate planar monotone layer syn-
chronous dynamical circuit (Lemma 8): W , AND and OR gates. Thanks
to the additional FUSIBLE gate, Proposition 9 allows to conclude the NC 1

hardness of F1, hence of all symmetric rules (Lemma 13). Concerning the
second part of the statement, Theorem 1 implies that the f -cycle problem is
trivial for symmetric rules when f is constant equal to 3. By proposition 11
these rules cannot be intrinsically universal and cannot simulate re-usable
AND OR circuitry.

The symmetric rules are limited due to their trivial behavior on limit
cycles. The following theorems show that antisymmetric and asymmetric
rules are not as trivial concerning the limit cycles.

Theorem 15. Any antisymmetric signed majority cellular automaton can
exhibit limit cycles of length Ω(N), where N is the number of sites.

Proof. From Lemma 13 we know that it is enough to prove the result for rule
F4. Let n ≥ 16 be such that (n − 12)/4 is even, and consider the following
configuration in a grid of size n × n: in the first line of the grid repeat
(n− 12)/4 times the pattern (1, 1,−1,−1). Then, in the 12 remaining cells,
repeat twice the pattern (1, 1,−1,−1,−1,−1). Then, in the consecutive
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(a) A wire is constantly blinking (left top) and transmits a signal by being con-
sumed (left bottom). A turn (center left). An obstructor prevents a signal (center).
A multiplier (center right). These gadgets can straightforwardly be composed to
simulate a wiring toolkit W . Plus a diode (right).

×

(b) OR (left), AND (center) and FUSIBLE (right, with a distinguished cell)
gates. These gates have a particular feature: the four sides are undifferentiated
inputs/outputs. For example, the AND gates waits for any two signals to arrive,
and then sends a signal to the two remaining sides. One can easily transform them
into classical gates using diodes.

Figure 9: F1 simulates planar monotone layer-synchronous dynamical circuit. Animations
are presented on Appendix A.

lines, copy the pattern of the previous lite and shift the pattern one cell to
the west. Finally, pick a special line i, and in the parts of the line with four
consecutive sites in state −1, replace (−1,−1,−1,−1) by (−1,−1, 1,−1),
call this line a perturbation. In Figure 10 there is an example for n = 20.
This configuration satisfies that the perturbation is shifted two sites to the
north and two sites to the west every 2n steps. Therefore, a limit cycle of
length N = n2 is obtained.
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Figure 10: Example of a pattern of size n×n for n = 20, that exhibits a limit cycle of length
n2 when updated according to the antisymmetric rule F4. In the figure are represented
steps 0, 10, 20, 30 and 40, form left to right. Note that at step 40 the configuration has
shifted two sites to the north and two sites to the west.
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Theorem 16. Any asymmetric signed majority cellular automaton can ex-
hibit limit cycles of super-polynomial length.

Proof. From Lemma 13, it is enough to show long limit cycles just for rule
F5. We start showing how to build a cycle gadget with k perturbations, which
in a finite periodic configuration of size 8× n exhibits limit cycles of length
n if k = 0 and limit cycles of length n(n/2 + k) if k > 0. Figure 11 shows
the cycle gadget with zero perturbation: a particle moves through a wire:
a straight horizontal line of cells initially in state −1. In the top of this
line, there is a series of straight lines of three cells alternating states. In the
bottom, another series of straight lines alternating in inverse order. In the
middle line two consecutive cells in state 1 form a particle, which in each
step moves one cell to the east.

A perturbation corresponds to change the state from 1 to −1 to a cell
in the top line of the wire, and k perturbations correspond to change the
same changes to k consecutive cells in the top line of the wire (see Figure
12). Each perturbation delays the particle by two time steps compared to
the case without perturbation. Moreover, each time that the particle passes
through a perturbation, the configuration shifts two cells to the west. For
a cycle gadget with k > 0 perturbations, we obtain limit cycles of length
n/2(n+ 2k) = n(n/2 + k).

We can compose several cycles gadgets with different numbers of pertur-
bations, as shown on Figure 13. Notice that the dynamics of one cycle gadget
do not affect the others. The length of the composition’s limit cycle is then
the least common multiple of the limit cycles of each cycle gadget.

Let π(n) be the number of prime numbers in (n/2, n). Consider the
composition of every cycle gadget with perturbation in {p1−n/2 . . . , pπ(m)−
n/2}, such that {p1 . . . , pπ(m)} are all the prime numbers in (n/2, n). We
obtain a periodic configuration of size N = n×m, where m = O( n

logn
), and

with a limit cycle of length n · lcm(p1, . . . , pπ(m)) = 2Ω(n) = 2Ω(N1/3) (which
can be deduced from the Prime Number Theorem [31]).
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Figure 11: Example of 5 steps of cycle gadget with zero perturbations, for n = 8. The
state 1 (resp. −1) is represented as a black cell (resp. white cell). The moving particle
takes n steps to return to the initial configuration.

Figure 12: Examples of perturbations in the cycle gadgets for rule F5. The first line
represents the dynamics of a cycle gadget of size n = 8 with one perturbation, notice that
the limit cycle reached in this case has period n(n/2+1). On the second line is represented
the first 5 steps in the dynamics of the cycle gadget with two perturbations, reaching a
cycle of length n(n/2 + 2).

Figure 13: Composition of three cycle gadgets with zero, one, and two perturbations. The
length of the limit cycle in this case is n · lcm(n/2 + 1, n/2 + 2)
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Theorem 17. Any asymmetric signed majority CA can simulate {AND, OR,
CROSS} circuitry. It is therefore Turing-universal and has a P-complete
prediction problem.

Proof. From Lemma 13 we know that it is enough to prove the result for
rule F5. In Figures 16 and 17 we present the elements required to apply
Proposition 10. Given the intrinsic asymmetry of this rule, different gadgets
are required to transmit information in the different orientations. In Figure
16 are presented the 12 possible wires, while in Figure 17 we present the gate
gadgets. Remark that we do not present explicitly the CROSS gadget, but
enough tools in order to build it. Indeed, we present the following functions:

(¬west)And(north)(x, ∗, ∗, y) = (0, (1− y)x, 0, 0),

(west)And(¬north)(x, ∗, ∗, y) = (0, (1− x)y, 0, 0),

from which we can compute a xor gate gadget using the formula.

(P )xor(Q) = (P ∧ ¬(P ∧Q)) ∨ (Q ∧ ¬(P ∧Q)).

We simulate the CROSS gate using the gadgets on Figures 14 and 15.

1 2 3

5

1

4

Figure 14: Representation of a xor gate. Diamonds numbered 1 represent a MULTI-
PLY gate, the diamond numbered 2 represent a AND gate (with two outputs using a
MULTIPLY gadget). The diamonds numbered 3 and 4 represent (¬west)And(north) and
(west)And(¬north) gates, respectively (Figure 17(b)). The diamond numbered 5 repre-
sent an OR gate (with two outputs using a MULTIPLY gadget). Finally, the circular
shaped nodes are wires (Figure 16).
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1 2 3

1

3

Figure 15: CROSS gate. Diamonds 1 represent MUTLIPLY gates. The diamonds num-
bered 2 and 3 represent a xor gadgets.
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(a) WIREw,e (b) WIREe,w (c) WIREn,s (d) WIREs,n

(e) WIREs,e (f) WIREw,s (g) WIREn,w (h) WIREe,n

(i) WIREe,s (j) WIREn,e (k) WIREw,n (l) WIREs,w

Figure 16: Wires for the rule F5 (asymmetric). Recall that WIREx,y is a wire from
direction x to direction y with x, y ∈ {n (north), e (east), s (south), w (south)}. The state
1 (resp. −1) is represented as a black (resp. white) cell. Subfigures 16a to 16d represent
the block during its evolution after a bit 1 arrived to the corresponding side. The other
subfigures show the block in its initial state before any information arrives. Animations
are presented on Appendix B.
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(a) AND (left) and OR (right) gates. The inputs are from north and west, and
the outputs at east.

(b) (¬west)And(north) and (west)And(¬north) gates. These gates receive inputs
from north and west, and output to the east.

(c) MULTIPLY gadgets, with inputs from the north and west sides.

Figure 17: Gates for the rule F5. The state 1 (resp. −1) is represented as a black (resp.
white) cell. CROSS gadget can be constructed using the gadgets presented on Figure 17b.
Animations are presented on Appendix C.
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5. Non-Uniform Signed Majority Cellular Automata

In the non-uniform case we are able to prove that intrinsic universality can
be achieved in general, but that the symmetry hypothesis prohibits it while
still permitting Turing universality and P-completeness of the prediction
problem.

Theorem 18. The non-uniform signed majority cellular automaton can sim-
ulate {AND,OR} circuitry in a re-usable way. It is therefore intrinsically
universal by Proposition 11.

Proof. The whole construction assumes that cells are in state 1 by default,
which will represent the Boolean value 0. The Boolean value 1 is represented
by cells in state −1, and these −1 values move along the circuit like sparse
electrons. The movement of these electrons is controlled by the local sign
matrix on each cell. The key point is to guarantee that cells go back to state
−1 after the passage of these electrons.

In all the blocks gadgets given below the value on each side is simply
given by a cell at a specific position. Therefore we only show the version of
gadgets with all sides representing value 0. In each case we give the “impulse
reponse” of the gadget showing that the desired value in computed at the
output(s) at a precise time and that the gadget goes back to its initial state
after the passage of electron thus ensuring re-usability.

• the background element:

+

+

+
+

+
+

+

+
+

+

+

+

+
+

+
+

+

+
+

+

The value of the cells in this block stay unchanged whatever the context.
Moreover, we can aggregate cells with all-positive signs to these blocks
to pad our gadgets to a common global square shape: an all-positive
signed cell stays unchanged as soon as it is connected to 2 cells that
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stay unchanged. Therefore, in the following, we give only the core of
the gadgets and denote by B the sides of cells that must be connect to
the invariable background to ensure the correctness of the construction.

• the wire element:

-

+

+
-

+

B

B

OUTIN

time IN OUT
t 0 0
t+ 1 1 0
t+ 2 0 1
t+ 3 0 0

We now give the impulse response of the gadget: the B elements are
supposed invariable during all the evolution, IN denotes what is re-
ceived from IN by the gadget, OUT denotes what is sent to OUT from
the gadget. Moreover, we assume that the cell at position OUT stays
in state 1 during the evolution. As this it is not a square block of cells
as required by definition 5 (in particular the B blocks are of size 2× 2).
However, it is straightforward to repeat it and pad with B blocks and
all-+

• the OR element:

-

+

+
-

+

IN2

B

OUTIN1

time IN1 IN2 OUT
t 0 0 0
t+ 1 a b 0
t+ 2 0 0 a ∨ b
t+ 3 0 0 0

• the AND element:

-

+

+
+

+

IN2

B

OUTIN1

time IN1 IN2 OUT
t 0 0 0
t+ 1 a b 0
t+ 2 0 0 a ∧ b
t+ 3 0 0 0
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• the multiply element:

-

+

+
-

+

B

IN -

+

+
-

+

B

B

OUT1

-

+

-
+

+
BB

OUT2

time IN OUT1 OUT2
t 0 0 0
t+ 1 1 0 0
t+ 2 0 0 0
t+ 3 0 1 1
t+ 4 0 0 0

Theorem 19. The non-uniform symmetric signed majority cellular automa-
ton can simulate {AND,OR,CROSS} circuitry. It is therefore Turing-universal
and has a P-complete prediction problem. However, it cannot simulate {AND,OR}
circuitry in a re-usable way and it is not intrinsically universal.

Proof. For the second part of the proof (impossibility to simulate re-usable
monotone circuitry and non intrinsic universality) we proceed like in the proof
of Theorem 14: by symmetry of the rule, Theorem 1 implies that the f -cycle
problem is trivial when f is constant equal to 3. Therefore by proposition 11
these rules cannot be intrinsically universal and cannot simulate re-usable
AND OR circuitry.

Figure 18 presents the elements required to apply Proposition 10. As in
the asymmetric case, the CROSS gate is constructed using (¬west)And(north)
and (west)And(¬north) gadgets.
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+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

+ + + + +

− − − − −

− − − − −

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ − − +

+ − − +

+ − + +

+ + + +

+ + + +

+ + + + +

+ + + − −

+ + − − −

+ + + + +

(a) WIREn,s and WIREn,e gadgets. Notice that these gadgets can be turned to
be used as WIREs,w or Wiree,n. Moreover, they can trivially be transformed into
any other wire.

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ − − +

+ − − +

+ + + +

+ + + +

+ + + +

+ + + + +

− − + − −

− − − − −

+ + + + +

+ + + + +

+ + + + +

+ + − + +

+ + + + +

+ + + + +

+ − − +

+ − − +

+ + + +

+ + + +

+ + + +

+ + + + +

− − + − −

− − − − −

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ + + + +

+ − − +

+ − − +

− + + +

+ + + +

+ + + +

+ + + + +

− − + − −

− + − − −

+ + + + +

(b) AND gate, OR gate and (¬west)And(north) gadgets. Inputs are from north
and west, and outputs to east.

Figure 18: Gadgets for the non-uniform symmetric case. The state 1 (resp. −1) is
represented as a gray (resp. white) cell. The sign in the edges and into the nodes represent
the signs of the corresponding edges in the sign matrix. Thicker nodes are highlighted
because they convey the information flow. A MULTIPLY gadget can be constructed
by rotating an OR gate. Like in the uniform asymmetric case, the CROSS gadget can
be constructed using the (¬west)And(north) gate, which can be trivially rotated to be
transformed into a (west)And(¬north) gate.

39



6. Conclusion

This paper gives new hardness and universality results for the class of
signed majority cellular automata. Apart from their use in various models
arising in physics, they proved to be an interesting class of cellular automata
to illustrate different level of complexity and universality related to different
kinds of circuit simulation. Results are summarized in the following tables:

Uniform Rules Symmetric Antisymmetric Asymmetric
Complexity of
problem Pred

NC1-Hard
(Theorem 14)

?
P - Complete
(Theorem 17)

Complexity of
f -Cycle problem

Polynomial
(trivial if f ≥ 3)

(Theorem 1)
PSPACE PSPACE

Universality
Not Intrinsically

Universal
(Theorem 14)

?
Turing Universal

(Theorem 17)

Maximun cycle
length

2
(Theorem 1)

Ω(n)
(Theorem 15)

2Ω(n1/3)

(Theorem 16)

Table 2: Summary of the complexity results for the uniform rules, classified in Symmetric,
Antisymmetric and Asymmetric.

Nonuniform
Rules

Symmetric Antisymmetric Asymmetric

Complexity of
problem Pred

P-Complete
(Theorem 19)

?
P - Complete
(Theorem 18)

Complexity of
f -Cycle problem

Polynomial
(trivial if f ≥ 3)

(Theorem 1)
PSPACE

PSPACE
Complete

(Theorem 18)

Universality

Turing Universal,
but not

Intrinsically
Universal

(Theorem 19)

?
Intrinsically
Universal

(Theorem 18)

Maximun cycle
length

2
(Theorem 1)

Ω(n)
(Theorem 15)

2Ω(n)

(Theorem 18)

Table 3: Summary of the complexity results for the non-uniform rules, classified in Sym-
metric, Antisymmetric and Asymmetric.
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It is important to point out that C. Moore’s conjecture [1], which states
that the Pred for the majority rule is in NC (all positive weights), is not
true for non-uniform signed majority (since we proved that is P-Complete).
However, if the conjecture is true for the majority rule, then it will be for all
uniform symmetric signed majority rules.

We think that this work calls for the following future research or questions:

• look for other widgets, especially in anti-symmetric rules where we have
few results;

• use decreasing energy or potential techniques to prove structural results
on the kind of configurations that can embed computation;

• use communication complexity to possibly prove upper bounds on some
rules that would contradict the existence of a specific circuit simulation;

• what is the prediction complexity of the symmetric majority rule? is
it Turing universal in at least some weak sense?
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Appendix A. Animations of Figure 9

Appendix A.1. Wire

Appendix A.2. Wire transmitting a signal

Appendix A.3. Turn

Appendix A.4. Turn transmitting a signal

Appendix A.5. Obstructor

Appendix A.6. Multiplier
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Appendix A.7. Diode (blocking)

Appendix A.8. Diode (non-blocking)

Appendix A.9. Or (signal from the north)
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Appendix A.10. Or (signal from the west)
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Appendix A.11. Or (signals from the north and west)

Appendix A.12. And (signal from the north)

48



Appendix A.13. And (signal from the west)
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Appendix A.14. And (signals from the north and west)

Appendix A.15. Fusible
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Appendix B. Animations of Figure 16

Appendix B.1. WIREw,e

Appendix B.2. WIREe,w

51



Appendix B.3. WIREn,s

Appendix B.4. WIREs,n

Appendix B.5. WIREs,e

Appendix B.6. WIREw,s
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Appendix B.7. WIREn,w

Appendix B.8. WIREe,n

Appendix B.9. WIREe,s
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Appendix B.10. WIREn,e

Appendix B.11. WIREw,n

Appendix B.12. WIREs,w
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Appendix C. Animations of Figure 17

Appendix C.1. And (signal from the north)

Appendix C.2. And (signal from the west)
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Appendix C.3. And (signals from the north and west)

56



57



Appendix C.4. Or (signal from the north)
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Appendix C.5. Or (signal from the west)
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Appendix C.6. (¬west)And(north) (signal from the north)
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Appendix C.7. (¬west)And(north) (signals from the north and west)
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Appendix C.8. (west)And(¬north) (signal from the west)
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Appendix C.9. (west)And(¬north) (signals from the north and west)
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Appendix C.10. Multiply with input from the north
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Appendix C.11. Multiply with input from the west
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