Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds - Archive ouverte HAL
Article Dans Une Revue Ergodic Theory and Dynamical Systems Année : 2019

Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds

Résumé

We show that, up to topological conjugation, the equivalence class of a Morse–Smale diffeomorphism without heteroclinic curves on a $3$-manifold is completely defined by an embedding of two-dimensional stable and unstable heteroclinic laminations to a characteristic space.
Fichier principal
Vignette du fichier
BoGrLaPo.pdf (603.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01467144 , version 1 (14-02-2017)
hal-01467144 , version 2 (22-09-2017)

Identifiants

Citer

Christian Bonatti, V. Z. Grines, Francois Laudenbach, Olga Pochinka. Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds. Ergodic Theory and Dynamical Systems, 2019, 39 (9), pp.2403-2432. ⟨10.1017/etds.2017.129⟩. ⟨hal-01467144v2⟩
352 Consultations
167 Téléchargements

Altmetric

Partager

More