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DOMAINS FOR DIRAC-COULOMB MIN-MAX LEVELS

MARIA J. ESTEBAN, MATHIEU LEWIN, AND ERIC SERE

ABSTRACT. We consider Dirac operators with a Coulomb-type potential
V(z) ~ —v/]z|, in the case where the Coulomb singularity is strong,
that is \/5/2 < v < 1 in units such that mc® = 1. This operator is not
essentially self-adjoint but has a distinguished self-adjoint extension. In
a first part we obtain new results on the domain of the distinguished self-
adjoint extension, complementing previous works of Esteban and Loss.
Then we prove the validity of min-max formulas for the eigenvalues in
the gap, in simple function spaces that are independent of the value of
0 < v < 1. Our results include the critical case v = 1 and they are
the first in this setting. We also give the corresponding results in two
dimensions.
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Computing the eigenvalues in the gap of the essential spectrum of a self-
adjoint operator is notoriously more difficult than for those below or above
the essential spectrum. It is well-known that numerical artefacts can some-
times occur, a phenomenon called spectral pollution [32]. For this reason,
it is important to find robust methods.

In [211, 23] 4], 13], variational min-max formulas were provided for the
eigenvalues in gaps of self-adjoint operators. These formulas are based on a
decomposition $ = ATH & A~ $ given by two orthogonal projectors AT of
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2 M.J. ESTEBAN, M. LEWIN, AND E. SERE

the ambient Hilbert space $), and take the general form

AR = inf sup M (1)
Gy VEWOF Il

Here, F* = A*F, with F' a dense subspace of $) such that the quadratic
form (¢, Avp) is well-defined on '™ @ F~ .

The equation () is similar to the usual Courant-Fischer (a.k.a. Rayleigh-
Ritz) formula for the eigenvalues below the essential spectrum. The main
difference is that the infimum is restricted to vectors in the “positive” sub-
space F'* and that the supremum is computed over the infinite-dimensional
space W @ F'~ containing the whole “negative” space F'~. Some additional
technical constraints on F are needed, they are discussed in detail below.

From the spectral theorem one can see that formula (Il) provides all the
eigenvalues above a number o’ in the gap and below the next threshold of the
essential spectrum, in nondecreasing order and counted with multiplicity,
provided that we use for A~ the spectral projector 1(A < d') and, for
instance, ' = D(A). Intuitively, formula (I]) should remain correct if A~
is not too far from this spectral projector. The main discovery of [13] was
that the correct criterion for formula () to provide the eigenvalues, is the
inequality

A s g sup P AY-)
p_er- Y-

In practical cases, such a condition can be fulfilled for projectors A~ which
are quite far from the exact spectral projector 1(A < a’). Exploiting this
freedom, one can choose A~ so that the evaluation of the supremum in ()
becomes very easy, leading to stable discretization techniques.

The main motivation for these min-max formulas was to study the spec-
trum of Dirac operators in a potential V,

Dy = Dy + V(m),

where Dy is the free Dirac operator, a matrix-valued differential operator
of order one acting in L?(R?,C*) with spectrum (—oo0, —1] U [1,00), and
recalled below in Section [[LIl The particular case of Coulomb potentials
V(z) ~ —v/Jz| for |z| — 0 is both important from the physical point of
view and particularly challenging mathematically, due to the criticality of
1/|xz| as compared with Dy. For Dirac operators, Talman [42] and Datta-
Devaiah [10] suggested to use the projectors AT associated with the natural
decomposition

U= (i) = (g) + (2) € L2(R® CY,  o,x € LA(R3,C?)

into upper and lower spinors. This choice leads to a particularly simple for-
mula for the supremum in (). It provides efficient ways of computing Dirac
eigenvalues [17, [15] 29] 52 [7], using the variational characterization ().
For 0 < v < /3/2, the Dirac-Coulomb operator Dy is essentially self-
adjoint on C°(R3,C*) with domain H'(R3 C*), but for v3/2 < v < 1
(heavy atoms), it has many possible extensions with domains larger than
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H'(R3,C*), among which only one is “physically reasonable”. In the sub-
critical case v/3/2 < v < 1 this extension is characterized by the property
that its domain D(Dy) is included into the Sobolev space HY2(R3 C*).
The critical case v = 1 is harder. It was considered for the first time by
Esteban and Loss in [19] and will be discussed in detail in the sequel of this
paper.

As mentioned above, once the splitting $ = §~ @® $HT is chosen, one also
has to choose the subspace F. In [I3], an abstract min-max theorem is
proved, assuming that F' is a core (a dense subspace of D(A) for the graph
norm) and that F* are subspaces of D(]4|'/?). In the application to Tal-
man’s principle when v < 1, a possible choice satisfying these requirements
is ' = D(Dy) c HY/2(R3,C*). But the domain D(Dy) of the distinguished
extension is not always explicitly known, so a natural question is whether the
min-max can actually be performed on simpler spaces F which do not de-
pend on the value of v. An attempt in this direction was made in [I3] where
it was claimed that Talman’s min-max formula holds for F' = C°(R3,C*)
as a consequence of the abstract theorem proved in the same paper. This
was obvious for 0 < v < /3 /2 because the domain of Dy is just the Sobolev
space H'(R3,C*) and C°(R3,C*) is a core. But the case v/3/2 < v < 1
was not properly justified in [I3]. An alternative approach was recently pro-
posed by Morozov and Miiller [34] 35], who proved a variant of the abstract
min-max formula allowing them to justify the choice ' = HY/ 2(R3,C*) for
any v < 1.

In this paper we justify the application to Dy of the abstract min-max
of [I3], for any subspace F' between C°(R?\ {0},C*) and HY?(R?, C*),
independently of the value of 0 < v < 1. In the critical case v = 1 this
provides the first min-max characterization of the eigenvalues. Our findings
show that the min-max characterization (II) of the eigenvalues is valid for
a wide range of spaces F, and is insensitive to the properties of the do-
main of the distinguished operator Dy,. This is a clear advantage of this
characterization, which fully justifies its use in practical computations.

In the first section we discuss domains of Dirac-Coulomb operators with
an emphasis on the distinguished self-adjoint extension. Sections
contain well-known results, which are presented here for the convenience of
the reader. In Sections [[.4] and we complement some results of Esteban-
Loss [19] on the characterization of the distinguished self-adjoint extension,
using a quadratic form ¢ related to the min-max formula (Il). Describing
the domain of this quadratic form is important for knowing in which spaces
can the min-max be formulated. In [19] Esteban and Loss used the closure of
C* for the norm induced by gr. We show here that this coincides with the
maximal domain on which the form ¢g is continuous. This is an important
ingredient in our proof of the validity of the min-max formula.

We also provide new results in the critical case v = 1. In particular
our proof that the resolvents converge in norm if the potential V is trun-
cated means that the Esteban-Loss extension is the only physically relevant
extension for v = 1.

In Section 2] we state our main result about the min-max formula that
was claimed in [I3] and extend it to the critical case. Sections [3, @] [l
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and Appendix [A] are dedicated to the proof of our results. Our results are
stated and proved in detail in three space dimensions, but they can easily be
adapted to the two-dimensional setting. This is explained in Appendix

Acknowledgment. M.L. acknowledges financial support from the Euro-
pean Research Council (Grant Agreement MNIQS 258023).

1. DoOMAINS OF DIRAC-COULOMB OPERATORS

In this section we discuss domains for Dirac-Coulomb operators and pro-
vide some new properties of the distinguished self-adjoint extension. Some
of these properties will be useful in Section [2] where we prove the min-max
formula for the eigenvalues.

1.1. The free Dirac operator. In a system of units such that h = m =
¢ =1, the free Dirac operator Dy is given by

3
Dy =—ia-V+p= —izak3k+5, (2)
k=1

where a1, as, az and § are 4 x 4 Hermitian matrices satisfying the anticom-
mutation relations

apoyp + agar = 20k Ica,
ak/B + /Bak - 07 (3)
g2 = 1ca.

The usual representation in 2 x 2 blocks is given by

. _[2 0 . 0 O .
B_<0 _I2>7 ak_<0k 0)7 k_172737

with the Pauli matrices

0 1 0 —i 1 0
=) =) ()

The operator Dy is self-adjoint on L?*(R3,C*) with domain H!(R3, C*) and

its spectrum is o(Dy) = (—o0, —1] U [1,00), see [43, [1§]. In addition, the

corresponding quadratic form (¥, DyW) is well-defined and continuous on the

Sobolev space H'/2(R3, C*), which is also the domain of |Do|'/? = (1—A)1/4.
The Rellich-Kato theorem and the Sobolev inequality imply that

Dy := Dy + V(.%')

is also self-adjoint on H'(R?, C*) for any real-valued potential V € L3(R3 R)+
L>(R3,R). The purpose of this article is to discuss the case of Coulomb-
type potentials for which V(z) ~ —v|z|~!' at z = 0, and which just fail to
be in L? at the origin. Using Hardy’s inequality
1
|z[?
we can use again the Rellich-Kato theorem and obtain that Dy is self-
adjoint on H'(R3 C*) for potentials in the form V = V; + V5 where V5 €
L3(R3,R) + L¥(R3 R) and |Vi(z)| < v|z|~! with |v| < 1/2. However, the
threshold 1/2 given by this argument is not optimal and the proper limit

<A(=A) < 4(Do)* = 4(-A +1)
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is, rather, v/3/2. In order to understand the situation, it is enlightening to
first look at the well-known case of radial potentials V(x) = V (|z]).

1.2. Radial potentials. For a radial potential V(z) = V(|z|) one can use
that Dy commutes with the total angular momentum J = L+ S, as well as
with the spin-orbit operator K = (25 - L+ 1), see [43], Sec. 4.6]. The Dirac
operator Dy becomes the direct sum of radial-type Dirac operators which
can be written in the 2 x 2-matrix form

_d Lk
= (e TET) v

d

>t 7 -1
on L?([0,00),C?). Here k = £(j + 1), m = —j,...,j and j = 1,3 3 .
Also we work with the function v = |z|¥ which is why the problem is

settled on L?(0,00). Using ODE techniques, the question of self-adjointness
is reduced to the discussion of the possible boundary conditions at r = 0,

see [40, 8, 48, 22} 24] 43].

In order to compute the deficiency indices of h?,”i (defined first on the
space C2°((0,00),C)), we look at the corresponding eigenvalue equation

{(1+V)u—v'+§v:iu,

4
u 4+ B+ (=1 +V)v =iv. )

Plugging in the first equation the relation
_ u' + u
1-V+i
deduced from the second one (note that the denominator never vanishes
since V' is real), we obtain an equation for u only:

d K 1 d K

<—%+;>TM(%—l—;)u—i—(l—l—V—i)u:O. (5)
We assume that V(r) ~ —v/r near the origin, that V' (r) is smooth, and
that V(r),V'(r) — 0 when r — oo. Standard ODE techniques give that (H)
has two independent solutions behaving as 7=¢(1+O(r)) at r = 0, with s :=
VK% — 12, and two independent solutions behaving like exp(4v/2r)rFiv/V2(14
O(r=1)) when r — oo [38, 8, [44]. At v = 1, we have s = 0 and the solutions
behave like 1 and log(r) at r = 0.

We first assume |v| < 1. The solution u; which behaves like r* at 0 must
diverge at infinity, hence is not in L?. Indeed, assuming by contradiction
that u, behaves as exp(—v/2r)r*/ V2 at infinity, we can multiply @) by ur
and integrate by parts (the boundary terms cancel due to the behavior at
the origin and at infinity), which gives

OO‘u/Jr(T)""%u—l—(r)/r’2 _ OOZ'_ — V(D ()| dr
| = [T -V )

The imaginary part is negative for the first term and positive for the second,
which is a contradiction.

The solution u_ which behaves like »~% is not square-integrable at the
origin when |v| < \/k2 — 1/4. The smallest value of this threshold is v/3/2

which we have mentioned before, and it is obtained for kK = +1. We conclude

v

s
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that the deficiency indices vanish for |v| < v/3/2 and that the operator is
essentially self-adjoint in this case.

When v/3/2 < |v| < 1 the previous argument applies for || > 2 and
shows that the operators hgb’“ are all essentially self-adjoint for |x| > 2.
Only x = £1 pose some difficulties. Indeed, the two functions r*V 1=v% are
now square-integrable at 0 and there is one linear combination of these two,
which we call u,, which is square-integrable at infinity. From the previous
argument, this function must diverge like »—% at r = 0 and we can therefore
always assume that u, ~ =% and v, ~ (s — k)r~°/v at 0. By the theory
of self-adjoint operators [39, p. 140], we conclude that the domains of the
self-adjoint extensions of h{y"" are for k = £1 given by

H([0,00),C?) @ { (Z:) + ¢ (z:) } c,

with 0 € [0,27). We have used here that the solutions with eigenvalue
+i and —i are related by complex conjugation, since the operator hy/" is
real. For 0 # m, the functions in this domain have the strong singularity
(1 + ?)r=V1=¥% at r = 0. Those functions will not have a finite Coulomb
energy and will not be in H'/2(R3, C*) (the natural space for which one can
define the quadratic form of the free Dirac operator). However, if we choose
0 = m, the function behaves like

U — Uy = 20S{r ™Y =214+ 0(r) + arY 7 (1 + o(r)}
= 2iS(a)rVI + O(r V)

as r — 0, since 1/2 > /1 — 2. Therefore it has a finite Coulomb energy
as well as a well-defined free Dirac energy. This sounds more satisfactory
from a physical point of view. Note however that rVI=% is not in H' at the
origin for v/3/2 < |v| < 1, hence the domain of this self-adjoint realization
is always bigger than H'.

The realization of the Dirac operator which has § = 7 in the four sectors
with k = £1 and m = £1/2 is called the distinguished self-adjoint extension
of Dy. If we come back to the whole space and use [43] Sec. 4.6.4], the

corresponding domain reads
, Yy , 0
wa () v (3p)

D(Dy) = HY(R3,CY & @
Vo vy Vo Vayt
3\ —V2Y) VRN 2
i U vy iU \/§Y1_1
V3 \—v2Y] V3 =YY
)

% 0
4 () (i)

where the functions Y,” are the spherical harmonics normalized as in [43]

Sec. 4.6.4] and U,, = (uy, — ug) /7, Vie = (v — i)/
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For v = 41 the situation is slightly different since s = 0. The two
functions behave at the origin like 1 and log(r). Hence even for § = 7, the
Coulomb energy is infinite since u, does not tend to 0 at 0. However it
can be called a distinguished extension since it is the less singular. It can
also be shown that it is the one obtained when v — £17F, as we will discuss
for general potentials in Section [[H] and the one for which the min-max
characterization holds in any reasonable space that one can think about.

1.3. General potentials with subcritical Coulomb singularity. It is
natural to ask whether similar results hold for potentials which have a singu-
larity that can be controlled by v|z|~! without being radial. In the seventies
and eighties, many authors [41], [49] 50} 51, 36}, 27, 30] B3], 251 [43] have proved
the existence of a distinguished self-adjoint extension when |v| < 1 which
has the same properties as in the radial case. The following statement is a
summary of several of these results, some of which will be useful for us later.

Theorem 1 (Distinguished extension of Dy [411 [49] (50}, 511 36, 27 30}, BT 25,
43]). We assume that V = Vi +Vo+ V3 with Vo € L3(R3,R), V3 € L>®(R3,R)
and |V (z)| < v/|z|, with 0 < v < 1.
(1) The minimal operator Do+ V defined on C°(R3\ {0},C*) has a unique
self-adjoint extension Dy such that
H'(R®,CY c D(Dy) c HY?(R?,CY).

It is also the unique self-adjoint extension for which

2
/ @ )« o, vwe D(Dy).
]RS

|z
(2) For any ¥, V" € D(Dy), we have

(U, Dy W'y = (U, DyW’) + / VU (6)
R3
where the right-side is understood in the form sense in HY/?(R3,C*).
(8) If V3 — 0 at infinity, the essential spectrum is

Oess(Dy) = (=00, —1] U [1, 00).
(4) For V. := min(max(V (z), —1/¢),1/e), the operator Dy, converges to the
distinguished self-adjoint extension in the norm resolvent sense when
e —=0.

(5) If in addition 0 < v < \/3/2, then the operator is essentially self-adjoint
on CX(R3\ {0},C*) and its domain is D(Dy) = H'(R3,C*).

Remark 2. We have H'(R3 C*) = D(|Do|) € D(|Dy|). Since the square
root is operator monotone, we deduce that D(|Dy|*/?) = HY?(R3,C*) c
D(|Dy|Y/?). This can be used to extend the formula () on the whole of
H1/2(R3,(C4), if we interpret the left side in the sense of quadratic forms,
that is, (U, Dy V') := (|Dy V2T, Uy | Dy [V2¥") where Uy = sgn(Dy ).

Remark 3. The results are exactly the same for a Hermitian 4 x 4 matriz
potential V(x), with the exception of (5) in which \/3/2 has to be replaced
by 1/2. There are examples of matriz-valued potentials satisfying |V (z)| <
(1+¢)/(2|x|) for which Dy is not essentially self-adjoint [I].
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In [36], Nenciu defines the distinguished self-adjoint extension through its
resolvent, using the formula

1 1 1 1 1 11
= — V]2 V]2 7
Dy —z Dy—=z Do—z| |21+SM(z)| |2Do—z (™)
where S = sgn(V) and M(z) = |V|Y/2(Dy — 2)~!|V|'/2. From Kato’s in-
equality

1 us T o
|x|<2¢_A<2|D| (8)
and Sobolev’s inequality, one can prove that |V|'/2|Do|~1/2 and | Do|~1/2|V|1/2
are bounded under the assumptions of Theorem [l Then (Dy — z)~|V[/?
(appearing on the left of the last term in (7)) has its range in H'/2(R3,C*).
This shows that the range of (Dy — 2)~! (that is, the domain of Dy/) is
included in H'/2(R3,C*), as required. In addition, since (D — z)~'|V|'/? is
compact under our assumptions on V, (Dy —z)~! is a compact perturbation
of (Dg — 2z)~!, and the two operators have the same essential spectrum [28].

The main condition necessary to give a meaning to ([7) is that 1+SM(z) is
invertible on L?(R?, C*). Nenciu proves that Dy is uniquely defined from ()
under the sole condition that [|[M(zp)|| < 1 for one zy € C. Since z —
(1 +SM(z))~! is meromorphic on C \ (—oo,—1] U [1, 00), this is sufficient
to define the right side of (7)) for a large set of values of z, and then to
construct the operator Dy . In our case the bound on M (zg) follows from
the two equalities

\x!’l/Q(Do + z‘s)*l\xlfl/QH =1, Vs € R, (9)

and
lim H|V2|1/2(D0 +¢s)*1|v2|1/2( —0 forVae L3R%.  (10)

The limit (I0) follows from the Sobolev inequality. The equality (@) was
conjectured by Nenciu in [36] and later proved by Wiist [51] and Kato [25].
It has recently been rediscovered in [3, Thm. 1.3]. The constraint that
|v| <1 comes from the norm in (@) being equal to 1.

1.4. A different characterization of the distinguished extension.
Now we turn to the description of a method which has been introduced
in [19, 20] (further developed in [2, 4], [5]), and is essential for our discussion
of min-max levels. We are going to make the stronger assumption

—ﬁ V() <1+V/1- 12 (11)

for some 0 < v < 1. Here v/1— 12 is the first eigenvalue of the Dirac
operator with the Coulomb potential Vo (x) = —v/|z|. The lower bound
in (II) means that the attractive part of V is essentially Coulombic and it
will imply that the first “electronic” eigenvalue will be above v/1 — 2. Here
“electronic” means that it is an eigenvalue which arises from the upper part
of the spectrum when V' is replaced by tV and t is turned on progressively.
The upper bound on V' in ([IJ) is here to ensure that the positronic eigenval-
ues (those arising from the lower part) do not go above /1 — 2. The fact
that the electronic and positronic eigenvalues do not cross is an important
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property for having a min-max formula of the eigenvalues (see [16] for a
discussion).

In this section we introduce a quadratic form for the upper spinor, which
plays a central role in the definition of the distinguished self-adjoint exten-
sion and for the min-max formulation of the electronic eigenvalues.

Similarly as in Section [[.2] we consider the eigenvalue equation Dy ¥ =
AV with, this time, A € R, and which we write in terms of the upper and

lower components o,y € L?(R3, C?) of the 4-spinor ¥ = (i) We obtain

(1+V)p —io-Vx = A, (12)
—io-Vo+ (—14+V)x = Ax.
We insert
~ —i0-Vyp
X1V
in the first equation and get an equation for ¢ only:
—i0 -V
— 40 - 1+V —X)ep=0. 13
ic vl_v+)\+(+ )¢ (13)

This suggest to look at the quadratic form

ag - X 2
e = [ ZTE s [ 4V - Wie@Pan (9

Note that the denominator in the first term is well defined for A > sup(V)—1.
Without A in the denominator of the first term, which comes from the lower
component Y, the quadratic form ¢, would be associated with a usual eigen-
value problem. With X in the denominator this is more involved. Never-
theless we have gained that the solution ¢ to (I3]) can be constructed by
a minimization procedure, for any A > sup(V) — 1. In Section 2] we will
explain the link between the quadratic form ¢y and the true eigenvalues of
Dy but, for the moment, we discuss the properties of ¢\ for an arbitrary
A>sup(V) — 1.
In order to show that ¢y is bounded from below, we write

_ o V() o V()
a(p) =(1 —VQ)/RSmd“”Q/RS TV 2

+ [ V@le@Pdr+ -2 [ el d.

In [I3] 12] the following Hardy-type inequality was proved

A;l%ﬁgf%%ﬁd$+1éﬁ<a—1%>\¢wﬂzdr>0 (15)
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for all @ > 0. Using our assumption that V' is bounded from below by the
Coulomb potential, we can estimate

[ Ve e [ Ve
————dz > ————d
v /Ral—V(m)—i—)\ r=v r3 L+v/jz|+ A v

> [ (=12 et e

>~ [ Vel -+ [ ’@(Wzg |

Thus we have proved that

ax(p) + 2)\/

R3

o- 7)|?
P de> =) [ {TTE )

Since the right side is positive, this shows that gy + 2A[|¢[|%, is positive as
well. In addition, we conclude from (@) that this defines a norm which is
independent of A and is equivalent to that given by the quadratic form

g - x 2
ol = [ 2T s [t (18)

The following result provides some new properties of this space which are
going to be useful for proving the min-max principle stated below in Sec-
tion 2

Theorem 4 (The quadratic form domain). Assume that

1
V(z) > T and sup(V) <2

and let
V= {p e L*®*,C) N HL(R*\ {0},C?)
2-V) 2% Ve L2(R3,@2)}. (19)

Then C(R3\ {0},C?) is dense in V for the norm [X). In addition, we
have the continuous embedding

vV c HY2(R3,C?).

Given the definition (I9]) of the space V, the proof of Theorem [@reduces to
the study of a Sobolev-type space with a weight vanishing at the origin. This
type of question has attracted a lot of attention and plays an important role
for degenerate elliptic problems. In our proof given in Section M we follow
ideas of Zhikov [53] [54].

Loosely speaking, Theorem [l says that there is no ambiguity in the defini-
tion of the domain of the quadratic form ¢,. It is the same to start with the
very small space C°(R?\ {0}, C?) and close it for the norm |-||;, (as done
in [19] for C°(R3,C?)), or to directly start with the maximal domain V on
which ¢, is naturally defined and continuous.
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Remark 5. In ([[), o-V is understood in the sense of distributions on R3.
Since o - Vo € H-Y(R3), it is the same to use distributional derivatives in
R3\ {0}. Moreover, since /2—V € L2 (R3), we deduce from the Cauchy-
Schwarz inequality that o - Vo € Li  for all the functions ¢ € V.

loc

Now that we have discussed the properties of the space V, we can come
back to the problem of characterizing the distinguished self-adjoint extension
of Dy . The following is a reformulation of the main result of [19].

Theorem 6 (V and the distinguished extension [19]). Assume that for some
0l

V(z) > _ and sup(V) <141 -2 (20)

Then the distinguished self-adjoint extension Dy of Theorem [ is also the
unique extension of the minimal operator Do+V defined on C°(R3\{0},C*),
such that

D(Dy) C {\I/ = (i) e LR CYH : e v}.

More precisely, we have
D(Dy) = {\1; = (i) € L*RCY : peV, DU+ VU e LQ(R3,<C4)} :

where DoW and V'V are understood in the sense of distributions.

This theorem was proved in [19] using a space denoted as H,1, defined
as the closure of C2°(R3,C?) for the norm | - ||. From the density proved
in our Theorem [ we infer that H 1 =V, the maximal domain on which gy
is continuous, and therefore Theorem [G]is just a reformulation of the results
in [19].

Since only the upper component ¢ € V appears in the statement, this
characterization seems to provide less information on the domain D(Dy).
However, the following simple result says that we have y € V as well. Since
@,x € V implies that ¢,x € H/?(R3 C?) by Theorem H, this means that
Theorem [0] actually provides more information on the domain of the distin-
guished self-adjoint extension than Theorem [I1

Corollary 7. Assume that o € V and x € L*(R3,C?) are such that the
distribution

Dy, <§> belongs to L*(R3,CY),
where V' satisfies 20). Then x € V as well. In particular, the distinguished
self-adjoint extension satisfies D(Dy) C V x V.

Proof. Since by assumption (1 + V) —io - Vx € L*(R3 ,C?) and ¢ €
L?(R3,C?), we also have

—(2—V)p —io-Vy € L*(R3 C?).

The function V' is uniformly bounded outside of the origin, hence y €

HL (R3\ {0},C?). Also, since V € L2 (R3) we have Vi € LL (R3, C?).

loc
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Therefore o - Vy € Ll as well. Using that (2 — V)~/2 is bounded, we
deduce that

—(2-WV)Y2p—(2-V) Y20 . Vx € LA(R3,C?).

From (I8) we know that (2 — V)¥/2¢ € L?(R3,C?) hence conclude, as we
wanted, that (2 — V)20 - Vy € L*(R3,C?). 0

1.5. The critical case v = 1. We give in this section some new properties
of the distinguished self-adjoint extension in the critical case. Although
these will not all be needed for the min-max formulas in Section 2, we state
them because they complement [19, 20] in an interesting direction.

The Esteban-Loss method presented in the previous section is general and
it was applied to the critical case already in [19]. The main difficulty here
is to understand the domain of gy, since the inequality (I7) does not give
any useful information when v = 1. The terms in ¢, will not necessarily be
separately finite. Following ideas from [12] [IT], we first describe this domain
with more details.

It is useful to start with the Coulomb case Vi (z) = —|=|~!, in which case
we use the notation

$0) = [ {rmle Ve@Pl + (122 1) le@P} @)

Our aim is to understand what is the mazimal domain on which qg is well-
defined and continuous. To this end, we start with A = 0 and follow [12].
We involve the operator £k =1+ o - L, where

x283 — $382
L=—ix ANV =—i|ax30 — 1103
2102 — 201

is the angular momentum. We recall that £k =1 4+ o - L has the eigenvalues
+1,42, ..., see [43]. The negative and positive spaces are unitarily equivalent
and mapped to one another using the unitary o - w, where w, = x/|z| is the
unit vector pointing in the same direction as x:

x x
o-—(1l+o0-Ljo-—=—(1+0-L). (22)

Pl Jo g = )
In addition, we will use that the kernel of o- L is composed of radial functions
(it coincides with the kernel of L), hence the kernel of o - L + 2 is given by
0w, times radial functions. These are the two spaces for the upper spinor ¢
which correspond to k = £1 for the full Dirac operator. The sectors kK = +1

determine the possible extensions, as we have recalled in Section
The following is inspired of [I2] 1I] and proved in Appendix [A] below.

Theorem 8 (Writing ¢f as a sum of squares). For every ¢ € L?(R3,C?)
we write

T

v =i (x) +o-(2) + ollz]) +o- 2l p1(lz)
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where v = 11 00)(0 - L), p— = L(_oo,3)(0 - L)ip, 0o = Ligy(0 - L) and
o1 =0 (x/|z[)1{_gy(c - L)p. Then

C ’95\ 0T
— .V — (1
@ = [ Tl s0+(90)+m2( +lal) o (2)
-/ 2 o @)~ TE0 el o (@)
e T+ [1] o
o-L —2—0-L
F 2004, et ) T2
|a:| ]
+47r/ |rcp0 )+ o(r )+7“<p0(r)‘2 dr
0

+47T/000 L+ r @, (r) + @1(r) — roi ()| dr (23)

2
dx

2
dx

for every p € HY(R3,C2). On L*(R3,C?), the quadratic form q§ is equiva-
lent to

lell72 + a5 ()
2 |z| 2 || 2

~ ||§0||L2+/3 1+’x‘|U'Vgp+($)‘ dx+/3 1+‘x’|0'v907($)| dx
—l—/o \mpo ) + @o(r ){2dr+/0

1
2
~|lp +/ ——— o - V|x|p(z)|” d. 24
H HL2 R3 |$|(1—{—| | ‘ | | ‘ ( )
Finally, for all =1 < A\ < 1, we have

|20 Veo(z)|”
s (L |2[)(1+ (1 + A)[z])

which, in L?, is equivalent to the norm associated with ||¢||2, + qf ().

‘7"<P1 + @1(r ){2 dr

() = a§¢) ~ A o= [ el e (25)

Note that all the terms in the formula ([23)) for qg are non-negative, which
enables us to identify its maximal domain. We see that the two functions ¢
and @_ have the exact same regularity as before, namely they must belong

to the space Vg, defined as in ([8) with V(z) = Vo(x) = —|z| 7L

|z] 2
. d .
/Rsl%—|x|‘a Vgoi(x)‘ x < 00

In particular, from Theorem @] and the Hardy-type inequality (&), ¢4 and
¢_ have a finite Coulomb energy and a finite H'/2 norm. Only the functions
o and o - wyp can be more singular at the origin. Those only satisfy the
property that

1 2
/Rs M‘U - Vz|po(z)|” dr < oo

which can be written in radial coordinates as

=
0 1+T

2
dr < oo. (26)

901 (1) + ©01(r)
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This is weaker than when |z| is pulled outside of the gradient as before. For
instance, the ground state of the Dirac-Coulomb operator at v = 1 is given

by [43, Sec. 7.4.2]

ef‘x‘ 2
wo(|z]) = WU, vel

and it satisfies ¢§'(¢g) < oo but

o 2 =
[orimle o] de=a [
rs 1+ |z o0 147

The condition (26]) is enough to distinguish a self-adjoint extension, as we
will see. The main message is that ¢y and ¢; are allowed to behave like
1/r at r = 0, but not like log(r)/r. This corresponds to taking § = 7 in
Section

Now we are able to define the spaces which will replace V in the critical
case. In the Coulomb case V(z) = —|z|~! we introduce

2
dr = +o00.

e " +re "

r2

o -

_ 23 2\ . o-Vl]zlp
Wc—{goeL(]R,(C) : |x|1/2(1+|x|)1/2

Then we assume that V(z) > —|z|~! and that sup(V) < 1. The quadratic
form associated with V' can be written in terms of q)(\j as follows:

€ L2(R3,CQ)}. (27)

- 1 2]
ax(¥) —/RB <1+)\—V(m) 1+ (14N

1
# [ (V) + o ) @R de + S
R3 |z
for —1 4+ sup(V) < A < 1. The quadratic forms

1 ||
/]Rs (1 +)\—V(x) ] + (1 +)\)|x|> |O'-VS0($)|2 dx

are all equivalent when A is varied in the interval (—1+sup(V'), 1) and since
the same holds for qg\j by Theorem B we can simply use A = 0 and define
the space W associated with V' by

)0+ Tolo)l do

1 |z]
1-V(z) 1+ |z

<V(x) + ’36—01/2 ¢ € L*(R3, (CQ)}. (28)

The following is the equivalent of Theorem [l

1/2
W:{QDEWC : ( > o- Ve e L*(R?,C?),

Theorem 9 (Properties of Wc and W). We assume that
1

||

Viz) > and sup(V) < 1. (29)

Then the space C°(R3\{0}, C?) is dense in We and in W for their respective
norms. Also, we have the continuous embeddings

W C We C H*(R?,C?)
for every 0 < s < 1/2.
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The proof of Theorem [9 is provided below in Section [l and it is much
more involved than that of Theorem [0 This is due to the criticality of the
problem, which prevents from using rough regularization techniques.
Remark 10. If V(z) = —|z|~' + O (|z|7%) with a < 1, as x — 0, then we
simply have W = Wc. Indeed the two additional terms are controlled by the
Wg-norm. We have

/Rs <1 - ;(x) 1 f;xO o V() [* da

: ) (@)l
< ——— |o - V|z|p(z dw—i—/ — 5 dz
L T e 0 VlEle@) s TP+ 2]

and, similarly,

/RB (V(w) + ﬁ) p(@)? d < /RS % i

which are all finite for o € Wec. Hence in this case there is no difference
between W and We.

Contrary to the subcritical case where one can use the space H'/2, we
cannot distinguish the extension from the sole property that it is included
in H® for s < 1/2. This would not make the difference between 1/r and
log(r)/r. We need the more precise norm associated with go. The main
result on the distinguished self-adjoint extension is the following.

Theorem 11 () and the distinguished extension in the critical case). We

assume that 1
Viz) 2 ——
|z|

(a) [19] The minimal operator Do + V defined on C°(R3\ {0},C*) has a

unique self-adjoint extension such that
D(Dy) C {qf = (i) e *(R%,CY : pe W}
and this extension has the domain

D(Dy) = {\p = (i) € L*R3CYH 1 peW, DyW+ VU ¢ L2(R3,(C4)}

and sup(V) < 1. (30)

where DoV and V'V are understood in the sense of distributions.

(b) Let V.(x) := max(V(x),—1/e) or V. = (1 —e)V. Then, the self-adjoint
operator Dy converges in the norm resolvent sense to the operator Dy de-
fined in the previous item.

Although the first part is just a reformulation of the results in [19] (relying
on the closure H 1 of C2°(R3, C?) for the norm induced by qo, which is equal
to W by Theorem []), the convergence of the resolvents is completely new.
In the same spirit as what was achieved for v < 1 in [49] 50} 51, 28] 25], it
means that the Esteban-Loss extension is the only physically relevant one in
the critical case. The proof of the resolvent convergence is given in Section
below.



16 M.J. ESTEBAN, M. LEWIN, AND E. SERE

2. DOMAINS FOR MIN-MAX FORMULAS OF EIGENVALUES

In this section we finally discuss min-max principles for Dirac eigenvalues.
In [I3] an abstract variational characterization of the eigenvalues of operators
with gaps was shown. Let $) be a Hilbert space and A : D(A) C § — §
be a self-adjoint operator. Let ™, = be two orthogonal Hilbert subspaces
of ) such that § = HT ® H~. We denote by A* the two corresponding
orthogonal projectors. We assume the existence of a core F' (a subspace of
D(A) which is dense for the norm || - [[p(4)), such that

(i) Ft = ATF and F~ = A F are two subspaces of D(|A['/?),
(¥, Ay™)

(i) a=  sup D < too.

wv-er\foy -1}

We then consider the sequence of min-max levels

)\Epk) = inf sup % , k>1. (31)
W subspace of F'* ye(WaF—)\(0} 4112
Our last assumption is
D) AD S,

Everywhere (1, Ay) = (|A|Y/2¢,U|A[Y/?¢) is always understood in the
form sense, which is possible since F* c D(]A|'/?). Let

b =inf (0ess(A) N (a,+00)) € [a, +0]

be the bottom of the essential spectrum above a. The following gives a
characterization of the eigenvalues in the gap (a,b).

Theorem 12 (Min-max formula for the kth eigenvalue [13]). With the above
notations, and under assumptions (i)—(iii), we have b > a. The number
)\&f) is the kth eigenvalue of A in (a,b), counted with multiplicity, or is equal

to b if A has less than k eigenvalues in (a,b).

For the Dirac operator, it was suggested by Talman [42] and Datta-
Devaiah [10] to use the decomposition into upper and lower spinors, that is,
to take for the two subspaces HE

wr={(2) s permmcnl, o= {(0) : xermco).
(32

The first rigorous result for this decomposition was obtained by Griesemer
and Siedentop [23], who dealt with bounded potentials V. In [I3] the above
abstract result was applied to the case of Coulomb singularities. However,in
[T3] it was stated that it is possible to use the space F = CX(R3 C*).
From (4) in Theorem [ this is true when 0 < v < v/3/2, because in this
range the operator D, is essentially self-adjoint on C2°(R?\ {0}, C*). When
V3/2 < v < 1, the argument in [I3] was not complete.

Of course, Theorem [[2] can still be applied in the domain D(Dy/) of the
distinguished self-adjoint extension or in any core F' on which Dy is essen-
tially self-adjoint. Unfortunately, except in the radial case where the domain
is well understood as we have seen in Section [[2] D(Dy ) is not so easy to
grasp for a general non-radial potential V. From a numerical point of view,
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it is indeed important to be able to use simple spaces F' in the min-max
formula.

In [34] B5], Miiller and Morozov proved the validity of the min-max for-
mula for v/3/2 < v < 1in F = H'/?(R3,C?), using a variant of the abstract
min-max theorem in a setting adapted to form domains, inspired by Nen-
ciu [36].

Another min-max principle based on the free-energy projectors Aj =
1(Dy > 0) and Ay = 1(Dy < 0) was first introduced in [2I]. Using an
inequality proved in [6] and [45], it was shown in [I3] that the eigenvalues
satisfy the min-max principle (B3] in the range 0 < v < 2 (g + %)_1 ~0.9.
Recently, the free projections have also been covered in [34] 35] for v < 1.

In this section we prove a result similar to [34] [35], by a completely differ-
ent method. We will show that the min-max is valid on any space between
C>®(R3\ {0},C*) and H'/?(R3,C*). Contrary to [34] we will not modify the
abstract theorem, but simply use density results in the spirit of Theorem [4l
We will also treat the critical case ¥ = 1 and obtain the first results in this
setting, to our knowledge.

In order to properly state our main result, we introduce the two projec-

fioms u @ _ (g) LA (i) B (2)

corresponding to the Talman decomposition ([B2) and the spectral projec-
tions

A =1(Dy > 0), Ay =1(Dy <0)

of the free Dirac operator. For a space F C HY/ 2(R3,C*), we define the
min-max levels

v, DyW¥
)\gfg/)o = inf sup <’7‘2/>, kE>1. (33)
) W subspace of AJTF/OF \IIEWEBA;/OF H\I’HLQ
dim W=k W=£0

We remark that the four projections Agﬁ /0 stabilize H'/?(R3 C*), hence
(U, Dy W) is always well defined in the sense of quadratic forms. Indeed

(W, Dy W) = (¥, Dy) + / Vv
RS

by Theorem [I] (7i) and Remark 2l The same property as in Remark 2] holds
in the critical case v = 1, since H'(R3,C*) C D(Dy) as well. We could
actually work in D(|Dy|'/?) but we refrain from doing it since our goal is
to state a result in simple spaces that do not depend on V.

Our main result is the following

Theorem 13 (Min-max formula for eigenvalues). Let 0 < v < 1. We
assume that

V(z) > -z and sup(V) <141 -2 (34)

|z|
Let
C(R3\ {0},CY C F C HY2(R3,CY). (35)
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Then, the number )\gpkjp defined in [B3), is independent of the subspace F' and
coincides with the kth eigenvalue of the distinguished self-adjoint extension
of Dy larger than or equal to v/1 — v?, counted with multiplicity (or is equal
to b = inf (0ess(Dy) N (V1 — 12, 4+00)) if there are less than k eigenvalues
below b). In addition, we have

for all F' as above and all k > 1.

That we can take any space F satisfying (B5]) shows how the min-max
characterization of the eigenvalues is insensitive to F', even for the distin-
guished self-adjoint extension which has a non trivial domain D(Dy ). The
space F' can be as small as C2°(R?\ {0}, C*) which is not dense in D(Dy)
for /3/2 < v < 1, or as large as H'/?(R3,C*) which does not even contain
the domain for v = 1.

Before turning to the proof of the theorem (given in Section ), we would
like to comment on the role of the quadratic form ¢, discussed in Sec-
tions [LAHLEl in the Talman case AfTE. One important argument in [13]
was to solve the sup part of (B3] using the method of Lagrange multipliers.
For any A > sup(V) — 1 we consider the maximization problem

o () 0v (2)) - MU + =) }

o- x)|?
B /R %dﬂ /R (L4 V(@) = Ale(@) dz = ax(p),

which is exactly the quadratic form which we have studied in Section [[4l
The unique maximizer is

—i0 - Vo

1-V+X

This can be used to prove that supremum

IRR{UE ) "

2 2
()ersr 1T+

appearing in the min-max formula (33]), is the unique number A such that
gx(¢) = 0. For this reason, our proof of Theorem [[3 relies on the density of
C2(R3\ {0}, C?) in the quadratic form domains V, shown in Theorem @ In
the critical case, our proof does not rely on the density in W, stated before
in Theorem [ This is because we have assumed that ' ¢ H'/?(R3,C*) and
W HY2(R3,CYH =V.

The rest of the paper is dedicated to the proofs of our results.

X:

3. PrROOF OF THEOREM [[3] ON THE MIN-MAX LEVELS

Admitting temporarily our other results, we start with the proof of The-
orem One possible route is to apply the abstract Theorem in the
domain Fjy = D(Dy ) and then to show that Fjy can be replaced by any other
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I as in the statement. Another strategy is to truncate the potential into V%,
apply Theorem [I2] for V. and then pass to the limit ¢ — 0 in the min-max
formula for the eigenvalues. This argument uses the norm-convergence of
the resolvent in Theorems [I and [[I] which implies the convergence of the
eigenvalues.

The first method requires to know the domain Fy = D(Dy) quite pre-
cisely, whereas the second one does not involve the domain at all. It is more
robust and more appropriate in the critical case v = 1 for which we have
less information on D(Dy ). For this reason, we use the second method.

3.1. Proof for the Talman projections Agﬁ. We split the proof into
several steps. To simplify our proof, with an abuse of notation we write

¢ € FT = ALF instead of
(g) € ALF

and similarly we write x € F~. In the proof we approximate the (upper
bounded) potential V by V. := max(V, —1/¢) € L>°(R3 R) and we start by
recalling some well-known facts for V.

Step 1. Lower bound. First we compute

)2 (), e

S N S T
x7#0 x#0
since F~ contains C2°(R?\ {0}, C?) by assumption. Thus a < v/1 — 12 since
sup(V) < 141 — 2. The same property holds when V is replaced by V.
Following [13, Lem. 2.2], we write the min-max levels for a potential V'
(truncated or not) in the form

=sup(—1+7V)

A%%(V): inf+ sup Sp-(V, ). (37)
di‘r/[n/(i/[gf):k pew®
where
S(V, ) :=
2— 2 2R(x, —io - V
sup Jas (ol = IxI?) + [ps V !w!z+\x\2)+ (x, o - V) 38)
XEF~ Jrs |l + Ix|
llell2+1Ix1I1?#0

All the terms are well defined since F' ¢ H/2 (R3,C*). Indeed, by continuity
of the function appearing in the definition (B8] for the norm of H 12 it is
obvious that S(V,¢) does not depend on F~ which can be replaced by any
space dense in H'/2. This is why our notation for S(V, ¢) does not involve
F~. By monotonicity with respect to V' we have

k k
AR (V) 2 AP (V) (39)
for all € > 0. Using a continuation principle, it was proved in [I3] that

AV(Ve) = V1-12 > a (40)
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for all € > 0 and all C2°*(R3\ {0},C*) C F ¢ H'/?(R3,C*). So we can apply

Theorem [I2] and conclude that, under our assumptions on V/, )\(Tk };(VE) is
independent of F' and coincides with the kth eigenvalue of Dy .

In the limit ¢ — 0, )\%},(Ve) converges to the kth eigenvalue p*) (V) of
Dy, due to the convergence in norm of the resolvents, shown in Theorem [II
for the subcritical case 0 < v < 1 and in Theorem [I1] in the critical case
v = 1. So passing to the limit € — 0 in (39) we obtain the upper bound

Step 2. Lower bound. Now we come back to [B7). In order to prove the
reverse inequality we have to show that

sup S(V, ) = u® (V)
peWt

for every k-dimensional subspace W C FT. The next lemma follows from
the arguments in [I3, Lemma 2.2].

Lemma 14 (Computation of S(V,¢) [I3]). Let ¢ € HY/?(R3,C?). Then
S(V, ) is finite if and only if ¢ € V. In this case, E = S(V, ) is the unique
solution to the nonlinear equation qg(V, ) = 0.

Note that even in the critical case v = 1 we conclude that ¢ must be in V.
This is because we have assumed that ¢ € HY/?(R3,C?) and WNHY2 = V.
By Lemma [I4] and the monotonicity of gz with respect to F, it suffices
to show that
sup q,,00(V, ) 20 (41)
pEW+
for any k-dimensional space W+ C F+ N V. Since C*(R?\ {0},C?) is
dense in V by Theorem [4 it suffices to prove [{Il) for a k-dimensional space
W+ c C*(R?\ {0},C?). For any such space, we have from the min-max
characterization for V;

sup qu(k)(v)(vg,ﬂp) Z sup qu(k)(vg)(veﬂp) 2 0.
peW+ peW+

So passing to the limit ¢ — 0 (in the fixed finite-dimensional space W C
C*(R3\ {0},C?)) we find

sup g,y (Vi) 20
peW+

as we wanted.

3.2. Proof for the free Dirac projections Aac. The proof follows along
the same lines as for the Talman projections, and we only outline it. In this
case we have as before
_ (¥, Dvip-) (- (= VI-A+V)y)
a:= Ssup —(F—5 — = Sup 2
o e TR, ol
Y0 Y- #0

<sup(V) —1 <1 -2,
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Following step by step the argument of the previous section, we have to
study the quadratic form

ols) i= (b VI=BG,) + [ (V= )i
+ <A0‘V¢+, (Aa(m +E - V)Ag) - A5V¢+> (42)

in place of gg which appeared in (I4]). Let us remark that ¢p is continuous
on H'/2 since, by the operator monotonicity of the inverse, we have

(AFWVT=A+E-V)A7) ' \/1__+EA__1_m.

Therefore by Kato’s inequality

(Nvee (SOI=E+B-viag) " agves) s [ Ve

and
@] $ (v VT= Ry ).

In addition the map E + §g(¢py) is C' on (0,00) with

. 2
8EQE (¥4) = /WH —H VI-A+E- V)A) Ay Viaby

L2

Using ([A3]) and the fact that
) 1 -1
(ATWVT=B+E-V)A7) < - (AT(WVT=B+E-V)A7)
the right side of (@) is well-defined and continuous on H'/2.
In [I3], Sec. 4.2] it was proved that

qe(v4) 2 0 (45)
for all sup(V) —1 < E < V1 — 12 and all ¢, € A HY2(R3,C*). From ({H)
we can first deduce that the domain of the quadratic form ¢g is exactly
AT H1/2

o .
Lemma 15 (The domain of g is AJ H'/? for v < 1). We have
Gp(64) > (1= )2 (y, VT= By ) = 4BV o5, | (46)
for every ¢ € Af HY2(R3,C*) and every E > max(0,sup(V) — 1).

The bound ([#6) can be improved for max(0,sup(V) — 1) < E < V1 — 12
but it is sufficient for our purposes. From the lemma we obtain that the
maximal domain of gp is A HY/2(R3,C*), hence C°(R3\ {0},C?) is dense
in this domain. The rest of the proof is then exactly the same as in the
Talman case. Note that in the equivalent of Lemma [I4] the corresponding
supremum S(V,¢) is always finite since the quadratic form is this time
defined on H'/2.

It therefore remains to provide the
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Proof of Lemma[1l Using ([@H) for V' = —v/|z| and passing to the limit
v — 1, we get the following Hardy-type inequality [13]

(o VT By )~ [ 10T

R |7]
1 -1 1
(8 mon (A VT B+ 85) A o) 0 a)
for all v, € AjH /2 Now we would like a similar inequality with an

additional F > max(0,sup(V) — 1) in the denominator of the second term.
We start by writing

_1 _ T N S |
<A0 m¢+a<Ao(V1—A+E+|$| 1)Ao) A m¢+>
1 -1 1
> <A5m¢+, <A0_(V 1=A+ \90’71)/\0_> A5m¢+>

2

- B[ (AT B e 5) g

since (A+ E)~' > A~! — EA=2. Now we claim that the operator
— 1N A — -1 1
Bp = (AO (VI—A+E +|z] )A0> A (48)
is bounded as follows:
1Be|l < 2.
Using (47), this eventually implies
(4 VT= Bty )
+ ( Ag HTM, (Ao(\’l—A+E+|ﬂf| )Ao) Ag mﬂ#

> [ E ampee. a9
R3

]

Before providing the proof that Bg in (48]) is bounded, we first come back
to qr(1¢4+). We note that it is a monotone function of the potential V. This
is perhaps not so obvious from the formula ([42]), but it becomes clear if we
recall that

qe(+) = sup {<7/)+ + -, Do(Y4 +-))

b_€eNy Fy

# [ Vi 0P = Bl 1P + |rw_|r2>}-
R3
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So for a lower bound, we may replace V' by —v/|z| and we obtain, for every
E >0,

2
o(6) (VI Bur)—v [ Bt [
1 ot
{5 (Aaw—l SR+ A) A )
2
>(1— V2)<¢+,V1 - A¢+> —v(l-v) /RS el am? /Rs 9+

||
2(1-v) <1 +v— g’/) <¢+, m¢+> —4EvV’ /R3 [

In the second inequality we have used ([@9]) and in the last one we have used
Kato’s inequality (8). Using 7/2 < 2 yields the simpler inequality (4g]).

So it remains to prove that Bg in ([A8]) is bounded and since

A (VIZA+ el Ay

- —bo
N (WVI- B+ B+ o DA
where the left side has a norm < 1 by the spectral theorem, it suffices to do
it for £ = 0. We compute

ol g - ()

<| |\/1 A+\/1—A|?1|>AO.

Bp =

It was proved by Lieb in [33] that

and therefore we have the operator inequality

{3 (Vs ) F”ﬁ“‘“'

The inverse being operator monotone, we deduce that

(a7 (VimB ) }_ZglA—OA

or, equivalently, that

(35 (Vi=B ) 45)

So we can write

—\/1 A+\/1—Aﬁ>0
X

1-A

1
By=(A; (WV1—-A “HAg Ay V1
0 < 0 ( + |$| ) 0 > \/— |$|
which proves using Hardy’s inequality that
1 1
By|| € || ——=—
1Bl < | A=3Ta

This ends the proof of Lemma O
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4. PROOF OF THEOREM [] ON THE SUBCRITICAL DOMAIN V

4.1. Proof that C°(R3\ {0},C?) is dense in V. We are going to adapt
[53, proof of Theorem 4.1]. Zhikov considers a scalar function ¢, with |V¢|?
instead of |0 - V|2, A crucial step in his proof is to approximate ¢ by a
function . bounded in a neighbourhood of 0. This is easily done in his
case, just by taking p. = @1(|¢| < e7!), with e small. In our case this
simple argument fails. Instead we change our unknown and remove the
Pauli matrices. )

For every ¢ € L?(R3 C?), there is a unique u € H'(R3 C?) such that
¢ = (0 - V)u. Then,

2 |Aul? / 2
Il = [ 5oy + [ 19

Note that the matrices oy have disappeared. Now, for 0 < & < 1 we let
¢- = (0 - V)u. where u. is the solution in H'(R3 C?) of the equation

Aug(z) = 1(|z| = e) Au(x).

Obviously e € V and

2 |Auf?
HSD_SDEH\/:/BEQ_V-{-/RS IV (u — ue)|?

where B. is the ball of radius . The first term converges to zero and the
second term can be written in the form

[, 19— ) = —/Bg<u—ua>A—u

1 Au(z)Au(y) 9
= E/E/g dedy S HAUHLG/5(BE)

by the Hardy-Littlewood-Sobolev inequality. Now

_ 2 1/2
HAUH%GM(BE) < H(2 - V) 1/2AUHL2(BE) H2 - VHL/?’/2(BE)

which tends to zero.

We have proved that ¢. — ¢ strongly in V. The function ¢. is well
behaved close to the origin. Indeed, for each 0 < ¢ < 1, u. is harmonic
on B(0,¢), so there is M. > 0 such that [pc] < [Vuc| < M. on B .
Then we can follow [53]. For 0 < § < ¢/2 we consider the cut-off function
05(z) := max (0, min(1, @ —1)) and let ©2(z) = O5(2) . (). We write

o-V)(1—=05)p.|?
o=l = [ M TDZI0ED gy
9

] 2 2, 12
B, 2-V By, 2V Bs
4md 2‘(U'v)906’2 2
< 8M2— _
— g 3 +/B(075) 2_ V + |SDE| b

and for a fixed € > 0, this quantity tends to 0 as 6 — 0. To end the
proof, note that ¢ vanishes on B(0,/2), so we can regularize it using a
convolution product, which ends the proof that C°(R3 \ {0}, C?) is dense
in V.
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Remark 16. If we make the further assumption that V(z) < —n/|z| in a
neighborhood of the origin, we can use a much simpler argument. Namely
we replace ¢ by (1 — O5)¢ with the same 05 as before and estimate

/ o V(0p)I® <2/ 9§IJ-Vs0|2+2/ (A
s 2-V T T Jgs 2-V w<s 2—V

The first term goes to 0 by the dominated convergence theorem and the second
can be bounded by

/ (65)°]] </ |2[(05)° 0| </ lel?
w<s 2=V T g 1zl T Jigcs |2l

since |z|05 is uniformly bounded.

4.2. Proof that V ¢ H'/2. Using again our assumption that V is bounded
from below by the Coulomb potential, we see that

. 2
||¢||$}>/ Mdgﬂ_
rs 2+ 1/|z

Hence ¢ is in H' outside of the origin, and |:U|1/2Vg0 is in L? in a neigh-
borhood of the origin. This turns out to imply that ¢ € H'/2, using the
following Hardy-type inequality for the part close to the origin.

Lemma 17 (Another Hardy-type inequality). We have
L@ < [ jallo- Vol (0)
R3 2 Jgs

for every ¢ in C(R3\ {0}, C?).

Proof. Using that (o - p)? = |p|? with p = —iV, we can write ¢ = |p| =20 -
p(o - p)p. Calling n = o - Vy, it remains to show the inequality

2 T 9
<5 [ el o

which is just Kato’s inequality (8) for 7). O

‘73/2

(n, 1ol ™) o = H!p o -pn‘

5. PROOF OF THEOREM [Q ON THE CRITICAL DOMAINS Wc AND W

5.1. A pointwise estimate on ¢y and ;. We start by giving a useful
pointwise estimate on ¢y and ¢ at the origin.

Lemma 18 (Pointwise estimates on the spherical averages ¢o and ¢1). Let
o € We and let po = Lygy(0 - L) and p1 = 0 - wyl_9y(0 - L)p. Then we
have the pointwise estimate

SRR (i) + ol ) - 5)

Proof. Let v = rgg which belongs to L?(0,00) since ¢o(|z|) € L*(R3,C?).
We deduce that, for 0 <r < 1/2 <7’ <1,

’ 1/2 / 1/2
lo(r) —v(r')] < /r L]v'\st / /T 1+ ds /
S\J, 1+ - s

Slielwev/1 =1 +log(1/r)

vr<e loo(r)| + le1(r)] S
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which gives the result, after integrating over ' € (1/2,1). O

5.2. Proof that C>°(R?\ {0}, C?) is dense in Wc. Let ¢ € Wq. For the
functions ¢4 and ¢_ we can apply Theorem [ (or even Remark [I6]). Only
o and 1 need a new argument. Since the norms are the same for those
two, we only deal with g and call it ¢ throughout the proof, for shortness.

First we approximate ¢ = g by a function supported outside of a neigh-
borhood of the origin. We use ¢, = 0, with 0,, a radial function equal to
0 close to 0, equal to 1 on [e~!, 00) and which converges to 1 almost surely.
We have to estimate the norm of ¢ — ¢, = (1 — 6,,)p, which is

/0 : ‘(1 — 0,)(r¢’ + @) — reb;,

1+r
0 r 9 OO?“3(9/(7“)2
<2 1—0,)%|r¢ d 2/ —nv
[ et arsa [ 2L

The term involving 1 — #,, goes to zero by the dominated convergence theo-
rem. For the second term we cannot use a simple 6,, such as 6(nr) because
we are lacking estimates on ¢. Inserting the bound (BIl) gives

el 3q 2 e~1
/ PY") On(r) \4,0\2 dr S/ H;L(r)erog(l/r) dr
0 0

2
dr

|g0|2 dr.

T+r
which is divergent if we take a function in the form #(nr). Using the fact

that (rlog(1/7))~! is not integrable at 7 = 0, it is possible to construct a 6,
such that the right side goes to 0. Let

I (oomommay — e) o2 for /2 < < an,
&n(r) = % rlog%l/r) — € for a, <7 < 6_1, (52)
0 for r € [0, v, /2] U [e7 1, 00).

where a,, = exp(—e”) — 0 is chosen such as to have

logllog(1/0)) = [ s =

Then we have
—1

e” o 1 1 re 1 1 — ean
/0 En(r)dr “8n <an log(1/ay,) B 6) * n /an rlog(1/r) dr — n
=1+ 0(1/n)

and
—1

/6 rlog <l> @“n(r)2 dr
0 T

1 1 2t 1 1\?
~ <7an og(1/an) ‘f) at f, rioe (a—nr> (’“ - 5) o

—i—i eilrlo E é—eer
n? Ja, s\ rlog(1/r)

= % +O(1/n?).
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Therefore we can take
/ En(r) dr
pr— 70 .
/ En(r)dr
0

As a last step, since the function 6, is now supported outside of a neigh-
borhood of the origin, it can be approximated by functions in C°(R3 \
{0}, C?) by usual convolution arguments.

0, (1)

5.3. Proof that C>°(R3\ {0},C?) is dense in W. The proof for an arbi-
trary potential V' is more complicated. Since p4+ € V we can use Theorem [
for those functions and we only have to approximate g and ¢;. Writing
wo = O0po + (1 — 0)pg for a smooth radial function 6 of compact support,
which equals 1 in a neighborhood of 0, we know that (1 —6)py € H' C W.
So we can prove the result for ¢y supported in, say, the interval (0,e~!), an
assumption that we make for the rest of the proof. For simplicity of nota-
tion we just assume in the rest of the proof that ¢ = ¢(|z|) is radial and
supported on (0,e~!). In radial coordinates, our norm is then equivalent to

-1 -1 -1

/ g ()Pt / " g (7)) Pt / (L) () Pdr
0 0 0
(53)
where
1 dw r 1 1
00 =g [T T 2 =g [Vewdesso

The difficulty is of course that we have little information on ¢ and h, except
from the fact that g and rh are bounded close to 0.

As a first step we approximate ¢ by a function ¢g on which we have more
information. Let 0 < § < e~! and us be the unique solution of the elliptic
minimization problem

inf {/Oég(r)rz\u'(r)fdw/ rlrd (r) + u(r)| dr

)
u(8)=(9) 0
)
2 2
+/0 (14 h(r))|u(r)] dr}. (54)

Multiplying ¢ by a phase we can assume that ¢(d) > 0 and then we conclude
that us > 0 on [0,0]. This is because the functional in the parenthesis
decreases when u is replaced by |u|. We then let ¢5 = @(r)L(r > 6) +
u(r)1(r < §) which satisfies 5 € W with

le — @513y
b 20, 7 2 b / 2 b 2 2
S ; g(r)r?|¢ (r)|” dr+ ; r|re’ (r)+e(r)|” dr+ 7 (14h(r)) ()| dr.
This tends to zero when § — 0.

Next we are going to work with ¢g, using the additional properties coming
from the fact that ¢5 = us solves the variational problem (54)) on [0, d]. To
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shorten our notation, we simply write © = ug. The function u solves in a
weak sense the degenerate elliptic ordinary differential equation

/
— (r2(g(r) + T)u/(r)> =r(1—r—rh(r))u(r) (55)
and satisfies the Neumann-type boundary condition that
lim r2(g(r) + 7)u'(r) + r?u(r) = lim 72(g(r) + r)u'(r) = 0.
r—0 r—0
Indeed, note that

u(r)] < Cllglw L)

by Lemma I8 since @5 € W, hence r2u(r) — 0 at the origin. Thus, inte-
grating (B3l) we find that

—r2(g(r) + ) (r) = /07" s(1—s—sh(s))u(s)ds
< /07" V1og(1/s) ds = ry/log(1/r) + o(ry/log(1/r)).

Multiplying by u(r) > 0 and using (B6]) we find

—r?(g(r) +7)(u*)" S log(1/r)

(56)

and therefore

5 1/2 5 1/2
log(1 log(1
u(r) < (/ M + ¢(5)2> < (/ M) (57)
r s2(s+g(s)) r s2(s+g(s))
for » < 0/2. Note that the integral on the right diverges as r — 0 since g is
bounded and

/5 log(1/s)ds _ 1 /5 log(1/s) ds 1 log(l/r)

s2(s+g(5)) = 0+ gl 52 O gl 7

The estimate (B7)) is better than (B6) if g(r) is much larger than r at the
origin. For instance when ¢ has a finite limit at r = 0, we get \/log(1/r)/\/r
instead of y/log(1/7)/r.

Now we follow the proof of the previous section in the Coulomb case. We
need to find a sequence 6,, which is equal to 0 close to 0, is equal to 1 on
[0/2,00), converges to 1 almost surely, and such that

4
lim (g(r) + r)r?u(r)?6. (r)? dr = 0.

n—oo 0
Plugging our bound (&7)) on u, it is sufficient to show that
é §
) log(1/s)ds
1 2 =) 0L, (r)? dr = 0.
dn [+ ([ GBS o an

Following the construction (52)) of #,, in the previous section, this is possible
when

/5 dr
0 (g(T’)—i—T‘)TQ fé log(1/s) ds

r 2 (s+9(s)

= +o00.
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In order to check that this integral is infinite, we introduce for simplicity
é
log(1/s)ds
F(r):= / 5
r s%(s+9(s))
and rewrite

/5 dr :_/5F’(7“) dr
0 (gt +r)r [P ey Jo FU) Tosl/n)
_log F(6) /5 log F(r)
T log(1/0)  Jo rlog?(1/r)

after integrating by parts. From (G8) we obtain log F'(r) > log(1/r) +
o(log(l/r)) and therefore the integral on the right diverges, as we wanted.

5.4. Proof that Wo C H*(R?,C?) for 0 < s < 1/2. We have shown in
Theorem @ that Vo ¢ H'Y/2(R3,C?), hence o1 € H'/?(R3,C?) and it suffices
to show the result for ¢ = ¢o(|z|) + 0 - wyp1(|z]). In addition, by density we
can assume that o and ¢; € C2°(0,00). Again we can prove the result for
o supported in, say, the interval (0,e~!/2), an assumption that we make
for the rest of the proof.

Now it is actually easier to prove that the compactly-supported g (|z|)
belongs to W1(R3) for every 1 < o < 3/2, which implies that it belongs
to H*(R?) for 0 < s < 1/2 by interpolation. So we have to prove that

1 -1

e e
/0 2 h (r)|* drr = /0 27 rol ()| dr < oco.
Note that by Lemma [I§

-1 -1

| rlemrdrs [ R0 og /) dr
0 0

is convergent under the assumption that o < 3/2. So it suffices to estimate

o1
/0 P2t () + olr)| dr

2—a
1

e 4—30 T 571 , 2 %
< / r2-a dr / rlreo(r) + @o(r)|“dr | .
0 0

where the first integral is again finite when a < 3/2.
For o - w1 (|z|) we have

o1 (|| log(1/lz|)
Vo - waer(|z])] < | (J2])] + T S £ ()] +CT
and the result is the same. This concludes the proof of Theorem O

6. PROOF OF THE RESOLVENT CONVERGENCE IN THEOREM [I1]

We assume for simplicity that V. = max(V,—1/¢). The proof for the
other case V. = (1 —¢)V is very similar. Using the min-max formula for the
eigenvalues [I3] and the fact that qo . > o,y = ¢ = 0, it is known that

(sup(V) — 1,V1—rv?)nao(Dy.) =0, V0 <e< 1.
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The construction of the distinguished self-adjoint extension in [19] actually
provides the information that

(sup(V)—1,vV1—rv2)No(Dy) =0

as well. We therefore fix an energy E € (sup(V)—1,v/1 — v?) and prove the
norm convergence of the resolvent (Dy, — E)~! towards (Dy — E)~!. By [26],
Chap. IV, Sec. 2.6] this implies the convergence in norm of (Dy, — z)~!
towards (Dy — z)~! for any z ¢ o(Dy).

As a first step we provide a quantitative bound which follows arguments
from [I9] but is not explicitly written there. Let f,g € L?(R3,C?) be two
vectors and ., x. € H'(R?,C?) be such that

o (5) ()

that is,
(1= E+Vo)pe —io-Vxe = f, (59)
(-1=E+V.)xe —io - Ve = g.
Inserting
1 v g
=——J0-
A RS VA e Wy 2
we get the equation in H !
1 1
1—-FE+V. —0-V—r——=0 -V = oV 60
( +Vo)pe — 0 1—{—E—V€U e = [ +io 1—|—E—V;.;g (60)

Integrating against ., we find that

-V |? . o -Vt
1—E+V 2 ’075:/ - / T re .
[a-pevieps [ T = [ e [
We can rewrite this in the form
- Veoe|?
_E 2_ R o~ Ve

ps ° wltE—V.7

From this we conclude that there exists a constant C' (depending on F and
V' but otherwise independent of €) such that

I 2 |o - V%P <C 2 2
%—:HL? +QO,VE(SDE) + s _(1 T E— ‘/6)2 X (Hf”m + ||9HL2) .

Since (1+ E —V.)~! is uniformly bounded, we also have that y. is bounded
in L2. Writing (59) in the form

{(—1—E+v;)so€—w-w€ = f—2p.,

. (61)
(1—-FE+V)xe —io - V. = g+ 2xe.

we get all the same information with . and y. interchanged. In other
words, we have shown that the embedding D(Dy.) C W x W is continuous
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with a constant independent of e:

U'VQOE
oy + el + | 17525

|l =l -m L.

Now we can pass to the weak limit ¢ — 0. Since W C H?* for all 0 <
s < 1/2, we have W C LP for 2 < p < 3 with a locally compact embedding.
Hence we can find a subsequence ¢,, — 0 such that ¢, := ¢., — ¢ € W and

o VXe
1+E-V,

|

L2

) VQO&-,X&- € Hl(R37C2)' (62)

Xn = Xe, — X weakly in W, weakly in L? and strongly in L} _ for every

2 < p < 3. Passing to the weak limit in (B9l), we find
(1-E+V)p—ioc-Vx=/F, (63)
(-1—-E+V)x—ioc-Vp=g.

Since ¥ = (p,x) is in L? and satisfies » € W and Dy¥ € L%, we have
U € D(Dy). We know from the selfadjointness of Dy and the fact that
E ¢ o(Dy) [19] that the equation (G3]) has a unique solution. Hence the
weak limit is independent of the subsequence and we must have . — ¢ and
Xe — X- This proves the weak convergence of the resolvents. In addition,
we have, after passing to the weak limit,

o-Vo
1+E-V

) H o-Vx

1+ E—V||.
(9) -¢ H Dv - E) (X)

This tells us that D(Dy ) is continuously embedded into the spaces corre-
sponding to the norms on the left. This is already present in the proof
of [I9], but not explicitly written.

Now we prove the norm convergence of the resolvents. Let F. = (fe,g:)
be any sequence in L?(R3,C*) such that || F.|? = || f||>+|g:|? = 1, F: = F
weakly in L? and

|(Dv. = E)™' = (Dy = E)"!|| = |((Dv. = B)™" = (Dv — E)™) F||.
Let then
Ve - fe ‘Plg _ fe
(xs> = (Dv. =B <9) ’ <x2> = (bv - E)” <9)
{u—E+vx — @) —io - V(xe —xL) = (V = Vo),

which implies that
(=1 =E+V)(xe —xz) —i0 - V(pe — L) = (V = Vo) xe.

el =+ lxly + H

<C

(64)
L2

(65)

From the previous uniform estimates we know that ¢, ¢L, x. and x. are
uniformly bounded in the norms appearing on the left of (64]). Passing to
weak limits as previously, we find that ¢. —¢. — @ and y. — x. — X weakly

with
(DV——E)<§)::O
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and @ € W, hence ¢ = ¥ = 0. Our goal is to prove that the convergence
is strong in L?. Because of the locally compact embedding into L2, it only
remains to prove the compactness at infinity. Let then 6 be a smooth radial
function which is 0 in the ball of radius R and 1 outside of the ball of radius
2R, for any fixed R > 0. We multiply (65]) by 6 and get

(1= E+V)0(pe — L) —io - VO(xe — x2) = —i(xe — xz)o - Vb,
(—1=E+V)0(xe = x0) —io - VO(pe — ¢L) = —i(pe — ¢L)o - V0.
(66)
since 0(V —V.) = 0 for £ small enough (we use here that V' can only diverge
at the origin). This can be written in the form

o o
(Dy — E)6 <‘p5 ‘p,E) =il w, (f;z - i‘f) (67)
£

Xe = Xe

where the right side has a compact support, hence converges strongly to 0 in
L?. Since Dy — E is invertible we conclude as we wanted that (. — L) — 0
and O(x. — x.) — 0 strongly in L?. Together with the locally compact
embedding this proves the norm-convergence of the resolvents and ends the
proof of Theorem [IT1 O

APPENDIX A. PROOF oF THEOREM [§ ON qg IN THE CRITICAL CASE
vr=1

In this section we compute the quadratic form ¢f for V(z) = —|z|7},
following the method introduced in [12].

A.1. Computation of qg. First we note that the operator ¢ - L commutes
with (o - V) f(|z|)(o - V) for any radial function f. Indeed, we have

c-Lo-V+0-Vo-L=-20-V. (68)

Using that o - L commutes with scalar radial functions and inserting (G3),
we easily conclude that
1
-V—r=—0-V,0-L| =0. 69
T VT Y (69)

Therefore, recalling that w, = z/|x|, we have
66 () = a5 (p+) + 45 (w0) + 45 (9-) + 45 (0 - woipr).
We compute these four terms separately. We use the formula
[0 -V, o- h(|x|)x] = h(|z]) + |z|W (|z|) + 2h(|x|)(1 +o- L)
which, in the particular case h(r) = 1/r, becomes

[a-v,a-é—']:%(ua-m. (70)

Denoting

f(r)= and g(r)=re",
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which satisfy fg' = g, we obtain

/

/R i a-V(gu)‘2 Z/Raiz‘ga-Vquug?a-m‘Q

5 g2
2 2
:/ f‘a-Vu‘ —i—/ w—<u,[a-v,a-i]u>
R3 rs [ x|
2 1 - L
:/ i ‘U-Vu‘ —i—/ 1— — | |uf*-2 u,a—u
R 1+ [2] R3 || ||

- L
=5 (u) — 2<u, U—u>. (71)
]
This gives what we wanted for u = ¢4 and u = ¢y, after computing
1+ |z
o-V(gpt) =g (0 Vi + a0 wxw+>

and

1+ |z
o-V(gpo) =go-w, <s06+ |x|| |300>-

Similarly, we have
2 / 2
/ ng‘a-V(g_lu)‘ :/ ng‘g_la-Vu—ug—za-x‘
R3 R3 rg

:/Rgf‘g.vu‘2+/RS$+(u,[a-v,a-wx]u>

=5 (u) + 2<u, Mu> (72)

]

which gives the result for ¢_, after inserting

_ _ 1+ |z
o-Vig 1g0)=gl<0-Vg0— | ’J-wxgo>.

]
For u = o - wyp1(|x|) we have to use in addition that
2 2
0-Vo-wepr=[0-V,0-w]pr+¢) = m(lJrU-L)cmw’l = m(‘ol—i_(p/l-

since ¢ is radial.

A.2. Simplification of the norm associated with qg. In this section

we prove that the norm induced by qg on L? is equivalent to the ones given
in @4). Let ¢ € L*(R3,C?) be such that all the terms in (23) are finite.
First we remark that

/ |z]
e 1+ [a]

which is controlled by the L? norm and by the term involving o - L. So we
conclude that

%(1 + |a]) g (2)

2
1+ |z
o= [ s ds
R |7

|z| 2
o-Vei(z)| dr < oco.
/R31+|5'3|‘ +( )‘ <
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Using (23]) we have

|| 2 2 / o ()2 o-L
Y d > [ @l ol T
/R3 1+ ‘x’{o- SD+(:E){ $+||@+||L2 R3 ‘x’ T+ Y+ ’I" (228
(73)

and a similar inequality for ¢_. Therefore there is no need to keep the term
involving o - L. For ¢y and ¢; we only use the L? norm to control the terms
involving rpg and 7.

Lastly, we see that the quadratic form

Joo Tl T m

is also the sum of the similar terms for ¢4, ¢_, ¢o and o - wzp1(|z|), since
o - L commutes with the corresponding operator in the same way as in (69).
Therefore the norm associated with qg is equivalent in L? to that given
by (74)). However, in practice it will often be more convenient to use the
more precise information contained in (24]) for ¢g, ¢1 and ¢4.

A.3. Estimate on qf for A # 0. It is possible to provide a formula for
qg\j(go) using the two functions
r

f,\(r):m

in (7I) and (72]), and the arguments are exactly the same as before. We can
also use (28] and notice that, for A > 0,

22lo - Vs ()2
A/Ra @+ )@+ L+ Nz

and ga(r) = rel1HAr

|0 - V]z|p(z) 1 2
<A1+77/ de+A1+n o(x)|” dx
D o T + @ ey @ AT [ 190
Al +n) / |0 - V]z|p(2)? -1 / 2
< dr + \(1 d
T5x Joo 0y 2t (I+n7") RS!@(%)! x
where the coefficient in front of the first integral is < 1 for n small enough.
This concludes the proof of Theorem [l O

APPENDIX B. THE TWO-DIMENSIONAL CASE

In two space dimensions, the free Dirac operator

. . 1 —2i0
dy = —i1 0101 — 10909 + 03 = (—2@'@ 1 z) (75)
is self-adjoint in L?(R2,C?) with domain H'(R? C?). Here z = x1 + iy,
Z=x1—1x9, 0, = %((91 +i0y), 0z = %(81 —i02) . In this section, we consider
Dirac-Coulomb operators of the form

dy =do + V(z)

where V' (z) is a real-valued function satisfying V' (z) > —v/|z|, as in three
dimensions. The results are very similar to the three-dimensional case, the
algebra is simpler and the proofs do not involve any new idea. So we will only
state the theorems for completeness, pointing out the main differences. Note
that the two-dimensional case is relevant in solid state physics: although the
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low-energy electronic excitations in graphene are modeled by a massless two-
dimensional Dirac equation [37], the study of strained graphene involves a
massive Dirac operator [46].

We would like to emphasize four main differences of the 2d case, as com-
pared with the 3d case:

e The operator —2i0, is not self-adjoint, whereas —io -V is self-adjoint
in 3d. So ¢ and x do not play symmetric roles.

e Even when V is a scalar, in general the operator dy is not essentially
self-adjoint for v # 0. In 3d, the operator Dy is essentially self-
adjoint when |v| < v/3/2.

e The critical value of v below which there is a unique distinguished
self-adjoint extension is 1/2 instead of 1.

e The first Coulomb eigenvalue is v/1 — 412 instead of v/1 — /2.

With this in mind, Theorem [ stays true in 2D, with appropriate modifi-
cations and we do not state it explicitly. In particular we need to ask that
Vo € L%*(R?) and there is no equivalent of (5). These results have been
mainly proved by Cuenin and Siedentop [9] (see also [47]). In particular,
they showed that

( | =2 (Do + z’s)*1|x|*1/2H =2, VseR (76)

Here, the norm is 2 instead of 1, this is the reason why the critical coupling
parameter is v = 1/2 instead of v = 1.

The two-dimensional analogue of the Esteban-Loss method for self-adjoint
extensions [19, 20] was discussed in [34] 35, 47]. As in 3d, we make the

stronger assumptions

<V(z) and sup(V)<1l+v1-—4? (77)

14

||

for some 0 < v < 1/2. Here V1 — 412 is the first eigenvalue of the Dirac
operator with the Coulomb potential Vo(x) = —v/|z|. As in three space
dimensions, it is important to study the quadratic form

-o(2)]?
a(p) = 4/{@2 % dx + /R?(l +V(x) = N|e(x)]? dz. (78)

The two-dimensional analogue of the Hardy-type inequality (I3 is

/Rg % dz + /RQ (a - ﬁ) () dz > 0 (79)

for all @ > 0. This inequality was proved recently by Miiller [35], using the
indirect method introduced by Dolbeault-Esteban-Séré [13] in their proof of
([@3). But a more direct proof can be given by “completing the square” in
the spirit of [12] [11], as we will explain later.

Using (79) and our assumption that V' is bounded from below by the
Coulomb potential, we can prove that gy + 2A||¢[|2, > 0. In addition, as in
three dimensions, it defines a norm which is equivalent to the one given by
the quadratic form

2 . |3290($)|2 . 212 da
el = [ 55 dot [ et de (50)
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The corresponding space is, therefore,
V= {p € L*(R%,C) N Hjp(R?\ {0},C) :
(2-V)V20.p € LQ(RQ,C)}. (81)

Later we will state a result saying that C2°(R?\ {0}, C) is dense in V for the
norm (BQ), but for shortness we immediately turn to the discussion of the
critical case.

Following ideas from [12} 1] and Appendix [A] we can provide a more
direct proof of ([{9)). It is useful to start with the Coulomb case Vo(z) =
—[2z|71, in which case we use the notation

4 (p) = /RQ {% |020]” + (1 - A ﬁ) m?} dr.  (82)

We use the orbital momentum operator L = —i(x102 — x20;1). Note that
220, = (x-V)+ L, 2205 = (v - V) — L. We recall that the set of eigenvalues
of L is 7Z, and the eigenspace of eigenvalue n consists of functions taking
the form e™p(r) in polar coordinates. The following is the equivalent of
Theorem [§ and its very similar proof will be ommitted.

Theorem 19 (Writing qg\j as a sum of squares in 2d). For every ¢ €
L?(R?,C) we write

@ =¢i(x) +o_(z) + @o(r) + e p1(r)

where oy = 11 ooy (L), o = 1 (oo _2)(L)p, o = Loy (L) and e o1 (r) =
T_y(L)p. Then

2|z| @zl +1z |
C
_ 20,0, + S EDE 1y
q0 (80) /R? 1+ 2|£C| 20+ + 2|$|2 P+ €L
2|z] @zl +1z |
20,0 — Dz 1y
+/RQ 1+ 202 |°92% o[ ]? g

L —1-1L
+2 <p+7mcp+ +2 w—,Tw—

>~ 1 wo(r) 2
4 - /
+ 77/0 5o ‘rcpo(r) + 2 +reo(r)| dr
> 1 o1(r) ?
4 ! LA
+ 77/0 TTor re(r) + 5 roi(r)| dr (83)
for every ¢ € HY(R?,C). Moreover
el +aS (o) ~ el + [ 2L fosto + ) da
L L g2 1+ |7
<1 vo(r) 2 01(r) 2
+/0 T <|r906(7“)+ 5 ‘ + |7“go/1(7“)+ 5 ‘ dr
2
9 |0z |22 ()|
~ + " dx. 84
H‘)OHL2 /1;2 (1+’1“) xz ( )
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Finally, for all =1 < XA <1, 2A+1)[|¢||2, + ¢S () is a positive quadratic
form equivalent to [|¢||2, + ¢5 ().

The critical spaces in the 2d case are defined similarly as in 3d. In the

Coulomb case V(z) = —|2x|~! we introduce
Ds| x| /2
WC = {(p S LQ(R27C) . G_HW < L2(R27C)} (85)

Then we assume that V(z) > —|2z|~! and that sup(V) < 1. We define the
critical space W associated with V' by

W=3peW: : 1 _ 2 1/28— e L*(R%,C?)

1\ 12
<V(x) + m) ¢ € L*(R?, (CQ)}. (86)
The following is the equivalent of Theorems [ and 1] in 2d.

Theorem 20 (The quadratic form domains in 2d). We assume that

1
2|
Then the space C°(R?\ {0}, C) is dense in V, in We and in W for their

respective norms. In addition we have the continuous embeddings V C
HY2(R2,C) and W C W¢ € H*(R?,C), for every 0 < s < 1/2.

V(z) > and sup(V) < 2. (87)

The proof of Theorem is very similar to the proofs of Theorems [4]
and @ Note however that the pointwise estimate on spherical averages of ¢
is slightly different in 2d, compared to that in Lemma Instead of (EII),
we have

el a0+l S B (Vi +ls) . 69

As in 3d, applying the Esteban-Loss method allows to distinguish and
define a unique self-adjoint extension from the property that

D(dy) C {\IJ = (S;) € L*(R%,C? : ¢c V}
in the case 0 < v < 1/2 and
D(dy) C {qf = <‘§> € L2(R2,C2) : p€ W}

when v = 1/2. For shortness we do not state the equivalent of Theorems [
and Il As in Theorem 1] we can prove the convergence of the resolvents
in norm in the 2d case, by following the proof given in Section [6 In the
subcritical case, as in Corollary [[lone can infer some information on y under
the assumption that dy ¥ € L?(R?,C) and that ¢ € V. However, due to the
fact that the adjoint of i0, is iz, the proper conclusion is that

D(dy) CV x V, for 0 <v < 1/2.
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We conclude with the min-max characterization of eigenvalues in the spec-
tral gap. As in 3d, we denote A}' (resp. A7) the Talman projectors corre-
sponding to the Talman decomposition

w—(9) = (M)
X ALY
We also consider the spectral projections
Ad =1(dy = 0), o = 1(dy <0).

For a space F C H'/ 2(R3,C*), we consider the min-max levels given by the
same formula as [33)), but with dy instead of Dy. We get the same result
as in three dimensions, but with the critical value v = 1/2.

Theorem 21 (Min-max formula for eigenvalues in 2d). Let 0 < v < 1/2.
We assume that

V(z) > v and sup(V) <1+ +v1—412. (89)

-zl
Let
C=(R?\ {0},C?) C F C HY*(R?,C?). (90)

Then, the number )\gf)F defined in [B3), is independent of the subspace F and
coincides with the kth eigenvalue of the distinguished self-adjoint extension
of dy larger than or equal to /1 — 4v2, counted with multiplicity (or is equal

to b = inf (0ess(dy) N (V1 — 402, 400)) if there are less than k eigenvalues
below b). In addition, we have

for all F as above and all k > 1.
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