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We consider a Dirac operator in three space dimensions, with an electrostatic (i.e. real-valued) potential V (x), having a strong Coulomb-type singularity at the origin. This operator is not always essentially self-adjoint but admits a distinguished self-adjoint extension DV . In a first part we obtain new results on the domain of this extension, complementing previous works of Esteban and Loss. Then we prove the validity of min-max formulas for the eigenvalues in the spectral gap of DV , in a range of simple function spaces independent of V . Our results include the critical case lim infx→0 |x|V (x) = -1, with units such that = mc 2 = 1, and they are the first ones in this situation. We also give the corresponding results in two dimensions. Contents 1 Domains of Dirac-Coulomb operators in 3d . . . . . . . . . . . . . . . . 4 2 Domains for min-max formulas of eigenvalues .

In [START_REF] Esteban | Existence and multiplicity of solutions for linear and nonlinear Dirac problems[END_REF][START_REF] Griesemer | A minimax principle for the eigenvalues in spectral gaps[END_REF][START_REF]Variational characterization for eigenvalues of dirac operators[END_REF][START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF], variational min-max formulas were provided for the eigenvalues in gaps of self-adjoint operators. These formulas are based on a decomposition H = Λ + H ⊕ Λ -H given by two orthogonal projectors Λ ± of the ambient Hilbert space H, and take the general form (0.1)

λ (k) = inf W ⊂F + dim(W )=k sup ψ∈W ⊕F - ψ, Aψ ψ 2 .
Here, F ± = Λ ± F , with F a dense subspace of H such that the quadratic form ψ, Aψ is well-defined on F + ⊕ F -.

The equation (0.1) is similar to the usual Courant-Fischer (a.k.a. Rayleigh-Ritz) formula for the eigenvalues below the essential spectrum. The main difference is that the infimum is restricted to vectors in the "positive" subspace F + and that the supremum is computed over the infinite-dimensional space W ⊕ F -containing the whole "negative" space F -. Some additional technical constraints on F are needed, they are discussed in detail below.

From the spectral theorem one can see that formula (0.1) provides all the eigenvalues above a number a ′ in the gap and below the next threshold of the essential spectrum, in nondecreasing order and counted with multiplicity, provided that we use for Λ -the spectral projector 1(A a ′ ) and, for instance, F = D(A). Intuitively, formula (0.1) should remain correct if Λ -is not too far from this spectral projector. The main discovery of [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] was that the correct criterion for formula (0.1) to provide the eigenvalues, is the inequality

λ (1) > a := sup ψ-∈F - ψ -, Aψ - ψ -2 .
In practical cases, such a condition can be fulfilled for projectors Λ -which are quite far from the exact spectral projector 1(A a ′ ). Exploiting this freedom, one can choose Λ -so that the evaluation of the supremum in (0.1) becomes very easy, leading to stable discretization techniques.

The main motivation for these min-max formulas was to study the spectrum of the free Dirac operator D 0 in 3d perturbed by an electrostatic potential V with Coulomb-type singularity at the origin,

D V = D 0 + V (x).
The free Dirac operator D 0 in 3d is a constant-coefficient, first-order differential operator acting in L 2 (R 3 , C 4 ) with spectrum (-∞, -1] ∪ [1, ∞). Its precise definition and main properties are recalled below in Section 1.1. The potential V is real-valued, bounded from above, and satisfies lim inf x→0 |x|V (x) -1 in units such that = mc 2 = 1. This class of operators is both important from the physical point of view and particularly challenging mathematically, due to the criticality of 1/|x| as compared with D 0 . The first min-max formulas of the form (0.1) were proposed by Talman [START_REF] Talman | Minimax principle for the Dirac equation[END_REF] and Datta-Devaiah [START_REF] Datta | The minimax technique in relativistic Hartree-Fock calculations[END_REF] in the particular case of the operators D V , using the projectors Λ ± associated with the natural decomposition

Ψ = ϕ χ = ϕ 0 + 0 χ ∈ L 2 (R 3 , C 4 ), ϕ, χ ∈ L 2 (R 3 , C 2 )
into upper and lower spinors. This choice leads to a particularly simple formula for the supremum in (0.1). It provides efficient ways of computing Dirac eigenvalues [DESV00, DES03, KKR04, ZKK04, CD05].

When dealing with unbounded quantum-mechanical operators, the questions of domain and self-adjointness are essential. These questions are delicate in the case of D V and have been the subject of an extensive literature: see, e.g., [START_REF] Thaller | The Dirac equation[END_REF][START_REF] Balinsky | Spectral analysis of relativistic operators[END_REF][START_REF] Hogreve | The overcritical Dirac-Coulomb operator[END_REF] and the references therein. For 0 ν < √ 3/2, if V is real-valued and |V (x)| ν/|x| then the minimal operator

ḊV := (D 0 + V ) ↾ C ∞ c (R 3 \ {0}, C 4
) is essentially self-adjoint and the domain of its closure is H 1 (R 3 , C 4 ). The minimal exact Dirac-Coulomb operator Ḋ-ν/|x| is still essentially self-adjoint 1 for ν = √ 3/2, but it has infinitely many self-adjoint extensions for √ 3/2 < ν 1. However, for any value 0 ν < 1, if |V (x)| ν/|x| then the minimal operator ḊV admits a distinguished self-adjoint extension D V with domain D(D V ) characterized by the property D(D V ) ⊂ H 1/2 (R 3 , C 4 ), which is the space on which the energy is well defined and continuous. The critical case ν = 1 is harder. It was considered for the first time by Esteban and Loss in [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] who constructed a distinguished self-adjoint extension D V for real-valued potentials under the assumption -1/|x| V (x) 0. The properties of their extension will be discussed in detail in Section 1.5 below.

As mentioned above, once the splitting H = H -⊕ H + is chosen, one also has to choose the subspace F . In [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF], an abstract min-max theorem is proved, assuming that F is a core (a dense subspace of D(A) for the graph norm) and that F ± are subspaces of D(|A| 1/2 ). In the application to Talman's principle when -ν/|x| V (x) 0 and ν < 1, a possible choice satisfying these requirements is F = D(D V ) ⊂ H 1/2 (R 3 , C 4 ). But the domain D(D V ) of the distinguished extension is not always explicitly known, so a natural question is whether the minmax can actually be performed on simpler spaces F which do not depend on V . An attempt in this direction was made in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] where it was claimed that Talman's min-max formula holds for F = C ∞ c (R 3 , C 4 ) as a consequence of the abstract theorem proved in the same paper. This was obvious for 0 ν < √ 3/2, indeed ḊV is essentially self-adjoint, so C ∞ c (R 3 , C 4 ) is a core. But the case √ 3/2 ν 1 was not properly justified in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF]. An alternative approach was recently proposed by Morozov and Mller [MM15, M 16], who proved a variant of the abstract min-max formula allowing them to justify the choice F = H 1/2 (R 3 , C 4 ) for any ν < 1. In this paper we justify the application to D V of the abstract min-max of [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF], for any subspace F such that

C ∞ c (R 3 \ {0}, C 4 ) ⊆ F ⊆ H 1/2 (R 3 , C 4
), independently of the value of 0 ν 1. In the critical case ν = 1 this provides the first min-max characterization of the eigenvalues. Our findings show that the min-max formula (0.1) of the eigenvalues is valid for a wide range of spaces F , and is insensitive to the properties of the domain of the distinguished operator D V . This is a clear advantage of this characterization, which fully justifies its use in practical computations.

In the first section we discuss domains of 3d Dirac-Coulomb operators with an emphasis on the distinguished self-adjoint extension. Most of the content of Sections 1.1-1.3 is well known, and the results are presented here for the convenience of the reader. To our knowledge, the only novelty there is Proposition A.1, which is proved in Appendix A. In Sections 1.4 and 1.5 we complement some results of Esteban-Loss [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] on the characterization of the distinguished self-adjoint extension, using a quadratic form q E related to the min-max formula (0.1). Describing the domain of this quadratic form is important for knowing in which spaces the min-max can be formulated. In [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] Esteban and Loss used the closure of C ∞ c for the norm induced by q E . We show here that this coincides with the maximal domain on which the form q E is continuous. This is an important ingredient in our proof of the validity of the min-max formula.

We also provide new results in the critical case ν = 1. In particular our proof that the resolvents converge in norm if the potential V is truncated means that the Esteban-Loss extension is the only physically relevant extension for ν = 1.

In Section 2 we state our main result about the min-max formula that was claimed in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] and extend it to the critical case. Sections 3, 4, 5, 6 and Appendices A, B are dedicated to the proof of our results. Our results are stated and proved in detail in three space dimensions, but they can easily be adapted to the two-dimensional setting. This is explained in Appendix C.

Domains of Dirac-Coulomb operators in 3d

In this section we discuss domains for Dirac-Coulomb operators in three space dimensions, and provide some new properties of the distinguished self-adjoint extension. Some of these properties will be useful in Section 2 where we prove the min-max formula for the eigenvalues.

The free Dirac operator in 3d

In a system of units such that = m = c = 1, the free Dirac operator D 0 in 3d is given by (1.1)

D 0 = -i α • ∇ + β = -i 3 k=1 α k ∂ k + β,
where α 1 , α 2 , α 3 and β are 4×4 Hermitian matrices satisfying the anticommutation relations

(1.2)    α k α ℓ + α ℓ α k = 2 δ kℓ 1 C 4 , α k β + βα k = 0, β 2 = 1 C 4 .
The usual representation in 2 × 2 blocks is given by

β = I 2 0 0 -I 2 , α k = 0 σ k σ k 0 , k = 1, 2, 3 ,
with the Pauli matrices

σ 1 = 0 1 1 0 , σ 2 = 0 -i i 0 , σ 3 = 1 0 0 -1 . The operator D 0 is self-adjoint in L 2 (R 3 , C 4 ) with domain H 1 (R 3 , C 4 ) and its spectrum is σ(D 0 ) = (-∞, -1] ∪ [1, ∞), see [Tha92, ELS08
]. In addition, the corresponding quadratic form Ψ, D 0 Ψ is well-defined and continuous on the Sobolev space H 1/2 (R 3 , C 4 ), which is also the domain of

|D 0 | 1/2 = (1 -∆) 1/4 .
The Rellich-Kato theorem and the Sobolev inequality imply that

D V := D 0 + V (x) is also self-adjoint on H 1 (R 3 , C 4 ) for any real-valued potential V ∈ L 3 (R 3 , R) + L ∞ (R 3 , R).
The purpose of this article is to discuss the case of Coulomb-type potentials which behave like -ν|x| -1 near to the origin, and which just fail to be in L 3 at the origin. Using Hardy's inequality

1 |x| 2 4(-∆) 4(D 0 ) 2 = 4(-∆ + 1)
we can use again the Rellich-Kato theorem and obtain that D V is self-adjoint on H 1 (R 3 , C 4 ) for potentials in the form

V = V 1 + V 2 where V 2 ∈ L 3 (R 3 , R) + L ∞ (R 3 , R) and |V 1 (x)| ν|x| -1 with |ν| < 1/2.
However, the threshold 1/2 given by this argument is not optimal and the proper limit is, rather, √ 3/2 (at least for scalar potentials, see Remark 1.3 below for matrix potentials). In order to understand the situation, it is enlightening to first look at the well-known case of the exact Coulomb potential.

The exact Coulomb potential

Here we discuss the well-known exact Coulomb case

V C (x) = - ν |x| .
Note that when V is a bounded perturbation of this potential, the self-adjoint realizations of D V have the same domains as for V C .

For a radial potential such as V C , one can use that the Dirac operator commutes with the total angular momentum J = L + S = (J 1 , J 2 , J 3 ), as well as with the spin-orbit operator K = β(2S • L + 1), see [START_REF] Thaller | The Dirac equation[END_REF]Sec. 4.6]. Viewing K, J 3 and β as a complete set of commuting observables in the Hilbert space L2 (S 2 , C 4 ), one finds an orthonormal basis of this space consisting of trigonometric polynomials in the spherical coordinates (θ, ϕ),

Φ ± κ,m , indexed by κ ∈ Z \ {0} and m ∈ {-|κ| + 1/2, -|κ| + 3/2, • • • , |κ| -1/2}. Using this basis, for any Ψ ∈ C ∞ c (R 3 \ {0}, C 4 ) we get the L 2 -orthogonal decompositions (1.3) Ψ(x) = r -1 κ,m u κ,m (r)Φ + κ,m (θ, ϕ) + v κ,m (r)Φ - κ,m (θ, ϕ) ,

and

(1.4)

D -ν/r Ψ(x) = r -1 κ, m f κ,m (r)Φ + κ,m (θ, ϕ) + g κ,m (r)Φ - κ,m (θ, ϕ), where r = |x|, KΦ ± κ,m = -κΦ ± κ,m , J 3 Φ ± κ,m = mΦ ± κ,m , βΦ ± κ,m = ±Φ ± κ,m and (1.5) f κ,m g κ,m = h κ ν u κ,m v κ,m ,
and where we have introduced the radial Coulomb Dirac-type operator

(1.6) h κ ν = 1 -ν r -d dr + κ r d dr + κ r -1 -ν r .
As a consequence, the Dirac operator D -ν/r is unitarily equivalent to the direct sum (with multiplicities 2|κ| -1) of the radial Dirac-type operators h κ ν acting in the Hilbert space L 2 ((0, ∞), C 2 ). Using ODE techniques, the question of selfadjointness is then reduced to the discussion of the possible boundary conditions at r = 0, see [START_REF] Rellich | Die zulässigen randbedingungen bei den singulären eingenwertproblemen der mathematischen physik[END_REF][START_REF] Case | Singular potentials[END_REF][START_REF] Weidmann | Spectral theory of ordinary differential operators[END_REF][START_REF] Evans | On the unique self-adjoint extension of the Dirac operator and the existence of the Green matrix[END_REF][START_REF] Voronov | The Dirac Hamiltonian with a superstrong Coulomb field[END_REF][START_REF] Hogreve | The overcritical Dirac-Coulomb operator[END_REF][START_REF] Thaller | The Dirac equation[END_REF].

Let us discuss this in more detail. In order to find the self-adjoint extensions of the minimal operator

ḣκ ν := h κ ν ↾ C ∞ c ((0, ∞), C 2 ) ,
we compute its deficiency subspaces 2 K ± = ker ( ḣκ ν ) * ∓ i . Since K -= K + , we only have to determine K + . The corresponding eigenvalue equation is

(1.7) (1 -ν/r)u -v ′ + κ r v = iu, u ′ + κ r u -(1 + ν/r)v = iv.
Plugging in the first equation the relation

v = u ′ + κ r u 1 + ν/r + i
deduced from the second one (note that the denominator never vanishes), we obtain an equation for u only:

(1.8) - d dr + κ r 1 1 + ν/r + i d dr + κ r u + 1 - ν r -i u = 0.
Using standard ODE techniques, one finds that the solution space of (1.8) is spanned by two independent functions behaving as r ±s (1 + O(r)) at r = 0, with s := √ κ 2ν 2 . Another basis of this space consists of two independent solutions behaving like exp(± [START_REF] Case | Singular potentials[END_REF][START_REF] Titchmarsh | On the nature of the spectrum in problems of relativistic quantum mechanics[END_REF]. At ν = 1, for κ = ±1 we have s = 0 and there are two solutions behaving like 1 and log(r), respectively, near r = 0. We first assume |ν| < 1. The solution u + which behaves like r s at 0 must diverge at infinity, hence is not in L 2 . Indeed, assuming by contradiction that u + behaves as exp(-√ 2r)r iν/ √ 2 at infinity, we can multiply (1.8) by u + and integrate by parts (the boundary terms cancel due to the behavior at the origin and at infinity), which gives

√ 2r)r ∓iν/ √ 2 (1 + O(r -1 )) when r → ∞ [Ple32,
ˆ∞ 0 |u ′ + (r) + κu + (r)/r| 2 1 + ν/r + i dr = ˆ∞ 0 (i -1 + ν/r)|u + (r)| 2 dr.
The imaginary part is negative for the first term and positive for the second, which is a contradiction. The solution u -which behaves like r -s is not square-integrable at the origin when |ν| κ 2 -1/4. The smallest value of this threshold is √ 3/2 which we have mentioned before, and it is obtained for κ = ±1. We conclude that the deficiency indices n ± = dim K ± vanish for |ν| √ 3/2 and that the operator is essentially self-adjoint in this case. When |ν| < √ 3/2, the domain of the closure of ḣκ ν can be shown to be H 1 0 ((0, ∞), C 2 ), and that of Ḋ-ν/r to be

D(D -ν/r ) = H 1 (R 3 , C 4 ), for |ν| < √ 3/2, see [LR79, LRK80
]. The situation is more complicated at |ν| = √ 3/2. Although the operator is essentially self-adjoint, its domain is larger than H 1 (R 3 , C 4 ):

D(D -ν/r ) H 1 (R 3 , C 4 ), for |ν| = √ 3/2.
We explain all this in Proposition A.1 of Appendix A. When √ 3/2 < |ν| 1 the arguments of [LR79, LRK80] apply for |κ| 2 and show that the operators ḣκ ν are all essentially self-adjoint, with domain

D ḣκ ν = H 1 0 (0, ∞), C 2 , for |κ| 2 and √ 3/2 < |ν| 1.
Only κ = ±1 pose some difficulties.

In the case √ 3/2 < |ν| < 1, the two functions r ± √ 1-ν 2 are now squareintegrable at 0 and there is one linear combination of u + and u -, which we call u κ , which is square-integrable at infinity. From the previous argument, this function must diverge like r -s at r = 0 and we can therefore always assume that u κ ∼ r -s and v κ ∼ (κs)r -s /ν at 0. By von Neumann's theory of self-adjoint extensions (see, e.g., [RS75, p. 140]), we conclude that, for κ = ±1, ḣκ ν admits a family of self-adjoint extensions parametrized by α ∈ [0, 2π), whose domains are given by

D ḣκ ν ⊕ u κ v κ + e iα u κ v κ C, for κ = ±1.
In this formula, we have used that the solutions with eigenvalue +i and -i are related by complex conjugation, since the operator h κ ν is real. In Proposition A.1 in Appendix A we will prove that for all √ 3/2 < |ν| 1,

D ḣ±1 ν = H 1 0 ((0, ∞), C 2 ) .
The functions (u α κ , v α κ ) = (u κ + e iα u κ , v κ + e iα v κ ), κ = ±1, are more singular at the origin. For α = π, they have the strong singularity (1 + e iα )r - √ 1-ν 2 at r = 0. The associated 4-spinors

Ψ α κ,m := |x| -1 u α κ (r)Φ + κ,m (θ, ϕ) + v α κ (r)Φ - κ,m (θ, ϕ) , m = ±1/2 ,
will not have a finite Coulomb energy and will not be in H 1/2 (R 3 , C 4 ) (the natural space for which one can define the quadratic form of the free Dirac operator). However, if we choose α = π, the function behaves like

u κ -u κ = 2iℑ r - √ 1-ν 2 (1 + O(r)) + ar √ 1-ν 2 (1 + O(r)) = 2iℑ(a)r √ 1-ν 2 + O(r 1- √ 1-ν 2 )
as r → 0, since 1/2 > √ 1ν 2 . Therefore the associated 4-spinor has a finite Coulomb energy as well as a well-defined free Dirac energy. This sounds more satisfactory from a physical point of view. Note however that r √ 1-ν 2 is not in H 1 at the origin for √ 3/2 < |ν| < 1, hence the domain of this self-adjoint realization is always bigger than H 1 .

The realization of the Dirac operator which has α = π in the four sectors corresponding with the quantum numbers κ = ±1 and m = ±1/2 is called the distinguished self-adjoint extension of the minimal Dirac-Coulomb operator Ḋ-ν/r .

For ν = ±1 the situation is slightly different since s = 0. The two functions behave at the origin like 1 and log(r). Hence even for α = π, the Coulomb energy is infinite since u ±1 does not tend to 0 at 0. However it can be called a distinguished extension since it is the least singular. It can also be shown that it is the one obtained when ν → ±1 ∓ , as we will discuss for general potentials in Section 1.5, and the one for which the min-max characterization holds in any reasonable space that one can think of.

If we now come back to the whole space and use [Tha92, Sec. 4.6.4], the corre-sponding domain of the distinguished extension reads

(1.9) D(D -ν/r ) = D Ḋ-ν/r ⊕       i U -1 Y 0 0 0 V-1 √ 3 Y 0 1 - √ 2 Y 1 1       ⊕       i U -1 0 Y 0 0 V-1 √ 3 √ 2 Y -1 1 -Y 0 1       ⊕       i U1 √ 3 Y 0 1 - √ 2 Y 1 1 V 1 Y 0 0 0       ⊕       i U1 √ 3 √ 2 Y -1 1 -Y 0 1 V 1 0 Y 0 0       ,
where the functions Y m ℓ are the spherical harmonics normalized as in [Tha92, Sec. 4.6.4] and

U κ = (u κ -u κ )/r, V κ = (v κ -v κ )/r. Moreover, we prove in Appendix A that (1.10) D Ḋ-ν/r = H 1 (R 3 , C 4 ) , for √ 3/2 < |ν| 1.
We conclude that, for √ 3/2 < |ν| 1, the domain of the distinguished self-adjoint extension is just the usual Sobolev space H 1 (R 3 , C 4 ) to which are added four functions having an explicit singularity at the origin, which is so strong that these are always outside of H 1 (R 3 , C 4 ). They belong to H 1/2 (R 3 , C 4 ) when √ 3/2 < |ν| < 1, but just fail to do so when |ν| = 1.

General potentials with subcritical Coulomb-like singularity

It is natural to ask whether similar results hold for potentials which have a singularity that can be controlled in absolute value by ν|x| -1 without being a bounded perturbation of ±ν/|x|. In the seventies and eighties, many authors [Sch72, Wüs73, Wüs75, Wüs77, Nen76, KW79, LR79, LRK80, Kat83, Tha92] have proved the existence of a distinguished self-adjoint extension when |ν| < 1 which has the same properties as in the exact Coulomb case. The following statement is a summary of several of these results, some of which will be useful for us later.

Theorem 1.1 (Distinguished extension of ḊV [Sch72, Wüs73, Wüs75, Wüs77, Nen76, KW79, LR79, LRK80, Kat83, Tha92]). We assume that

V = V 1 + V 2 + V 3 with V 2 ∈ L 3 (R 3 , R), V 3 ∈ L ∞ (R 3 , R) and |V 1 (x)| ν/|x|, with 0 ν < 1. 1. The minimal operator ḊV defined on C ∞ c (R 3 \ {0}, C 4 ) has a unique self- adjoint extension D V such that H 1 (R 3 , C 4 ) ⊂ D(D V ) ⊂ H 1/2 (R 3 , C 4 ).
It is also the unique self-adjoint extension for which

ˆR3 |Ψ(x)| 2 |x| dx < ∞, ∀Ψ ∈ D(D V ).
2. For any Ψ, Ψ ′ ∈ D(D V ), we have

(1.11) Ψ, D V Ψ ′ = Ψ, D 0 Ψ ′ + ˆR3 V Ψ * Ψ ′
where the right-side is understood in the form sense in H 1/2 (R 3 , C 4 ).

3. If V 3 → 0 at infinity, the essential spectrum is

σ ess (D V ) = (-∞, -1] ∪ [1, ∞).
4. For V ε := min(max(V (x), -1/ε), 1/ε), the operator D Vε converges to the distinguished self-adjoint extension in the norm resolvent sense when ε → 0.

If in addition

0 ν < √ 3/2, then the operator ḊV is essentially self-adjoint on C ∞ c (R 3 \ {0}, C 4 ) and its domain is D(D V ) = H 1 (R 3 , C 4 ). Remark 1.2. We have H 1 (R 3 , C 4 ) = D(|D 0 |) ⊂ D(|D V |).
Since the square root is operator monotone, we deduce that

D(|D 0 | 1/2 ) = H 1/2 (R 3 , C 4 ) ⊂ D(|D V | 1/2 ).
This can be used to extend the formula (1.11) on the whole of H 1/2 (R 3 , C 4 ), if we interpret the left side in the sense of quadratic forms, that is,

Ψ, D V Ψ ′ := |D V | 1/2 Ψ, U V |D V | 1/2 Ψ ′ where U V = sgn(D V ).
Remark 1.3. The results are exactly the same for a Hermitian 4 × 4 matrix potential V (x), with the exception of (5) in which √ 3/2 has to be replaced by 1/2. There are examples of matrix-valued potentials satisfying |V (x)|

(1 + ε)/(2|x|) for which D V is not essentially self-adjoint [START_REF] Arai | On essential selfadjointness of Dirac operators[END_REF].

In [START_REF] Nenciu | Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms[END_REF], Nenciu defines the distinguished self-adjoint extension through its resolvent, using the formula

(1.12) 1 D V -z = 1 D 0 -z - 1 D 0 -z |V | 1 2 1 1 + SM (z) |V | 1 2 1 D 0 -z where S = sgn(V ) and M (z) = |V | 1/2 (D 0 -z) -1 |V | 1/2 . From Kato's inequality (1.13) 1 |x| π 2 √ -∆ π 2 |D 0 | and Sobolev's inequality, one can prove that |V | 1/2 |D 0 | -1/2 and |D 0 | -1/2 |V | 1/2
are bounded under the assumptions of Theorem 1.1. Then (D 0 -z) -1 |V | 1/2 (appearing on the left of the last term in (1.12)) has its range in H 1/2 (R 3 , C 4 ). This shows that the range of (D Vz) -1 (that is, the domain of

D V ) is included in H 1/2 (R 3 , C 4 ),
as required. In addition, since (D 0z) -1 |V | 1/2 is compact under our assumptions on V by [Dav07, Sec. 5.7], (D Vz) -1 is a compact perturbation of (D 0z) -1 , and the two operators have the same essential spectrum [KW79].

The main condition necessary to give a meaning to (1.12) is that 1 + SM (z) is invertible on L 2 (R 3 , C 4 ). Nenciu proves that D V is uniquely defined from (1.12) under the sole condition that M (z 0 ) < 1 for one z ), this is sufficient to define the right side of (1.12) for a large set of values of z, and then to construct the operator D V . In our case the bound on M (z 0 ) follows from the two equalities

0 ∈ C. Since z → (1 + SM (z)) -1 is meromorphic on C \ (-∞, -1] ∪ [1, ∞
(1.14) |x| -1/2 (D 0 + is) -1 |x| -1/2 = 1, ∀s ∈ R,

and

(1.15) lim

s→∞ |V 2 | 1/2 (D 0 + is) -1 |V 2 | 1/2 = 0 for V 2 ∈ L 3 (R 3 ).
The limit (1.15) follows from the Sobolev inequality. The equality (1.14) was conjectured by Nenciu in [START_REF] Nenciu | Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms[END_REF] and later proved by Wst [START_REF]Dirac operations with strongly singular potentials. Distinguished selfadjoint extensions constructed with a spectral gap theorem and cut-off potentials[END_REF] and Kato [START_REF] Kato | Holomorphic families of Dirac operators[END_REF].

It has recently been rediscovered in [ADV13, Thm. 1.3]. The constraint that |ν| < 1 comes from the norm in (1.14) being equal to 1.

A different characterization of the distinguished extension

Now we turn to the description of a method which has been introduced in [EL07, EL08] (further developed in [Arr11, AMV14, AMV15]), and is essential for our discussion of min-max levels. We are going to make the stronger assumption

(1.16) - ν |x| V (x) < 1 + 1 -ν 2
for some 0 ν < 1. Here √ 1ν 2 is the first eigenvalue of the Dirac operator with the Coulomb potential V C (x) = -ν/|x|. The lower bound in (1.16) means that the attractive part of V is essentially Coulombic and it will imply that the first "electronic" eigenvalue will be above √ 1ν 2 . Here "electronic" means that it is an eigenvalue which arises from the upper part of the spectrum when V is replaced by tV and t is turned on progressively. The upper bound on V in (1.16) is here to ensure that the positronic eigenvalues (those arising from the lower part) do not go above √ 1ν 2 . The fact that the electronic and positronic eigenvalues do not cross is an important property for having a min-max formula of the eigenvalues (see [START_REF]General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators[END_REF] for a discussion).

In this section we introduce a quadratic form for the upper spinor, which plays a central role in the definition of the distinguished self-adjoint extension and for the min-max formulation of the electronic eigenvalues.

Similarly as in Subsection 1.2, we consider the eigenvalue equation D V Ψ = λΨ with, this time, λ ∈ R, and which we write in terms of the upper and lower

components ϕ, χ ∈ L 2 (R 3 , C 2 ) of the 4-spinor Ψ = ϕ χ . We obtain (1.17) (1 + V )ϕ -iσ • ∇χ = λϕ, -iσ • ∇ϕ + (-1 + V )χ = λχ.
We insert

χ = -iσ • ∇ϕ 1 -V + λ
in the first equation and get an equation for ϕ only:

(1.18)

-iσ • ∇ -iσ • ∇ϕ 1 -V + λ + (1 + V -λ)ϕ = 0.
This suggest to look at the quadratic form

(1.19) q λ (ϕ) := ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx + ˆR3 (1 + V (x) -λ)|ϕ(x)| 2 dx.
Note that the denominator in the first term is well defined for λ > sup(V ) -1. Without λ in the denominator of the first term, which comes from the lower component χ, the quadratic form q λ would be associated with a usual eigenvalue problem. With λ in the denominator this is more involved. Nevertheless we have gained that the solution ϕ to (1.18) can be constructed by a minimization procedure, for any λ > sup(V ) -1. In Section 2 we will explain the link between the quadratic form q λ and the true eigenvalues of D V but, for the moment, we discuss the properties of q λ for an arbitrary λ > sup(V ) -1.

In order to show that q λ is bounded from below, we write

q λ (ϕ) =(1 -ν 2 ) ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx + ν 2 ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx + ˆR3 V (x)|ϕ(x)| 2 dx + (1 -λ) ˆR3 |ϕ(x)| 2 dx.
In [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF][START_REF] Dolbeault | An analytical proof of Hardy-like inequalities related to the Dirac operator[END_REF] the following Hardy-type inequality was proved

(1.20)

ˆR3 |σ • ∇ϕ(x)| 2 a + 1/|x| dx + ˆR3 a - 1 |x| |ϕ(x)| 2 dx 0
for all a > 0. Using our assumption that V is bounded from below by the Coulomb potential, we can estimate

ν 2 ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx ν 2 ˆR3 |σ • ∇ϕ(x)| 2 1 + ν/|x| + λ dx ˆR3 ν |x| -1 -λ |ϕ(x)| 2 dx - ˆR3 V (x))|ϕ(x)| 2 dx -(1 + λ) ˆR3 |ϕ(x)| 2 dx. (1.21) Thus we have proved that (1.22) q λ (ϕ) + 2λ ˆR3 |ϕ(x)| 2 dx (1 -ν 2 ) ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx.
Since the right side is positive, this shows that q λ + 2λ ϕ 2 L 2 is positive as well. In addition, we conclude from (1.21) that this defines a norm which is independent of λ and is equivalent to that given by the quadratic form

(1.23) ϕ 2 V := ˆR3 |σ • ∇ϕ(x)| 2 2 -V (x) dx + ˆR3 |ϕ(x)| 2 dx.
The following result provides some new properties of this space which are going to be useful for proving the min-max principle stated below in Section 2.

Theorem 1.4 (The quadratic form domain). Assume that

V (x) - 1 |x| and sup(V ) < 2
and let

(1.24) V = ϕ ∈ L 2 (R 3 , C 2 ) ∩ H 1 loc (R 3 \ {0}, C 2 ) : (2 -V ) -1/2 σ • ∇ϕ ∈ L 2 (R 3 , C 2 ) . Then C ∞ c (R 3 \ {0}, C 2 ) is dense in V for the norm (1.23).
In addition, we have the continuous embedding

V ⊂ H 1/2 (R 3 , C 2 ).
Given the definition (1.24) of the space V, the proof of Theorem 1.4 reduces to the study of a Sobolev-type space with a weight vanishing at the origin. This type of question has attracted a lot of attention and plays an important role for degenerate elliptic problems. In our proof given in Section 4, we follow ideas of Zhikov [START_REF] Zhikov | On weighted Sobolev spaces[END_REF][START_REF]On the density of smooth functions in a weighted Sobolev space[END_REF].

Loosely speaking, Theorem 1.4 says that there is no ambiguity in the definition of the domain of the quadratic form q λ . It is the same to start with the very small space C ∞ c (R 3 \ {0}, C 2 ) and close it for the norm

• V (as done in [EL07] for C ∞ c (R 3 , C 2 ))
, or to directly start with the maximal domain V on which q λ is naturally defined and continuous.

Remark 1.5. In (1.24), σ • ∇ϕ is understood in the sense of distributions on

R 3 . Since σ • ∇ϕ ∈ H -1 (R 3 ), it is the same to use distributional derivatives in R 3 \ {0}. Moreover, since √ 2 -V ∈ L 2 loc (R 3
), we deduce from the Cauchy-Schwarz inequality that σ • ∇ϕ ∈ L 1 loc for all the functions ϕ ∈ V. Now that we have discussed the properties of the space V, we can come back to the problem of characterizing the distinguished self-adjoint extension of D V . The following is a reformulation of the main result of [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF].

Theorem 1.6 (V and the distinguished extension [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF]). Assume that for some

0 ν < 1 (1.25) V (x) - ν |x| and sup(V ) < 1 + 1 -ν 2 .
Then the distinguished self-adjoint extension D V of Theorem 1.1 is also the unique extension of the minimal operator ḊV defined on

C ∞ c (R 3 \ {0}, C 4 ), such that D(D V ) ⊂ Ψ = ϕ χ ∈ L 2 (R 3 , C 4 ) : ϕ ∈ V .
More precisely, we have

D(D V ) = Ψ = ϕ χ ∈ L 2 (R 3 , C 4 ) : ϕ ∈ V, D 0 Ψ + V Ψ ∈ L 2 (R 3 , C 4 ) ,
where D 0 Ψ and V Ψ are understood in the sense of distributions.

This theorem was proved in [EL07] using a space denoted as H +1 , defined as the closure of

C ∞ c (R 3 , C 2 ) for the norm • V .
From the density proved in our Theorem 1.4 we infer that H +1 = V, the maximal domain on which q λ is continuous, and therefore Theorem 1.6 is just a reformulation of the results in [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF].

Since only the upper component ϕ ∈ V appears in the statement, this characterization seems to provide less information on the domain D(D V ). However, the following simple result says that we have χ ∈ V as well. Since ϕ, χ ∈ V implies that ϕ, χ ∈ H 1/2 (R 3 , C 2 ) by Theorem 1.4, this means that Theorem 1.6 actually provides more information on the domain of the distinguished self-adjoint extension than Theorem 1.1.

Corollary 1.7. Assume that ϕ ∈ V and χ ∈ L 2 (R 3 , C 2 ) are such that the distri- bution D V ϕ χ belongs to L 2 (R 3 , C 4 ),
where V satisfies (1.25). Then χ ∈ V as well. In particular, the distinguished self-adjoint extension satisfies D(D V ) ⊂ V × V.

Proof. Since by assumption (1

+ V )ϕ -iσ • ∇χ ∈ L 2 (R 3 , C 2 ) and ϕ ∈ L 2 (R 3 , C 2 ), we also have -(2 -V )ϕ -iσ • ∇χ ∈ L 2 (R 3 , C 2 ).
The function V is uniformly bounded outside of the origin, hence

χ ∈ H 1 loc (R 3 \ {0}, C 2 ). Also, since V ∈ L 2 loc (R 3 ) we have V ϕ ∈ L 1 loc (R 3 , C 2 ). Therefore σ • ∇χ ∈ L 1 loc as well. Using that (2 -V ) -1/2 is bounded, we deduce that -(2 -V ) 1/2 ϕ -(2 -V ) -1/2 iσ • ∇χ ∈ L 2 (R 3 , C 2 ). From (1.21) we know that (2 -V ) 1/2 ϕ ∈ L 2 (R 3 , C 2 ) hence conclude, as we wanted, that (2 -V ) -1/2 σ • ∇χ ∈ L 2 (R 3 , C 2 ).

The critical case ν = 1

We give in this section some new properties of the distinguished self-adjoint extension in the critical case. Although these will not all be needed for the min-max formulas in Section 2, we state them because they complement [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF][START_REF] Esteban | Self-adjointness via partial Hardy-like inequalities[END_REF] in an interesting direction.

The Esteban-Loss method presented in the previous section is general and it was applied to the critical case already in [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF]. The main difficulty here is to understand the domain of q λ , since the inequality (1.22) does not give any useful information when ν = 1. The terms in q λ will not necessarily be separately finite. Following ideas from [DELV04, DEDV07], we first describe this domain with more details.

It is useful to start with the exact Coulomb case V C (x) = -|x| -1 , in which case we use the notation

(1.26) q C λ (ϕ) = ˆR3 |x| 1 + λ|x| + |x| |σ • ∇ϕ(x)| 2 + 1 -λ - 1 |x| |ϕ(x)| 2 dx.
Our aim is to understand what is the maximal domain on which q C λ is well-defined and continuous. To this end, we start with λ = 0 and follow [START_REF] Dolbeault | An analytical proof of Hardy-like inequalities related to the Dirac operator[END_REF]. We involve the operator k = 1 + σ • L, where

L = -ix ∧ ∇ = -i   x 2 ∂ 3 -x 3 ∂ 2 x 3 ∂ 1 -x 1 ∂ 3 x 1 ∂ 2 -x 2 ∂ 1  
is the angular momentum. We recall that k = 1 + σ • L has the eigenvalues ±1, ±2, ..., see [START_REF] Thaller | The Dirac equation[END_REF]. The negative and positive spaces are unitarily equivalent and mapped to one another using the unitary σ • ω x where ω x = x/|x| is the unit vector pointing in the same direction as x:

(1.27) σ • x |x| 1 + σ • L σ • x |x| = -1 + σ • L .
In addition, we will use that the kernel of σ • L is composed of radial functions (it coincides with the kernel of L), hence the kernel of σ • L + 2 is given by σ • ω x times radial functions. These are the two spaces for the upper spinor ϕ which correspond to κ = ±1 for the full Dirac operator. The sectors κ = ±1 determine the possible extensions, as we have recalled in Subsection 1.2. The following is inspired by [START_REF] Dolbeault | An analytical proof of Hardy-like inequalities related to the Dirac operator[END_REF][START_REF] Dolbeault | Hardytype estimates for Dirac operators[END_REF] and proved in Appendix B below.

Theorem 1.8 (Writing q C λ as a sum of squares). For every ϕ ∈ L 2 (R 3 , C 2 ) we write

ϕ = ϕ + (x) + ϕ -(x) + ϕ 0 (|x|) + σ • x |x| ϕ 1 (|x|)
where

ϕ + = 1 [1,∞) (σ • L)ϕ, ϕ -= 1 (-∞,-3] (σ • L)ϕ, ϕ 0 = 1 {0} (σ • L)ϕ and ϕ 1 = σ • (x/|x|)1 {-2} (σ • L)ϕ. Then q C 0 (ϕ) = ˆR3 |x| 1 + |x| σ • ∇ϕ + (x) + σ • x |x| 2 (1 + |x|) ϕ + (x) 2 dx + ˆR3 |x| 1 + |x| σ • ∇ϕ -(x) - σ • x |x| 2 (1 + |x|) ϕ -(x) 2 dx + 2 ϕ + , σ • L |x| ϕ + + 2 ϕ -, -2 -σ • L |x| ϕ - + 4π ˆ∞ 0 r 1 + r |rϕ ′ 0 (r) + ϕ 0 (r) + rϕ 0 (r)| 2 dr + 4π ˆ∞ 0 r 1 + r |rϕ ′ 1 (r) + ϕ 1 (r) -rϕ 1 (r)| 2 dr (1.28) for every ϕ ∈ H 1 (R 3 , C 2 ). On L 2 (R 3 , C 2 ), the quadratic form q C 0 is equivalent to ϕ 2 L 2 + q C 0 (ϕ) ∼ ϕ 2 L 2 + ˆR3 |x| 1 + |x| σ • ∇ϕ + (x) 2 dx + ˆR3 |x| 1 + |x| σ • ∇ϕ -(x) 2 dx + ˆ∞ 0 r 1 + r rϕ ′ 0 (r) + ϕ 0 (r) 2 dr + ˆ∞ 0 r 1 + r rϕ ′ 1 (r) + ϕ 1 (r) 2 dr ∼ ϕ 2 L 2 + ˆR3 1 |x|(1 + |x|) σ • ∇|x|ϕ(x) 2 dx.
(1.29)

Finally, for all -1 < λ < 1, we have

(1.30) q C λ (ϕ) = q C 0 (ϕ) -λ ˆR3 |x| 2 |σ • ∇ϕ(x)| 2 (1 + |x|)(1 + (1 + λ)|x|) dx -λ ˆR3 |ϕ(x)| 2 dx
which, in L 2 , is equivalent to the norm associated with ϕ 2 L 2 + q C 0 (ϕ). Note that all the terms in the formula (1.28) for q C 0 are non-negative, which enables us to identify its maximal domain. We see that the two functions ϕ + and ϕ -have the exact same regularity as before, namely they must belong to the space V C , defined as in (1.24) with

V (x) = V C (x) = -|x| -1 : ˆR3 |x| 1 + |x| σ • ∇ϕ ± (x) 2 dx < ∞.
In particular, from Theorem 1.4 and the Hardy-type inequality (1.20), ϕ + and ϕ - have a finite Coulomb energy and a finite H 1/2 norm. Only the functions ϕ 0 and σ • ω x ϕ 1 can be more singular at the origin. Those only satisfy the property that

ˆR3 1 |x|(1 + |x|) σ • ∇|x|ϕ 0 (x) 2 dx < ∞
which can be written in radial coordinates as

(1.31) ˆ∞ 0 r 1 + r rϕ ′ 0/1 (r) + ϕ 0/1 (r) 2 dr < ∞.
This is weaker than when |x| is pulled outside of the gradient as before. For instance, the ground state of the Dirac-Coulomb operator at ν = 1 is given by [Tha92, Sec. 7.4.2]

ϕ 0 (|x|) = e -|x| |x| v, v ∈ C 2 and it satisfies q C 0 (ϕ 0 ) < ∞ but ˆR3 |x| 1 + |x| σ • ∇ e -|x| |x| 2 dx = 4π ˆ∞ 0 r 3 1 + r e -r + re -r r 2 2 dr = +∞.
The condition (1.31) is enough to distinguish a self-adjoint extension, as we will see. The main message is that ϕ 0 and ϕ 1 are allowed to behave like 1/r at r = 0, but not like log(r)/r. This corresponds to taking α = π in Subsection 1.2. Now we are able to define the spaces which will replace V in the critical case. In the exact Coulomb case

V (x) = -|x| -1 we introduce (1.32) W C = ϕ ∈ L 2 (R 3 , C 2 ) : σ • ∇|x|ϕ |x| 1/2 (1 + |x|) 1/2 ∈ L 2 (R 3 , C 2 ) .
Then we assume that V (x)

-|x| -1 and that sup(V ) < 1. The quadratic form associated with V can be written in terms of q C λ as follows:

q λ (ϕ) = ˆR3 1 1 + λ -V (x) - |x| 1 + (1 + λ)|x| |σ • ∇ϕ(x)| 2 dx + ˆR3 V (x) + 1 |x| |ϕ(x)| 2 dx + q C λ (ϕ), for -1 + sup(V ) < λ < 1. The quadratic forms ˆR3 1 1 + λ -V (x) - |x| 1 + (1 + λ)|x| |σ • ∇ϕ(x)| 2 dx
are all equivalent when λ is varied in the interval (-1 + sup(V ), 1) and since the same holds for q C λ by Theorem 1.8, we can simply use λ = 0 and define the space W associated with V by

(1.33) W = ϕ ∈ W C : 1 1 -V (x) - |x| 1 + |x| 1/2 σ • ∇ϕ ∈ L 2 (R 3 , C 2 ), V (x) + 1 |x| 1/2 ϕ ∈ L 2 (R 3 , C 2 ) .
The following is the equivalent of Theorem 1.4.

Theorem 1.9 (Properties of W C and W). We assume that

(1.34) V (x) - 1 |x| and sup(V ) < 1.
Then the space C ∞ c (R 3 \ {0}, C 2 ) is dense in W C and in W for their respective norms. Also, we have the continuous embeddings

W ⊂ W C ⊂ H s (R 3 , C 2 ) for every 0 s < 1/2.
The proof of Theorem 1.9 is provided below in Section 5 and it is much more involved than that of Theorem 1.4. This is due to the criticality of the problem, which prevents from using rough regularization techniques.

Remark 1.10. If V (x) = -|x| -1 +O (|x| -α ) with α < 1, as x → 0, then we simply have W = W C . Indeed the two additional terms are controlled by the W C -norm. We have

ˆR3 1 1 -V (x) - |x| 1 + |x| |σ • ∇ϕ(x)| 2 dx ˆR3 |x| 2 |x| α (1 + |x|) 2 |σ • ∇ϕ(x)| 2 dx ˆR3 1 |x| α (1 + |x|) 2 |σ • ∇|x|ϕ(x)| 2 dx + ˆR3 |ϕ(x)| 2 |x| α (1 + |x|) 2 dx
and, similarly,

ˆR3 V (x) + 1 |x| |ϕ(x)| 2 dx ˆR3 |ϕ(x)| 2 |x| α dx
which are all finite for ϕ ∈ W C . Hence in this case there is no difference between W and W C .

Contrary to the subcritical case where one can use the space H 1/2 , we cannot distinguish the extension from the sole property that it is included in H s for s < 1/2. This would not make the difference between 1/r and log(r)/r. We need the more precise norm associated with q 0 . The main result on the distinguished self-adjoint extension is the following.

Theorem 1.11 (W and the distinguished extension in the critical case). We assume that

(1.35) V (x) - 1 |x| and sup(V ) < 1. (a) [EL07] The minimal operator ḊV = (D 0 + V ) ↾ C ∞ c (R 3 \ {0}, C 4 ) has a unique self-adjoint extension D V such that D(D V ) ⊂ Ψ = ϕ χ ∈ L 2 (R 3 , C 4 ) : ϕ ∈ W
and this extension has the domain

D(D V ) = Ψ = ϕ χ ∈ L 2 (R 3 , C 4 ) : ϕ ∈ W, D 0 Ψ + V Ψ ∈ L 2 (R 3 , C 4 )
where D 0 Ψ and V Ψ are understood in the sense of distributions.

(b) Let V ε (x) := max(V (x), -1/ε) or V ε = (1 -ε)V .
Then, the self-adjoint operator D Vε converges in the norm resolvent sense to the operator D V defined in the previous item.

Although the first part is just a reformulation of the results in [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] (relying on the closure H +1 of C ∞ c (R 3 , C 2 ) for the norm induced by q 0 , which is equal to W by Theorem 1.9), the convergence of the resolvents is completely new. In the same spirit as what was achieved for ν < 1 in [Wüs73, Wüs75, Wüs77, KW79, Kat83], it means that the Esteban-Loss extension is the only physically relevant one in the critical case. The proof of the resolvent convergence is given in Section 6 below.

Domains for min-max formulas of eigenvalues

In this section we finally discuss min-max principles for Dirac eigenvalues. In [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] an abstract variational characterization of the eigenvalues of operators with gaps was shown. Let H be a Hilbert space and A : D(A) ⊂ H → H be a self-adjoint operator. Let H + , H -be two orthogonal Hilbert subspaces of H such that H = H + ⊕H -. We denote by Λ ± the two corresponding orthogonal projectors. We assume the existence of a core F (a subspace of D(A) which is dense for the norm • D(A) ), such that (i) F + = Λ + F and F -= Λ -F are two subspaces of D(|A| 1/2 ), (ii) a = sup

ψ -∈F -\{0} ψ -, Aψ - H ψ -2 H < +∞ .
We then consider the sequence of min-max levels (2.1) λ (k)

F := inf W subspace of F + dim W =k sup ψ∈(W ⊕F -)\{0} ψ, Aψ H ψ 2 H , k 1.
Our last assumption is (iii) λ

(1)

F > a. Everywhere ψ, Aψ = |A| 1/2 ψ, U |A| 1/2 ψ is always understood in the form sense, which is possible since F ± ⊂ D(|A| 1/2 ). Let b = inf (σ ess (A) ∩ (a, +∞)) ∈ [a, +∞]
be the bottom of the essential spectrum above a. The following gives a characterization of the eigenvalues in the gap (a, b). For the Dirac operator, it was suggested by Talman [START_REF] Talman | Minimax principle for the Dirac equation[END_REF] and Datta-Devaiah [START_REF] Datta | The minimax technique in relativistic Hartree-Fock calculations[END_REF] to use the decomposition into upper and lower spinors, that is, to take for the two subspaces H ± (2.2)

H + = ϕ 0 : ϕ ∈ L 2 (R 3 , C 2 ) , H -= 0 χ : χ ∈ L 2 (R 3 , C 2 ) .
The first rigorous result for this decomposition was obtained by Griesemer and Siedentop [START_REF] Griesemer | A minimax principle for the eigenvalues in spectral gaps[END_REF], who dealt with bounded potentials V . In [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] the above abstract result was applied to the case of Coulomb singularities. However,in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] it was stated that it is possible to use the space

F = C ∞ c (R 3 , C 4 ). From (4) in Theorem 1.1, this is true when 0 ν < √ 3/2, because in this range the opera- tor D ν is essentially self-adjoint on C ∞ c (R 3 \ {0}, C 4 ). When √ 3/2 ν < 1, the argument in [DES00a] was not complete.
Of course, Theorem 2.1 can still be applied in the domain D(D V ) of the distinguished self-adjoint extension or in any core F on which D V is essentially selfadjoint. Unfortunately, except for bounded perturbations of the exact Coulomb potential, for which the domain is well understood as we have seen in Subsection 1.2, D(D V ) is not so easy to grasp for a general potential V . From a numerical point of view, it is indeed important to be able to use simple spaces F in the min-max formula.

In [MM15, M 16], Mller and Morozov proved the validity of the min-max formula for √ 3/2 ν < 1 in F = H 1/2 (R 3 , C 2 ), using a variant of the abstract min-max theorem in a setting adapted to form domains, inspired by Nenciu [START_REF] Nenciu | Self-adjointness and invariance of the essential spectrum for Dirac operators defined as quadratic forms[END_REF].

Another min-max principle based on the free-energy projectors Λ + 0 = 1(D 0 0) and Λ - 0 = 1(D 0 0) was first introduced in [START_REF] Esteban | Existence and multiplicity of solutions for linear and nonlinear Dirac problems[END_REF]. Using an inequality proved in [START_REF] Burenkov | On the evaluation of the norm of an integral operator associated with the stability of one-electron atoms[END_REF] and [START_REF] Tix | Strict positivity of a relativistic Hamiltonian due to Brown and Ravenhall[END_REF], it was shown in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] that the eigenvalues satisfy the min-max principle (2.3) in the range 0 ν < 2 π 2 + 2 π -1 ≃ 0.9. Recently, the free projections have also been covered in [MM15, M 16] for ν < 1.

In this section we prove a result similar to [MM15, M 16], by a completely different method. We will show that the min-max is valid on any space between C ∞ c (R 3 \ {0}, C 4 ) and H 1/2 (R 3 , C 4 ). Contrary to [START_REF] Morozov | On the minimax principle for Coulomb-Dirac operators[END_REF] we will not modify the abstract theorem, but simply use density results in the spirit of Theorem 1.4. We will also treat the critical case ν = 1 and obtain the first results in this setting, to our knowledge.

In order to properly state our main result, we introduce the two projections

Λ + T ϕ χ = ϕ 0 , Λ - T ϕ χ = 0 χ
corresponding to the Talman decomposition (2.2) and the spectral projections

Λ + 0 = 1(D 0 0), Λ - 0 = 1(D 0 0)
of the free Dirac operator. For a space F ⊆ H 1/2 (R 3 , C 4 ), we define the min-max levels

(2.3) λ (k) T /0,F = inf W subspace of Λ + T /0 F dim W =k sup Ψ∈W ⊕Λ - T /0 F Ψ =0 Ψ, D V Ψ Ψ 2 L 2 , k 1.
We remark that the four projections Λ ± T /0 stabilize H 1/2 (R 3 , C 4 ), hence Ψ, D V Ψ is always well defined in the sense of quadratic forms. Indeed

Ψ, D V Ψ = Ψ, D 0 Ψ + ˆR3 V |Ψ| 2
by Theorem 1.1 (ii) and Remark 1.2. The same property as in Remark 1.2 holds in the critical case ν = 1, since H 1 (R 3 , C 4 ) ⊂ D(D V ) as well. We could actually work in D(|D V | 1/2 ) but we refrain from doing it since our goal is to state a result in simple spaces that do not depend on V . Our main result is the following Theorem 2.2 (Min-max formula for eigenvalues). Let 0 < ν 1. We assume that

(2.4) V (x) - ν |x| and sup(V ) < 1 + 1 -ν 2 . Let (2.5) C ∞ c (R 3 \ {0}, C 4 ) ⊆ F ⊆ H 1/2 (R 3 , C 4 ).
Then, the number λ

(k)
T,F defined in (2.3), is independent of the subspace F and coincides with the kth eigenvalue of the distinguished self-adjoint extension of D V larger than or equal to √ 1ν 2 , counted with multiplicity (or is equal to b = inf (σ ess (D V ) ∩ ( √ 1ν 2 , +∞)) if there are less than k eigenvalues below b). In addition, we have

λ (k) T,F = λ (k) 0,F
for all F as above and all k 1. That we can take any space F satisfying (2.5) shows how the min-max characterization of the eigenvalues is insensitive to F , even for the distinguished selfadjoint extension which has a non trivial domain D(D V ). The space F can be as small as C ∞ c (R 3 \ {0}, C 4 ) which is not dense in D(D V ) for √ 3/2 < ν 1, or as large as H 1/2 (R 3 , C 4 ) which does not even contain the domain for ν = 1.

Before turning to the proof of the theorem (given in Section 3), we would like to comment on the role of the quadratic form q λ discussed in Sections 1.4-1.5, in the Talman case Λ ± T . One important argument in [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] was to solve the sup part of (2.3) using the method of Lagrange multipliers. For any λ > sup(V ) -1 we consider the maximization problem sup

0 χ ∈Λ - T F ϕ χ , D V ϕ χ -λ ϕ 2 L 2 + χ 2 L 2 = ˆR3 |σ • ∇ϕ(x)| 2 1 -V (x) + λ dx + ˆR3 1 + V (x) -λ |ϕ(x)| 2 dx = q λ (ϕ),
which is exactly the quadratic form which we have studied in Section 1.4. The unique maximizer is

χ = -iσ • ∇ϕ 1 -V + λ .
This can be used to prove that supremum (2.6) sup

0 χ ∈Λ - T F ϕ χ , D V ϕ χ ϕ 2 + χ 2
appearing in the min-max formula (2.3), is the unique number λ such that q λ (ϕ) = 0. For this reason, our proof of Theorem 2.2 relies on the density of C ∞ c (R 3 \ {0}, C 2 ) in the quadratic form domains V, shown in Theorem 1.4. In the critical case, our proof does not rely on the density in W, stated before in Theorem 1.9. This is because we have assumed that F ⊂ H 1/2 (R 3 , C 4 ) and W ∩ H 1/2 (R 3 , C 4 ) = V.

The rest of the paper is dedicated to the proofs of our results.

Proof of Theorem 2.2 on the min-max levels

Admitting temporarily our other results, we start with the proof of Theorem 2.2. One possible route is to apply the abstract Theorem 2.1 in the domain F 0 = D(D V ) and then to show that F 0 can be replaced by any other F as in the statement. Another strategy is to truncate the potential into V ε , apply Theorem 2.1 for V ε and then pass to the limit ε → 0 in the min-max formula for the eigenvalues. This argument uses the norm-convergence of the resolvent in Theorems 1.1 and 1.11 which implies the convergence of the eigenvalues. The first method requires to know the domain F 0 = D(D V ) quite precisely, whereas the second one does not involve the domain at all. It is more robust and more appropriate in the critical case ν = 1 for which we have less information on D(D V ). For this reason, we use the second method.

Proof for the Talman projections Λ ±

T

We split the proof into several steps. To simplify our proof, with an abuse of notation we write ϕ ∈

F + = Λ + T F instead of ϕ 0 ∈ Λ + T F
and similarly we write χ ∈ F -. In the proof we approximate the (upper bounded) potential V by

V ε := max(V, -1/ε) ∈ L ∞ (R 3 , R)
and we start by recalling some well-known facts for V ε .

Step 1. Upper bound. First we compute

a := sup χ∈F - χ =0 0 χ , D V 0 χ χ 2 = sup χ∈F - χ =0 ´R3 (-1 + V )|χ| 2 χ 2 = sup(-1 + V ) since F -contains C ∞ c (R 3 \ {0}, C 2 ) by assumption. Thus a < √ 1 -ν 2 since sup(V ) < 1 + √ 1 -ν 2 .
The same property holds when V is replaced by V ε . Following [DES00a, Lem. 2.2], we write the min-max levels for a potential V (truncated or not) in the form

(3.1) λ (k) T,F (V ) = inf W + ⊂F + dim(W + )=k sup ϕ∈W + S F -(V, ϕ). where (3.2) S(V, ϕ) := sup χ∈F - ϕ 2 + χ 2 =0 ´R3 (|ϕ| 2 -|χ| 2 ) + ´R3 V (|ϕ| 2 + |χ| 2 ) + 2ℜ χ, -iσ • ∇ϕ ´R3 |ϕ| 2 + |χ| 2 .
All the terms are well defined since F ⊂ H 1/2 (R 3 , C 4 ). Indeed, by continuity of the function appearing in the definition (3.2) for the norm of H 1/2 , the value of S(V, ϕ) does not depend on F -which can be replaced by any space dense in H 1/2 . This is why our notation for S(V, ϕ) does not involve F -. By monotonicity with respect to V we have

(3.3) λ (k) T,F (V ε ) λ (k)
T,F (V ) for all ε > 0. Using a continuation principle, it was proved in [DES00a] that (3.4) λ

(1)

T,F (V ε ) 1 -ν 2 > a for all ε > 0 and all C ∞ c (R 3 \ {0}, C 4 ) ⊂ F ⊂ H 1/2 (R 3 , C 4
). So we can apply Theorem 2.1 and conclude that, under our assumptions on V , λ (k) T,F (V ε ) is independent of F and coincides with the kth eigenvalue of D Vε .

In the limit ε → 0, λ (k) T,F (V ε ) converges to the kth eigenvalue µ (k) (V ) of D V , due to the convergence in norm of the resolvents, shown in Theorem 1.1 for the subcritical case 0 < ν < 1 and in Theorem 1.11 in the critical case ν = 1. So passing to the limit ε → 0 in (3.3) we obtain the upper bound

µ (k) (V ) λ (k) T,F (V ).
Step 2. Lower bound. Now we come back to (3.1). In order to prove the reverse inequality we have to show that sup

ϕ∈W + S(V, ϕ) µ (k) (V )
for every k-dimensional subspace W + ⊂ F + . The next lemma follows from the arguments in [DES00a, Lemma 2.2].

Lemma 3.1 (Computation of S(V, ϕ) [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF]). Let ϕ ∈ H 1/2 (R 3 , C 2 ). Then S(V, ϕ) is finite if and only if ϕ ∈ V. In this case, E = S(V, ϕ) is the unique solution to the nonlinear equation q E (V, ϕ) = 0.

Note that even in the critical case ν = 1 we conclude that ϕ must be in V. This is because we have assumed that ϕ ∈ H 1/2 (R 3 , C 2 ) and W ∩ H 1/2 = V.

By Lemma 3.1 and the monotonicity of q E with respect to E, it suffices to show that (3.5) sup

ϕ∈W + q µ (k) (V ) (V, ϕ) 0 for any k-dimensional space W + ⊂ F + ∩ V. Since C ∞ c (R 3 \ {0}, C 2 ) is dense in V by Theorem 1.4, it suffices to prove (3.5) for a k-dimensional space W + ⊂ C ∞ c (R 3 \ {0}, C 2 ).
For any such space, we have from the min-max characterization for V ε sup

ϕ∈W + q µ (k) (V ) (V ε , ϕ) sup ϕ∈W + q µ (k) (Vε) (V ε , ϕ) 0.
So passing to the limit ε → 0 (in the fixed finite-dimensional space

W + ⊂ C ∞ c (R 3 \ {0}, C 2 )) we find sup ϕ∈W + q µ (k) (V ) (V, ϕ) 0
as we wanted.

Proof for the free Dirac projections Λ ± 0

The proof follows along the same lines as for the Talman projections, and we only outline it. In this case we have as before

a := sup ψ-∈Λ - 0 F ψ-=0 ψ -, D V ψ - ψ -2 = sup ψ-∈Λ - 0 F ψ-=0 ψ -, - √ 1 -∆ + V ψ - ψ -2 sup(V ) -1 < 1 -ν 2 .
Following step by step the argument of the previous section, we have to study the quadratic form

(3.6) q E (ψ + ) := ψ + , √ 1 -∆ ψ + + ˆR3 (V -E)|ψ + | 2 + Λ - 0 V ψ + , Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -1 Λ - 0 V ψ + in place of q E which appeared in (1.19).
Let us remark that q E is continuous on H 1/2 since, by the operator monotonicity of the inverse, we have

Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -1 Λ - 0 √ 1 -∆ + E -1 - √ 1 -ν 2 .
Therefore by Kato's inequality

(3.7) Λ - 0 V ψ + , Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -1 Λ - 0 V ψ + ˆR3 |V ||ψ + | 2 and q E (ψ + ) ψ + , √ 1 -∆ ψ + .
In addition the map

E → q E (ψ + ) is C 1 on (0, ∞) with (3.8) ∂ ∂E q E (ψ + ) = - ˆR3 |ψ + | 2 -Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -1 Λ - 0 V ψ + 2 L 2 .
Using (3.7) and the fact that

Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -2 1 E Λ - 0 ( √ 1 -∆ + E -V )Λ - 0 -1
the right side of (3.8) is well-defined and continuous on H 1/2 . In [DES00a, Sec. 4.2] it was proved that (3.9) q E (ψ + ) 0 for all sup(V ) -1 < E √ 1ν 2 and all ψ + ∈ Λ + 0 H 1/2 (R 3 , C 4 ). From (3.9) we can first deduce that the domain of the quadratic form q E is exactly Λ + 0 H 1/2 . Lemma 3.2 (The domain of q E is Λ + 0 H 1/2 for ν < 1). We have

(3.10) q E (ψ + ) (1 -ν) 2 ψ + , √ 1 -∆ ψ + -4Eν 2 ψ + 2 for every ψ + ∈ Λ + 0 H 1/2 (R 3 , C 4
) and every E > max(0, sup(V ) -1). The bound (3.10) can be improved for max(0, sup(V ) -1) < E √ 1ν 2 but it is sufficient for our purposes. From the lemma we obtain that the maximal domain of

q E is Λ + 0 H 1/2 (R 3 , C 4 ), hence C ∞ c (R 3 \ {0}, C 2
) is dense in this domain. The rest of the proof is then exactly the same as in the Talman case. Note that in the equivalent of Lemma 3.1, the corresponding supremum S(V, ϕ) is always finite since the quadratic form is this time defined on H 1/2 . It therefore remains to provide the Proof of Lemma 3.2. Using (3.9) for V = -ν/|x| and passing to the limit ν → 1, we get the following Hardy-type inequality [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] (3.11)

ψ + , √ 1 -∆ ψ + - ˆR3 |ψ + | 2 |x| + Λ - 0 1 |x| ψ + , Λ - 0 ( √ 1 -∆ + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + 0 for all ψ + ∈ Λ - 0 H 1/2
. Now we would like a similar inequality with an additional E > max(0, sup(V ) -1) in the denominator of the second term. We start by writing

Λ - 0 1 |x| ψ + , Λ - 0 ( √ 1 -∆ + E + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + Λ - 0 1 |x| ψ + , Λ - 0 ( √ 1 -∆ + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + -E Λ - 0 ( √ 1 -∆ + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + 2 since (A + E) -1 A -1 -EA -2
. Now we claim that the operator (3.12)

B E := Λ - 0 ( √ 1 -∆ + E + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| is bounded as follows: B E 2.
Using (3.11), this eventually implies

(3.13) ψ + , √ 1 -∆ ψ + + Λ - 0 1 |x| ψ + , Λ - 0 ( √ 1 -∆ + E + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + ˆR3 |ψ + | 2 |x| -4E ψ + 2 .
Before providing the proof that B E in (3.12) is bounded, we first come back to q E (ψ + ). We note that it is a monotone function of the potential V . This is perhaps not so obvious from the formula (3.6), but it becomes clear if we recall that

q E (ψ + ) = sup ψ-∈Λ - 0 F - 0 ψ + + ψ -, D 0 (ψ + + ψ -) + ˆR3 V |ψ + + ψ -| 2 -E( ψ + 2 + ψ - 2 ) .
So for a lower bound, we may replace V by -ν/|x| and we obtain, for every E > 0,

q E (ψ + ) ψ + , √ 1 -∆ ψ + -ν ˆR3 |ψ + | 2 |x| -E ˆR3 |ψ + | 2 + ν 2 Λ - 0 1 |x| ψ + , Λ - 0 ( √ 1 -∆ + E + |x| -1 )Λ - 0 -1 Λ - 0 1 |x| ψ + (1 -ν 2 ) ψ + , √ 1 -∆ ψ + -ν(1 -ν) ˆR3 |ψ + | 2 |x| -4Eν 2 ˆR3 |ψ + | 2 (1 -ν) 1 + ν - π 2 ν ψ + , √ 1 -∆ ψ + -4Eν 2 ˆR3 |ψ + | 2 .
In the second inequality we have used (3.13) and in the last one we have used Kato's inequality (1.13). Using π/2 2 yields the simpler inequality (3.10). So it remains to prove that B E in (3.12) is bounded and since

B E = Λ - 0 ( √ 1 -∆ + |x| -1 )Λ - 0 Λ - 0 ( √ 1 -∆ + E + |x| -1 )Λ - 0 B 0
where the left side has a norm 1 by the spectral theorem, it suffices to do it for E = 0. We compute

Λ - 0 √ 1 -∆ + 1 |x| Λ - 0 2 = Λ - 0 (1 -∆) + Λ - 0 1 |x| Λ - 0 2 + Λ - 0 1 |x| √ 1 -∆ + √ 1 -∆ 1 |x| Λ - 0 .
It was proved by Lieb in [START_REF] Lieb | Bound on the maximum negative ionization of atoms and molecules[END_REF] that

1 |x| √ 1 -∆ + √ 1 -∆ 1 |x| 0
and therefore we have the operator inequality

Λ - 0 √ 1 -∆ + 1 |x| Λ - 0 2 Λ - 0 (1 -∆).
The inverse being operator monotone, we deduce that

Λ - 0 √ 1 -∆ + 1 |x| Λ - 0 -2 Λ - 0 1 -∆ or, equivalently, that Λ - 0 √ 1 -∆ + 1 |x| Λ - 0 -1 Λ - 0 √ 1 -∆ 1.
So we can write

B 0 = Λ - 0 ( √ 1 -∆ + |x| -1 )Λ - 0 -1 Λ - 0 √ 1 -∆ 1 √ 1 -∆ 1 |x|
which proves using Hardy's inequality that

B 0 1 √ 1 -∆ 1 |x| 2.
This ends the proof of Lemma 3.2.

4. Proof of Theorem 1.4 on the subcritical domain V

4.1. Proof that C ∞ c (R 3 \ {0}, C 2
) is dense in V We are going to adapt [Zhi98, proof of Theorem 4.1]. Zhikov considers a scalar function ϕ, with |∇ϕ| 2 instead of |σ • ∇ϕ| 2 . A crucial step in his proof is to approximate ϕ by a function ϕ ε bounded in a neighbourhood of 0. This is easily done in his case, just by taking ϕ ε = ϕ1(|ϕ| ε -1 ), with ε small. In our case this simple argument fails. Instead we change our unknown and remove the Pauli matrices.

For every ϕ ∈ L 2 (R 3 , C 2 ), there is a unique u the homogeneous Sobolev space (R 3 , C 2 ) such that ϕ = (σ • ∇)u. Then,

ϕ 2 V = ˆR3 |∆u| 2 2 -V + ˆR3 |∇u| 2 .
Note that the matrices σ k have disappeared. Now, for 0 < ε < 1 we let ϕ ε = (σ • ∇)u ε where u ε is the solution in Ḣ1 (R 3 , C 2 ) of the equation

∆u ε (x) = 1(|x| ε) ∆u(x) .
Obviously ϕ ε ∈ V and

ϕ -ϕ ε 2 V = ˆBε |∆u| 2 2 -V + ˆR3 |∇(u -u ε )| 2
where B ε is the ball of radius ε. The first term converges to zero and the second term can be written in the form

ˆR3 |∇(u -u ε )| 2 = - ˆBε (u -u ε )∆u = 1 4π ˆBε ˆBε ∆u(x)∆u(y) |x -y| dx dy ∆u 2 L 6/5 (Bε)
by the Hardy-Littlewood-Sobolev inequality. Now

∆u 2 L 6/5 (Bε) (2 -V ) -1/2 ∆u 2 L 2 (Bε) 2 -V 1/2 L 3/2 (Bε)
which tends to zero. We have proved that ϕ ε → ϕ strongly in V. The function ϕ ε is well behaved close to the origin. Indeed, for each 0 < ε < 1, u ε is harmonic on B(0, ε), so there is

M ε > 0 such that |ϕ ε | |∇u ε | M ε on B ε/2 .
Then we can follow [START_REF] Zhikov | On weighted Sobolev spaces[END_REF]. For 0 < δ < ε/2 we consider the cut-off function θ δ (x) := max 0, min(1, 2|x| δ -1) and let ϕ δ ε (x) = θ δ (x)ϕ ε (x). We write

||ϕ ε -ϕ δ ε || 2 V = ˆBδ |(σ • ∇)(1 -θ δ )ϕ ε | 2 2 -V + (1 -θ δ ) 2 |ϕ ε | 2 ≤ 2 ˆBδ |(σ • ∇)ϕ ε | 2 2 -V + 2 ˆBδ |∇θ δ | 2 |ϕ ε | 2 2 -V + ˆBδ |ϕ ε | 2 ≤ 8M 2 ε 4πδ 3 + ˆB(0,δ) 2|(σ • ∇)ϕ ε | 2 2 -V + |ϕ ε | 2 ,
and for a fixed ε > 0, this quantity tends to 0 as δ → 0. To end the proof, note that ϕ δ ε vanishes on B(0, δ/2), so we can regularize it using a convolution product, which ends the proof that C ∞ c (R 3 \ {0}, C 2 ) is dense in V. Remark 4.1. If we make the further assumption that V (x) -η/|x| in a neighborhood of the origin, we can use a much simpler argument. Namely we replace ϕ by θ δ ϕ with the same θ δ as before and estimate

ˆR3 |σ • ∇(1 -θ δ )ϕ| 2 2 -V 2 ˆR3 (1 -θ δ ) 2 |σ • ∇ϕ| 2 2 -V + 2 ˆ|x| δ (θ ′ δ ) 2 |ϕ| 2 2 -V .
The first term goes to 0 by the dominated convergence theorem and the second can be bounded by

ˆ|x| δ (θ ′ δ ) 2 |ϕ| 2 2 -V ˆ|x| δ |x|(θ ′ δ ) 2 |ϕ| 2 1 + |x| ˆ|x| δ |ϕ| 2 |x| since |x|θ ′ δ is uniformly bounded. 4.2. Proof that V ⊂ H 1/2
Using again our assumption that V is bounded from below by the Coulomb potential, we see that

ϕ 2 V ˆR3 |σ • ∇ϕ(x)| 2 2 + 1/|x| dx.
Hence ϕ is in H 1 outside of the origin, and |x| 1/2 ∇ϕ is in L 2 in a neighborhood of the origin. This turns out to imply that ϕ ∈ H 1/2 , using the following Hardy-type inequality for the part close to the origin. Lemma 4.2 (Another Hardy-type inequality). We have

(4.1) ˆR3 (-∆) 1/4 ϕ(x) 2 dx π 2 ˆR3 |x| |σ • ∇ϕ(x)| 2 dx, for every ϕ in C ∞ c (R 3 \ {0}, C 2 ). Proof. Using that (σ • p) 2 = |p| 2 with p = -i∇, we can write ϕ = |p| -2 σ • p(σ • p)ϕ. Calling η = σ • ∇ϕ, it remains to show the inequality η, |p| -1 η L 2 = |p| -3/2 σ • pη 2 L 2 π 2 ˆR3 |x| |η(x)| 2 dx
which is just Kato's inequality (1.13) for η.

5. Proof of Theorem 1.9 on the critical domains W C and W 5.1. A pointwise estimate on ϕ 0 and ϕ 1

We start by giving a useful pointwise estimate on ϕ 0 and ϕ 1 at the origin.

Lemma 5.1 (Pointwise estimates on the spherical averages ϕ 0 and ϕ 1 ). Let ϕ ∈ W C and let

ϕ 0 = 1 {0} (σ • L)ϕ and ϕ 1 = σ • ω x 1 {-2} (σ • L)ϕ.
Then we have the pointwise estimate

(5.1) ∀r e -1 , |ϕ 0 (r)| + |ϕ 1 (r)| log(1/r) r q C 0 (ϕ) + ϕ L 2 . Proof. Let v = rϕ 0 which belongs to L 2 (0, ∞) since ϕ 0 (|x|) ∈ L 2 (R 3 , C 2 ). Using Lebesgue's differential theorem, we get, for 0 < r < 1/2 < r ′ < 1, |v(r) -v(r ′ )| ˆr′ r s 1 + s |v ′ | 2 ds 1/2 ˆr′ r 1 + s s ds 1/2 ϕ WC 1 -r + log(1/r)
which gives the result, after integrating over r ′ ∈ (1/2, 1).

Proof that

C ∞ c (R 3 \ {0}, C 2 ) is dense in W C Let ϕ ∈ W C .
For the functions ϕ + and ϕ -we can apply Theorem 1.4 (or even Remark 4.1). Only ϕ 0 and ϕ 1 need a new argument. Since the norms are the same for those two, we only deal with ϕ 0 and call it ϕ throughout the proof, for shortness.

First we approximate ϕ = ϕ 0 by a function supported outside of a neighborhood of the origin. We use ϕ n = θ n ϕ with θ n a radial function equal to 0 close to 0, equal to 1 on [e -1 , ∞) and which converges to 1 almost surely. We have to estimate the norm of ϕ -

ϕ n = (1 -θ n )ϕ, which is ˆ∞ 0 r 1 + r (1 -θ n )(rϕ ′ + ϕ) -rϕθ ′ n 2 dr 2 ˆ∞ 0 r 1 + r (1 -θ n ) 2 |rϕ ′ + ϕ| 2 dr + 2 ˆ∞ 0 r 3 θ ′ n (r) 2 1 + r |ϕ| 2 dr.
The term involving 1θ n goes to zero by the dominated convergence theorem. For the second term we cannot use a simple θ n such as θ(nr) because we are lacking estimates on ϕ. Inserting the bound (5.1) gives ˆe-1

0 r 3 θ ′ n (r) 2 1 + r |ϕ| 2 dr ˆe-1 0 θ ′ n (r) 2 r log(1/r) dr
which is divergent if we take a function in the form θ(nr). Using the fact that (r log(1/r)) -1 is not integrable at r = 0, it is possible to construct a θ n such that the right side goes to 0. Let (5.2)

ξ n (r) =        1 n 1 αn log(1/αn) -e r-αn/2 αn for α n /2 r α n , 1 n 1 r log(1/r) -e for α n r e -1 , 0 for r ∈ [0, α n /2] ∪ [e -1 , ∞).
where α n = exp(-e n ) → 0 is chosen such as to have

log(log(1/α n )) = ˆe-1 αn ds s log(1/s) = n.
Then we have ˆe-1

0 ξ n (r) dr = α n 8n 1 α n log(1/α n ) -e + 1 n ˆe-1 αn 1 r log(1/r) dr - 1 -eα n n =1 + O(1/n) and ˆe-1 0 r log 1 r ξ n (r) 2 dr = 1 n 2 1 α n log(1/α n ) -e 2 α 2 n ˆ1 1 2 r log 1 α n r r - 1 2 2 dr + 1 n 2 ˆe-1 αn r log 1 r 1 r log(1/r) -e 2 dr = 1 n + O(1/n 2 ).
Therefore we can take

θ n (r) = ˆr 0 ξ n (r) dr ˆ∞ 0 ξ n (r) dr .
As a last step, since the function θ n ϕ is now supported outside of a neighborhood of the origin, it can be approximated by functions in C ∞ c (R 3 \ {0}, C 2 ) by usual convolution arguments.

Proof that C

∞ c (R 3 \ {0}, C 2
) is dense in W The proof for an arbitrary potential V is more complicated. Since ϕ ± ∈ V we can use Theorem 1.4 for those functions and we only have to approximate ϕ 0 and ϕ 1 . Writing ϕ 0 = θϕ 0 + (1θ)ϕ 0 for a smooth radial function θ of compact support, which equals 1 in a neighborhood of 0, we know that (1θ)ϕ 0 ∈ H 1 ⊂ W. So we can prove the result for ϕ 0 supported in, say, the interval (0, e -1 ), an assumption that we make for the rest of the proof. For simplicity of notation we just assume in the rest of the proof that ϕ = ϕ(|x|) is radial and supported on (0, e -1 ). In radial coordinates, our norm is then equivalent to (5.3) ˆe-1

0 g(r)r 2 ϕ ′ (r) 2 dr + ˆe-1 0 r rϕ ′ (r) + ϕ(r) 2 dr + ˆe-1 0 r 2 1 + h(r) |ϕ(r)| 2 dr
where

g(r) = 1 4π ˆS2 dω 1 -V (rω) - r 1 + r 0, h(r) = 1 4π ˆS2 V (rω) dω + 1 r 0.
The difficulty is of course that we have little information on g and h, except from the fact that g and rh are bounded close to 0. As a first step we approximate ϕ by a function ϕ δ on which we have more information. Let 0 < δ < e -1 and u δ be the unique solution of the elliptic minimization problem (5.4) inf

u(δ)=ϕ(δ) ˆδ 0 g(r)r 2 u ′ (r) 2 dr + ˆδ 0 r ru ′ (r) + u(r) 2 dr + ˆδ 0 r 2 (1 + h(r))|u(r)| 2 dr .
Multiplying ϕ by a phase we can assume that ϕ(δ) > 0 and then we conclude that u δ 0 on [0, δ]. This is because the functional in the parenthesis decreases when u is replaced by |u|. We then let ϕ δ = ϕ(r)1(r δ) + u(r)1(r δ) which satisfies

ϕ δ ∈ W with ϕ -ϕ δ 2 W ˆδ 0 g(r)r 2 ϕ ′ (r) 2 dr + ˆδ 0 r rϕ ′ (r) + ϕ(r) 2 dr + ˆδ 0 r 2 1 + h(r) |ϕ(r)| 2 dr.
This tends to zero when δ → 0.

Next we are going to work with ϕ δ , using the additional properties coming from the fact that ϕ δ = u δ solves the variational problem (5.4) on [0, δ]. To shorten our notation, we simply write u = u δ . The function u solves in a weak sense the degenerate elliptic ordinary differential equation

(5.5) -r 2 (g(r) + r)u ′ (r) ′ = r(1 -r -rh(r))u(r)
and satisfies the Neumann-type boundary condition that

lim r→0 r 2 (g(r) + r)u ′ (r) + r 2 u(r) = lim r→0 r 2 (g(r) + r)u ′ (r) = 0.
Indeed, note that

(5.6) |u(r)| C ϕ W log(1/r) r
by Lemma 5.1 since ϕ δ ∈ W, hence r 2 u(r) → 0 at the origin. Thus, integrating (5.5) we find that -r 2 (g(r) + r)u ′ (r) = ˆr 0 s 1ssh(s) u(s) ds

ˆr 0 log(1/s) ds = r log(1/r) + o(r log(1/r)).
Multiplying by u(r) 0 and using (5.6) we find -r 2 (g(r) + r) u 2 ′ log(1/r) and therefore

(5.7) u(r) ˆδ r log(1/s) ds s 2 (s + g(s)) + ϕ(δ) 2 1/2 ˆδ r log(1/s) ds s 2 (s + g(s)) 1/2
for r δ/2. Note that the integral on the right diverges as r → 0 since g is bounded and

(5.8) ˆδ r log(1/s) ds s 2 (s + g(s))

1 δ + g L ∞ ˆδ r log(1/s) ds s 2 ∼ r→0 1 δ + g L ∞ log(1/r) r .
The estimate (5.7) is better than (5.6) if g(r) is much larger than r at the origin. For instance when g has a finite limit at r = 0, we get log(1/r)/ √ r instead of log(1/r)/r. Now we follow the proof of the previous section in the Coulomb case. We need to find a sequence θ n which is equal to 0 close to 0, is equal to 1 on [δ/2, ∞), converges to 1 almost surely, and such that

lim n→∞ ˆδ 0 (g(r) + r)r 2 u(r) 2 θ ′ n (r) 2 dr = 0.
Plugging our bound (5.7) on u, it is sufficient to show that lim n→∞ ˆδ 0 (g(r) + r)r 2 ˆδ r log(1/s) ds s 2 (s + g(s)) θ ′ n (r) 2 dr = 0.

Following the construction (5.2) of θ n in the previous section, this is possible when ˆδ 0 dr (g(r) + r)r 2 ´δ r log(1/s) ds s 2 (s+g(s))

= +∞.

In order to check that this integral is infinite, we introduce for simplicity

F (r) := ˆδ r log(1/s) ds s 2 (s + g(s))
and rewrite ˆδ 0 dr

(g(r) + r)r 2 ´δ r log(1/s) ds s 2 (s+g(s)) = - ˆδ 0 F ′ (r) F (r) dr log(1/r) - log F (δ) log(1/δ) + ˆδ 0 log F (r) r log 2 (1/r) dr
after integrating by parts. From (5.8) we obtain log F (r) log(1/r) + o log(1/r) and therefore the integral on the right diverges, as we wanted.

Proof that

W C ⊂ H s (R 3 , C 2 ) for 0 s < 1/2
We have shown in Theorem 1.4 that

V C ⊂ H 1/2 (R 3 , C 2 ), hence ϕ ± ∈ H 1/2 (R 3 , C 2 )
and it suffices to show the result for ϕ = ϕ 0 (|x|) + σ • ω x ϕ 1 (|x|). In addition, by density we can assume that ϕ 0 and ϕ 1 ∈ C ∞ c (0, ∞). Again we can prove the result for ϕ 0 supported in, say, the interval (0, e -1 /2), an assumption that we make for the rest of the proof. Now it is actually easier to prove that the compactly-supported ϕ 0 (|x|) belongs to W 1,α (R 3 ) for every 1 α < 3/2, which implies that it belongs to H s (R 3 ) for 0 s < 1/2, by the classical Sobolev embeddings. So we have to prove that ˆe-1

0 r 2 |ϕ ′ 0 (r)| α dr = ˆe-1 0 r 2-α |rϕ ′ 0 (r)| α dr < ∞.
Note that by Lemma 5.1

ˆe-1 0 r 2-α |ϕ 0 (r)| α dr ˆe-1 0 r 2(1-α) | log(1/r)| α/2 dr
is convergent under the assumption that α < 3/2. So it suffices to estimate ˆe-1

0 r 2-α |rϕ ′ 0 (r) + ϕ 0 (r)| α dr ˆe-1 0 r 4-3α 2-α dr 2-α 2 ˆe-1 0 r|rϕ ′ 0 (r) + ϕ 0 (r)| 2 dr α 2
, where the first integral is again finite when α < 3/2. For σ • ω x ϕ 1 (|x|) we have

∇σ • ω x ϕ 1 (|x|) |ϕ ′ 1 (|x|)| + |ϕ 1 (|x|)| |x| |ϕ ′ 1 (|x|)| + C log(1/|x|) |x| 2
and the result is the same. This concludes the proof of Theorem 1.9.

6. Proof of the resolvent convergence in Theorem 1.11

We assume for simplicity that V ε = max(V, -1/ε). The proof for the other case V ε = (1ε)V is very similar. Using the min-max formula for the eigenvalues [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] and the fact that q 0,Vε q 0,V q C 0 0, it is known that

sup(V ) -1, 1 -ν 2 ∩ σ(D Vε ) = ∅, ∀0 < ε < 1.
The construction of the distinguished self-adjoint extension in [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] actually provides the information that

(sup(V ) -1, 1 -ν 2 ) ∩ σ(D V ) = ∅
as well. We therefore fix an energy E ∈ (sup(V ) -1, √ 1ν 2 ) and prove the norm convergence of the resolvent (D Vε -E) -1 towards (D V -E) -1 . By [Kat95, Chap. IV, Sec. 2.6] this implies the convergence in norm of (D Vεz) -1 towards (D Vz) -1 for any z / ∈ σ(D V ). As a first step we provide a quantitative bound which follows arguments from [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF] but is not explicitly written there. Let f, g ∈ L 2 (R 3 , C 2 ) be two vectors and ϕ ε , χ ε ∈ H 1 (R 3 , C 2 ) be such that

D Vε -E ϕ ε χ ε = f g , that is, (6.1) (1 -E + V ε )ϕ ε -iσ • ∇χ ε = f, (-1 -E + V ε )χ ε -iσ • ∇ϕ ε = g.
Inserting

χ ε = - 1 1 + E -V ε iσ • ∇ϕ ε - g 1 + E -V ε we get the equation in H -1 (6.2) (1 -E + V ε )ϕ ε -σ • ∇ 1 1 + E -V ε σ • ∇ϕ ε = f + iσ • ∇ 1 1 + E -V ε g.
Integrating against ϕ ε , we find that

ˆR3 (1 -E + V ε )|ϕ ε | 2 + ˆR3 |σ • ∇ϕ ε | 2 1 + E -V ε = ˆR3 ϕ * ε f -i ˆR3 σ • ∇ϕ * ε 1 + E -V ε g.
We can rewrite this in the form

-E ˆR3 |ϕ ε | 2 -E ˆR3 |σ • ∇ϕ ε | 2 (1 -V ε )(1 + E -V ε ) + q 0,Vε (ϕ ε ) = ˆR3 ϕ * ε f -i ˆR3 σ • ∇ϕ * ε 1 + E -V ε g.
From this we conclude that there exists a constant C (depending on E and V but otherwise independent of ε) such that

ϕ ε 2 L 2 + q 0,Vε (ϕ ε ) + ˆR3 |σ • ∇ϕ ε | 2 (1 + E -V ε ) 2 C f 2 L 2 + g 2 L 2 .
Since (1 + E -V ε ) -1 is uniformly bounded, we also have that χ ε is bounded in L 2 . Writing (6.1) in the form

(6.3) (-1 -E + V ε )ϕ ε -iσ • ∇χ ε = f -2ϕ ε , (1 -E + V ε )χ ε -iσ • ∇ϕ ε = g + 2χ ε .
we get all the same information with ϕ ε and χ ε interchanged. In other words, we have shown that the embedding D(D Vε ) ⊂ W × W is continuous with a constant independent of ε:

(6.4) ϕ ε W + χ ε W + σ • ∇ϕ ε 1 + E -V ε L 2 + σ • ∇χ ε 1 + E -V ε L 2 C f g L 2 = C (D Vε -E) ϕ ε χ ε L 2 , ∀ϕ ε , χ ε ∈ H 1 (R 3 , C 2 ).
Now we can pass to the weak limit ε → 0. Since W ⊂ H s for all 0 s < 1/2, we have W ⊂ L p for 2 p < 3 with a locally compact embedding. Hence we can find a subsequence ε n → 0 such that ϕ n := ϕ εn ⇀ ϕ ∈ W and χ n := χ εn ⇀ χ weakly in W, weakly in L p and strongly in L p loc for every 2 p < 3. Passing to the weak limit in (6.1), we find (6.5)

(1

-E + V )ϕ -iσ • ∇χ = f, (-1 -E + V )χ -iσ • ∇ϕ = g.
Since Ψ = (ϕ, χ) is in L 2 and satisfies ϕ ∈ W and D V Ψ ∈ L 2 , we have Ψ ∈ D(D V ). We know from the selfadjointness of D V and the fact that E / ∈ σ(D V ) [EL07] that the equation (6.5) has a unique solution. Hence the weak limit is independent of the subsequence and we must have ϕ ε ⇀ ϕ and χ ε ⇀ χ. This proves the weak convergence of the resolvents. In addition, we have, after passing to the weak limit, (6.6)

ϕ W + χ W + σ • ∇ϕ 1 + E -V L 2 + σ • ∇χ 1 + E -V L 2 C f g L 2 = C (D V -E) ϕ χ L 2 .
This tells us that D(D V ) is continuously embedded into the spaces corresponding to the norms on the left. This is already present in the proof of [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF], but not explicitly written. Now we prove the norm convergence of the resolvents. Let

F ε = (f ε , g ε ) be any sequence in L 2 (R 3 , C 4 ) such that F ε 2 = f ε 2 + g ε 2 = 1, F ε ⇀ F weakly in L 2 and (D Vε -E) -1 -(D V -E) -1 = (D Vε -E) -1 -(D V -E) -1 F ε .
Let then

ϕ ε χ ε = (D Vε -E) -1 f ε g ε , ϕ ′ ε χ ′ ε = (D V -E) -1 f ε g ε , which implies that (6.7) (1 -E + V )(ϕ ε -ϕ ′ ε ) -iσ • ∇(χ ε -χ ′ ε ) = (V -V ε )ϕ ε , (-1 -E + V )(χ ε -χ ′ ε ) -iσ • ∇(ϕ ε -ϕ ′ ε ) = (V -V ε )χ ε .
From the previous uniform estimates we know that ϕ ε , ϕ ′ ε , χ ε and χ ′ ε are uniformly bounded in the norms appearing on the left of (6.6). Passing to weak limits as previously, we find that ϕ εϕ ′ ε ⇀ ϕ and χ εχ ′ ε ⇀ χ weakly with

(D V -E) ϕ χ = 0
and ϕ ∈ W, hence ϕ = χ = 0. Our goal is to prove that the convergence is strong in L 2 . Because of the locally compact embedding into L 2 , it only remains to prove the compactness at infinity. Let then θ be a smooth radial function which is 0 in the ball of radius R and 1 outside of the ball of radius 2R, for any fixed R > 0.

We multiply (6.7) by θ and get

(6.8) (1 -E + V )θ(ϕ ε -ϕ ′ ε ) -iσ • ∇θ(χ ε -χ ′ ε ) = -i(χ ε -χ ′ ε )σ • ∇θ, (-1 -E + V )θ(χ ε -χ ′ ε ) -iσ • ∇θ(ϕ ε -ϕ ′ ε ) = -i(ϕ ε -ϕ ′ ε )σ • ∇θ.
since θ(V -V ε ) = 0 for ε small enough (we use here that V can only diverge at the origin). This can be written in the form (6.9)

D V -E θ ϕ ε -ϕ ′ ε χ ε -χ ′ ε = -iθ ′ σ • ω x χ ε -χ ′ ε ϕ ε -ϕ ′ ε
where the right side has a compact support, hence converges strongly to 0 in L 2 . Since D V -E is invertible we conclude as we wanted that θ(ϕ ε -ϕ ′ ε ) → 0 and θ(χ εχ ′ ε ) → 0 strongly in L 2 . Together with the locally compact embedding this proves the norm-convergence of the resolvents and ends the proof of Theorem 1.11. operator ( ḣ±1 ν ) * . But D ( ḣ±1 ν ) * contains a function behaving like r 1/2 near 0, and the derivative of such a function cannot be square integrable.

Finally, we study the case of strong fields √ 3/2 < |ν| 1. For |ν| < √ 15/2 one can consider the restriction of Ḋ-ν/|x| to the orthogonal space E |κ| 2 of the subspace ker(K 2 -1) in L 2 (R 2 , C 4 ). Then the arguments and estimates of [START_REF] Landgren | An application of the maximum principle to the study of essential self-adjointness of Dirac operators. I[END_REF][START_REF] Landgren | An application of the maximum principle to the study of essential self-adjointness of Dirac operators. II[END_REF] immediately imply that this restriction is self-adjoint with domain

H 1 (R 3 , C 4 ) ∩ E |κ| 2 . So D( Ḋ-ν/|x| ) ∩ E |κ| 2 = H 1 (R 3 , C 4 ) ∩ E |κ| 2
and we only have to characterize D ḣ±1 ν in the case √ 3/2 < |ν| 1. To our knowledge, this last point is the only novelty of the present Appendix. Our claim is that

(A.3) D ḣ±1 ν ⊂ H 1 0 (0, ∞), C 2 , ∀ √ 3/2 < |ν| 1 .
Before proving (A.3), let us explain why this inclusion ends the proof of Proposition A.1. Using formula (1.3), together with the classical identity

|∇Ψ| 2 = |∂ r Ψ| 2 + |LΨ| 2 r 2
and the bound

LΨ(r, •) 2 L 2 (S 2 ) 2 Ψ(r, •) 2 L 2 (S 2 ) , ∀Ψ ∈ ker(K 2 -1) , we see that ∇Ψ 2 L 2 (R 3 ) is controlled on ker(K 2 -1) by a finite sum of inte- grals of the forms ´∞ 0 | d dr (r -1 u, r -1 v)| 2 r 2 dr and ´∞ 0 |(u, v)| 2 r -2 dr.
Using the onedimensional Hardy inequality, one then finds that such integrals are dominated by

´∞ 0 | d dr (u, v)| 2 dr on C ∞ c (0, ∞). So (A.3) implies that D Ḋ-ν/|x| ∩ ker(K 2 -1) ⊂ H 1 (R 3 , C 4 ) ,
and finally proves that D Ḋ-ν/|x| ⊂ H 1 (R 3 , C 4 ). We now prove (A.3). Without any loss in generality, we can assume that κ = 1 and √ 3/2 < ν 1. Indeed, one can change the sign of κ by interchanging u and v, and the sign of ν by replacing (u, v) by (u, -v). Let then (u n , v n ) be a sequence in C ∞ c (0, ∞), of limit (u ∞ , v ∞ ) for the norm of the domain of ḣ1

-ν/r . Then (u n , v n ) → (u ∞ , v ∞ ) in ∩ ε>0 H 1 (ε, ∞) and (a n , b n ) := - νu n r - dv n dr + v n r , - νv n r + du n dr + u n r converges in L 2 (0, ∞) to (a ∞ , b ∞ ) := - νu ∞ r - dv ∞ dr + v ∞ r , - νv ∞ r + du ∞ dr + u ∞ r .
On the other hand, the homogeneous system

- νu r - dv dr + v r , - νv r + du dr + u r = (0, 0)
admits the solutions (ν, 1 ± s)r ±s with s = √ 1ν 2 when ν < 1, and the solutions (1, 1), (log(r), log(r) + 1) when ν = 1. So, remembering that (u n , v n ) vanishes near 0, the method of variation of the constant gives the formula

(A.4) u n (r) v n (r) = ν 1 + s ˆr 0 ρ r s α n (ρ)dρ + ν 1 -s ˆr 0 r ρ s β n (ρ)dρ in the case ν < 1, with (α n , β n ) = 1 2s -a n -b n 1 -s ν , a n + b n 1 + s ν convergent in L 2 (0, ∞). In the case ν = 1 the formula is (A.5) u n (r) v n (r) = ˆr 0 b n (ρ) -a n (ρ) dρ + ˆr 0 log(ρ/r) a n (ρ) + b n (ρ) a n (ρ) + b n (ρ) dρ .
Our last step is to prove the convergence of ( dun dr , dvn dr ) to ( du∞ dr , dv∞ dr ) in L 2 (0, 1). Considering the derivatives in r of formulas (A.4) and (A.5), we see that we just need to estimate integrals of the form

ˆ1 0 r s-1 ˆr 0 ρ -s F (ρ)dρ 2 dr and ˆ1 0 r -1 ˆr 0 F (ρ)dρ 2 dr in terms of ´1 0 F 2 (r)dr for all F ∈ L 2 (0, 1).
For the first estimate we take p > 2 such that ps < 1 (this is possible since we assume √ 3/2 < ν < 1). We denote q = p p-1 ∈ (1, 2). By Hölder's inequality,

r s-1 ˆr 0 ρ -s F (ρ)dρ ˆr 0 r ρ ps d(ρ/r) 1/p r -1 ˆr 0 F q (ρ)dρ 1/q = (1 -ps) -1/p r -1 ˆr 0 F q (ρ)dρ 1/q .
Hence, applying the one-dimensional Hardy inequality

ˆ∞ 0 r -1 ˆr 0 G(ρ)dρ 2/q dr 2 2 -q 2/q ˆ∞ 0 G 2/q (r)dr to G(r) = F q (r)1 0 r 1 , we find ˆ1 0 r s-1 ˆr 0 ρ -s F (ρ)dρ 2 dr (1 -ps) -2/p 2 2 -q 2/q ˆ1 0 F 2 (r)dr .
This is the needed estimate in the case √ 3/2 < ν < 1. The second estimate (needed for ν = 1) is much easier. It follows directly from Hardy's inequality

ˆ∞ 0 r -1 ˆr 0 G(ρ)dρ 2 dr 4 ˆ∞ 0 G 2 (r)dr
applied to G(r) = F (r)1 0 r 1 . This concludes the proof of (A.3), hence of Proposition A.1.

B. Proof of Theorem 1.8 on q C λ in the critical case

In this section we compute the quadratic form q C λ for V (x) = -|x| -1 , following the method introduced in [DELV04].

B.1. Computation of q C 0 First we note that the operator σ • L commutes with (σ • ∇)f (|x|)(σ • ∇) for any radial function f . Indeed, we have

(B.1) σ • L σ • ∇ + σ • ∇ σ • L = -2σ • ∇.
Using that σ • L commutes with scalar radial functions and inserting (B.1), we easily conclude that

(B.2) σ • ∇ 1 1 + |x| -1 σ • ∇ , σ • L = 0.
Therefore, recalling that ω x = x/|x|, we have

q C 0 (ϕ) = q C 0 (ϕ + ) + q C 0 (ϕ 0 ) + q C 0 (ϕ -) + q C 0 σ • ω x ϕ 1 .
We compute these four terms separately. We use the formula

σ • ∇ , σ • h(|x|)x = h(|x|) + |x|h ′ (|x|) + 2h(|x|) 1 + σ • L which, in the particular case h(r) = 1/r, becomes (B.3) σ • ∇, σ • x |x| = 2 |x| 1 + σ • L . Denoting f (r) = r 1 + r and g(r) = re r , which satisfy f g ′ = g, we obtain ˆR3 f g 2 σ • ∇(gu) 2 = ˆR3 f g 2 gσ • ∇u + u g ′ r σ • x 2 = ˆR3 f σ • ∇u 2 + ˆR3 |u| 2 f -u, σ • ∇, σ • x |x| u = ˆR3 |x| 1 + |x| σ • ∇u 2 + ˆR3 1 - 1 |x| |u| 2 -2 u, σ • L |x| u =q C 0 (u) -2 u, σ • L |x| u . (B.4)
This gives what we wanted for u = ϕ + and u = ϕ 0 , after computing

σ • ∇(gϕ + ) = g σ • ∇ϕ + + 1 + |x| |x| σ • ω x ϕ + and σ • ∇(gϕ 0 ) = g σ • ω x ϕ ′ 0 + 1 + |x| |x| ϕ 0 .
Similarly, we have

ˆR3 f g 2 σ • ∇(g -1 u) 2 = ˆR3 f g 2 g -1 σ • ∇u -u g ′ rg 2 σ • x 2 = ˆR3 f σ • ∇u 2 + ˆR3 |u| 2 f + u, [σ • ∇, σ • ω x ] u =q C 0 (u) + 2 u, 2 + σ • L |x| u (B.5)
which gives the result for ϕ -, after inserting

σ • ∇(g -1 ϕ -) = g -1 σ • ∇ϕ -- 1 + |x| |x| σ • ω x ϕ -. For u = σ • ω x ϕ 1 (|x|) we have to use in addition that σ • ∇σ • ω x ϕ 1 = [σ • ∇, σ • ω x ] ϕ 1 + ϕ ′ 1 = 2 |x| (1 + σ • L)ϕ 1 + ϕ ′ 1 = 2 |x| ϕ 1 + ϕ ′ 1 .
since ϕ 1 is radial.

B.2. Simplification of the norm associated with q C 0 In this section we prove that the norm induced by q C 0 on L 2 is equivalent to the ones given in (1.29). Let ϕ ∈ L 2 (R 3 , C 2 ) be such that all the terms in (1.28) are finite. First we remark that

ˆR3 |x| 1 + |x| σ • x |x| 2 (1 + |x|) ϕ ± (x) 2 dx = ˆR3 1 + |x| |x| |ϕ ± (x)| 2 dx
which is controlled by the L 2 norm and by the term involving σ

• L. So we conclude that ˆR3 |x| 1 + |x| σ • ∇ϕ ± (x) 2 dx < ∞.
Using (1.28) we have

(B.6) ˆR3 |x| 1 + |x| σ•∇ϕ + (x) 2 dx+ ϕ + 2 L 2 ˆR3 |ϕ + (x)| 2 |x| dx+2 ϕ + , σ • L |x| ϕ +
and a similar inequality for ϕ -. Therefore there is no need to keep the term involving σ • L. For ϕ 0 and ϕ 1 we only use the L 2 norm to control the terms involving rϕ 0 and rϕ 1 . Lastly, we see that the quadratic form (B.7)

ˆR3 1 |x|(1 + |x|) σ • ∇|x|ϕ(x) 2 dx
is also the sum of the similar terms for ϕ + , ϕ -, ϕ 0 and σ • ω x ϕ 1 (|x|), since σ • L commutes with the corresponding operator in the same way as in (B.2). Therefore the norm associated with q C 0 is equivalent in L 2 to that given by (B.7). However, in practice it will often be more convenient to use the more precise information contained in (1.29) for ϕ 0 , ϕ 1 and ϕ ± .

B.3. Estimate on q C

λ for λ = 0 It is possible to provide a formula for q C λ (ϕ) using the two functions where the coefficient in front of the first integral is < 1 for η small enough. This concludes the proof of Theorem 1.8.

C. The two-dimensional case

In two space dimensions, the free Dirac operator (C.1)

d 0 = -i σ 1 ∂ 1 -iσ 2 ∂ 2 + σ 3 = 1 -2i∂ z -2i∂ z -1 is self-adjoint in L 2 (R 2 , C 2 ) with domain H 1 (R 2 , C 2 ). Here z = x 1 + ix 2 , z = x 1 -ix 2 , ∂ z = 1 2 (∂ 1 -i∂ 2 ) , ∂ z = 1 2 (∂ 1 + i∂ 2 ) .
In this section, we consider Dirac-Coulomb operators of the form

d V = d 0 + V (x)
where V (x) is a real-valued function satisfying V (x) -ν/|x|, as in three dimensions. The results are very similar to the three-dimensional case, the algebra is simpler and the proofs do not involve any new idea. So we will only state the theorems for completeness, pointing out the main differences. Note that the twodimensional case is relevant in solid state physics: although the low-energy electronic excitations in graphene are modeled by a massless two-dimensional Dirac equation [NGP + 09], the study of strained graphene involves a massive Dirac operator [START_REF] Vozmediano | Gauge fields in graphene[END_REF]. for all a > 0. This inequality was proved recently by Müller [M 16], using the indirect method introduced by Dolbeault-Esteban-Séré [START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF] in their proof of (1.20). But a more direct proof can be given by "completing the square" in the spirit of [START_REF] Dolbeault | An analytical proof of Hardy-like inequalities related to the Dirac operator[END_REF][START_REF] Dolbeault | Hardytype estimates for Dirac operators[END_REF], as we will explain later. Using (C.5) and our assumption that V is bounded from below by the Coulomb potential, we can prove that q λ +2λ ϕ 2 L 2 0. In addition, as in three dimensions, it defines a norm which is equivalent to the one given by the quadratic form

(C.6) ϕ 2 V := ˆR2 |∂ z ϕ(x)| 2 2 -V (x) dx + ˆR2 |ϕ(x)| 2 dx.
The corresponding space is, therefore,

(C.7) V = ϕ ∈ L 2 (R 2 , C) ∩ H 1 loc (R 2 \ {0}, C) : (2 -V ) -1/2 ∂ z ϕ ∈ L 2 (R 2 , C) .
Later we will state a result saying that C ∞ c (R 2 \ {0}, C) is dense in V for the norm (C.6), but for shortness we immediately turn to the discussion of the critical case.

Following ideas from [START_REF] Dolbeault | An analytical proof of Hardy-like inequalities related to the Dirac operator[END_REF][START_REF] Dolbeault | Hardytype estimates for Dirac operators[END_REF] and Appendix B, we can provide a more direct proof of (C.5). It is useful to start with the Coulomb case V C (x) = -|2x| -1 , in which case we use the notation

(C.8) q C λ (ϕ) = ˆR2 8|x| 1 + 2(1 + λ)|x| |∂ z ϕ| 2 + 1 -λ - 1 2|x|
|ϕ| 2 dx.

We use the orbital momentum operator L = -i(x 1 ∂ 2x 2 ∂ 1 ). Note that 2z∂ z = (x • ∇) + L, 2z∂ z = (x • ∇) -L. We recall that the set of eigenvalues of L is Z, and the eigenspace of eigenvalue l consists of functions taking the form e ilθ ϕ(r) in polar coordinates. The following is the analogue of Theorem 1.8 and its very similar proof will be omitted.

Theorem C.1 (Writing q C λ as a sum of squares in 2d). For every ϕ ∈ L 2 (R 2 , C) we write ϕ = ϕ + (x) + ϕ -(x) + ϕ 0 (r) + e -iθ ϕ 1 (r)

where ϕ + = 1 [1,∞) (L)ϕ, ϕ -= 1 (-∞,-2] (L)ϕ, ϕ 0 = 1 {0} (L)ϕ and e -iθ ϕ 1 (r) = 1 {-1} (L)ϕ. Then for every ϕ ∈ H 1 (R 2 , C). Moreover

q C 0 (ϕ) = ˆR2 
ϕ 2 L 2 + q C 0 (ϕ) ∼ ϕ 2 L 2 + ˆR2 |x| 1 + |x| ∂ z (ϕ + + ϕ -) 2 dx + ˆ∞ 0 1 1 + r rϕ ′ 0 (r) + ϕ 0 (r) 2 2 + rϕ ′ 1 (r) + ϕ 1 (r) 2 2 dr ∼ ϕ 2 L 2 + ˆR2 ∂ z |x| 1/2 ϕ(x) 2 (1 + |x|) dx. (C.10)
Finally, for all -1 < λ < 1, (2λ + 1) ϕ 2 L 2 + q C λ (ϕ) is a positive quadratic form equivalent to ϕ 2 L 2 + q C 0 (ϕ). The critical spaces in the 2d case are defined similarly as in 3d. In the Coulomb case V (x) = -|2x| -1 we introduce (C.11)

W C = ϕ ∈ L 2 (R 2 , C) : ∂ z |x| 1/2 ϕ (1 + |x|) 1/2 ∈ L 2 (R 2 , C) .
Then we assume that V (x) -|2x| -1 and that sup(V ) < 1. We define the critical space W associated with V by (C.12)

W = ϕ ∈ W C : 1 1 -V (x) - 2|x| 1 + 2|x| 1/2 ∂ z ϕ ∈ L 2 (R 3 , C 2 ), V (x) + 1 2|x| 1/2 ϕ ∈ L 2 (R 3 , C 2 ) .
The following is the equivalent of Theorems 1.4 and 1.11 in 2d.

Theorem C.2 (The quadratic form domains in 2d). We assume that (C.13) V (x) -1 2|x| and sup(V ) < 2.

Then the space C ∞ c (R 2 \ {0}, C) is dense in V, in W C and in W for their respective norms. In addition we have the continuous embeddings V ⊂ H 1/2 (R 2 , C) and W ⊂ W C ⊂ H s (R 2 , C), for every 0 s < 1/2. The proof of Theorem C.2 is very similar to the proofs of Theorems 1.4 and 1.9. Note however that for the density in V, we have to take a different cutoff function: θ δ (x) := max(0, 1log 2 (max(1, log δ |x|)). Moreover, the pointwise estimate on spherical averages of ϕ is slightly different in 2d, compared to that in Lemma 5.1. Instead of (5.1), we have As in 3d, applying the Esteban-Loss method allows to distinguish and define a unique self-adjoint extension from the property that

D(d V ) ⊂ Ψ = ϕ χ ∈ L 2 (R 2 , C 2 ) : ϕ ∈ V
in the case 0 < ν < 1/2 and

D(d V ) ⊂ Ψ = ϕ χ ∈ L 2 (R 2 , C 2 ) : ϕ ∈ W
when ν = 1/2. For shortness we do not state the equivalent of Theorems 1.1 and 1.11. As in Theorem 1.11 we can prove the convergence of the resolvents in norm in the 2d case, by following the proof given in Section 6. In the subcritical case, as in Corollary 1.7 one can infer some information on χ under the assumption that d V Ψ ∈ L 2 (R 2 , C) and that ϕ ∈ V. However, due to the fact that the adjoint of i∂ z is i∂ z , the proper conclusion is that

D(d V ) ⊂ V × V, for 0 < ν < 1/2.
We conclude with the min-max characterization of eigenvalues in the spectral gap. As in 3d, we denote Λ + T (resp. Λ - T ) the Talman projectors corresponding to the Talman decomposition

Ψ = ϕ χ = Λ + T Ψ Λ - T Ψ
.

We also consider the spectral projections

Λ + 0 = 1(d 0 0), Λ - 0 = 1(d 0 0).
For a space F ⊆ H 1/2 (R 3 , C 4 ), we consider the min-max levels given by the same formula as (2.3), but with d V instead of D V . We get the same result as in three dimensions, but with the critical value ν = 1/2.

1

  To our knowledge, essential self-adjointness is an open question for general real-valued potentials such that |V (x)| √ 3 2|x| .

  Theorem 2.1 (Min-max formula for the kth eigenvalue[START_REF] Dolbeault | On the eigenvalues of operators with gaps. Application to Dirac operators[END_REF]). With the above notations, and under assumptions (i)-(iii), we have b > a. The number λ (k) F is the kth eigenvalue of A in (a, b), counted with multiplicity, or is equal to b if A has less than k eigenvalues in (a, b).

f

  λ (r) = r 1 + (1 + λ)r and g λ (r) = re (1+λ)r in (B.4) and (B.5), and the arguments are exactly the same as before. We can also use (1.30) and notice that, for λ > 0,λ ˆR3 |x| 2 |σ • ∇ϕ ± (x)| 2 (1 + |x|)(1 + (1 + λ)|x|) dx λ(1 + η) ˆR3 |σ • ∇|x|ϕ(x)| 2 (1 + |x|)(1 + (1 + λ)|x|) dx + λ(1 + η -1 ) ˆR3 |ϕ(x)| 2 dx λ(1 + η) 1 + λ ˆR3 |σ • ∇|x|ϕ(x)| 2 |x|(1 + |x|) dx + λ(1 + η -1 ) ˆR3 |ϕ(x)| 2 dx

  The two-dimensional analogue of the Hardy-type inequality (1

(

  C.14) ∀r e -1 , |ϕ 0 (r)| + |ϕ 1 (r)| log(1/r) r q C 0 (ϕ) + ϕ L 2 .

Here we follow von Neumann's theory of self-adjoint extensions[vN30]. We refer to the recent paper[START_REF] Gallone | Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei[END_REF] for an alternative approach based on the Kreȋn-Višik-Birman extension scheme.
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A. Domains of closures in the exact Coulomb case

In this appendix we characterize the domains of the closures of the minimal operators Ḋ-ν/r and ḣκ ν . We prove the following Proposition A.1 (Closures of the minimal operators Ḋ-ν/r and ḣκ ν ).

for |κ| 2, then we have

When |ν| = √ 3/2 and κ = ±1, we have

In addition,

Proof. Note that by Hardy's inequality, the operator norms of the Dirac-Coulomb operators Ḋ-ν/r and ḣκ ν are controlled by the H 1 norms, so the two inclusions In [START_REF] Landgren | An application of the maximum principle to the study of essential self-adjointness of Dirac operators. I[END_REF][START_REF] Landgren | An application of the maximum principle to the study of essential self-adjointness of Dirac operators. II[END_REF] it is proved that ḣκ ν is self-adjoint with same domain as ḣκ 0 , provided |ν| < κ 2 -1/4. Using the identity

In addition, using resolvent estimates, it was proved in [LR79, LRK80] that

Indeed, since essential self-adjointness still holds, ḣ±1 ν coincides with the adjoint

We would like to emphasize four main differences of the 2d case, as compared with the 3d case:

• The differential operator -2i∂ z is not formally self-adjoint (contrary to -iσ • ∇ in 3d). Its formal adjoint is -2i∂ z.

• When V = -ν/|x|, the operator d V is unitarily equivalent to a direct sum of the same radial Dirac operators h ℓ ν as in 3d, but now ℓ (which replaces κ) is an eigenvalue of the orbital momentum operator L, taking all relative integer values including ℓ = 0.

) is not essentially self-adjoint for ν = 0. In 3d, the operator Ḋ-ν/|x| is essentially self-adjoint when |ν| √ 3/2. This difference is due to the presence of the radial Dirac operator h 0 ν in the direct sum mentioned above.

• The condition for the existence of a unique distinguished self-adjoint extension is |ν| 1/2 instead of |ν| 1.

With this in mind, one can prove that Formulas (A.1) and (A.2) still hold in 2d for the domains of the closures ḋ-ν/r and ḣℓ ν (ℓ ∈ Z), provided |ν| < 1/2. Theorem 1.1 stays true in 2d, with appropriate modifications and we do not state it explicitly. In particular we need to ask that V 2 ∈ L 2 (R 2 ) and there is no equivalent of (5). These results have been mainly proved by Cuenin and Siedentop [START_REF] Cuenin | Dipoles in graphene have infinitely many bound states[END_REF] (see also [START_REF] Warmt | Semiklassische Asymptotik der Resolvente eines Dirac operators[END_REF]). In particular, they showed that

Here, the norm is 2 instead of 1, this is the reason why the critical coupling parameter is ν = 1/2 instead of ν = 1.

The two-dimensional analogue of the Esteban-Loss method for self-adjoint extensions [START_REF] Esteban | Self-adjointness for Dirac operators via Hardy-Dirac inequalities[END_REF][START_REF] Esteban | Self-adjointness via partial Hardy-like inequalities[END_REF] was discussed in [START_REF] Morozov | On the minimax principle for Coulomb-Dirac operators[END_REF]M 16,[START_REF] Warmt | Semiklassische Asymptotik der Resolvente eines Dirac operators[END_REF]. As in 3d, we make the stronger assumptions

for some 0 ν 1/2. Here √ 1 -4ν 2 is the first eigenvalue of the Dirac operator with the Coulomb potential V C (x) = -ν/|x|. As in three space dimensions, it is important to study the quadratic form

Theorem C.3 (Min-max formula for eigenvalues in 2d). Let 0 < ν 1/2. We assume that

Then, the number λ

T,F defined in (2.3), is independent of the subspace F and coincides with the kth eigenvalue of the distinguished self-adjoint extension of d V larger than or equal to √ 1 -4ν 2 , counted with multiplicity (or is equal to b = inf (σ ess (d V ) ∩ ( √ 1 -4ν 2 , +∞)) if there are less than k eigenvalues below b). In addition, we have λ