Domains for Dirac-Coulomb min-max levels - Archive ouverte HAL
Article Dans Une Revue Revista Matemática Iberoamericana Année : 2019

Domains for Dirac-Coulomb min-max levels

Résumé

We consider a Dirac operator in three space dimensions, with an electrostatic (i.e. real-valued) potential $V(x)$, having a strong Coulomb-type singularity at the origin. This operator is not always essentially self-adjoint but admits a distinguished self-adjoint extension $D_V$. In a first part we obtain new results on the domain of this extension, complementing previous works of Esteban and Loss. Then we prove the validity of min-max formulas for the eigenvalues in the spectral gap of $D_V$, in a range of simple function spaces independent of $V$. Our results include the critical case $\liminf_{x \to 0} |x| V(x)= -1$, with units such that $\hbar=mc^2=1$, and they are the first ones in this situation. We also give the corresponding results in two dimensions.
Fichier principal
Vignette du fichier
ELS-domains_vfinal_RMI_v2.pdf (572.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01467766 , version 1 (14-02-2017)
hal-01467766 , version 2 (28-09-2017)
hal-01467766 , version 3 (08-11-2017)
hal-01467766 , version 4 (08-04-2019)

Identifiants

Citer

Maria J. Esteban, Mathieu Lewin, Eric Séré. Domains for Dirac-Coulomb min-max levels. Revista Matemática Iberoamericana, 2019, 35 (3), pp.877-924. ⟨10.4171/rmi/1074⟩. ⟨hal-01467766v4⟩
637 Consultations
261 Téléchargements

Altmetric

Partager

More