Domains for Dirac-Coulomb min-max levels - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2017

Domains for Dirac-Coulomb min-max levels

Résumé

We consider Dirac operators with a Coulomb-type potential $V(x)\sim -\nu/|x|$, in the case where the Coulomb singularity is strong, that is $\sqrt3/2\leq\nu\leq1$ in units such that $mc^2=1$. This operator is not essentially self-adjoint but has a distinguished self-adjoint extension. In a first part we obtain new results on the domain of the distinguished self-adjoint extension, complementing previous works of Esteban and Loss. Then we prove the validity of min-max formulas for the eigenvalues in the gap, in simple function spaces that are independent of the value of $0\leq\nu\leq1$. Our results include the critical case $\nu=1$ and they are the first in this setting. We also give the corresponding results in two dimensions.
Fichier principal
Vignette du fichier
ELS-domains-v11.pdf (432.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01467766 , version 1 (14-02-2017)
hal-01467766 , version 2 (28-09-2017)
hal-01467766 , version 3 (08-11-2017)
hal-01467766 , version 4 (08-04-2019)

Identifiants

Citer

Maria J. Esteban, Mathieu Lewin, Eric Séré. Domains for Dirac-Coulomb min-max levels. 2017. ⟨hal-01467766v1⟩
637 Consultations
261 Téléchargements

Altmetric

Partager

More