Laguerre and Hermite bases for inverse problems - Archive ouverte HAL
Article Dans Une Revue Journal of the Korean Statistical Society Année : 2018

Laguerre and Hermite bases for inverse problems

Résumé

We present inverse problems of nonparametric statistics which have a performing and smart solution using projection estimators on bases of functions with non compact support, namely, a Laguerre basis or a Hermite basis. The models are $Y_i=X_iU_i,\;Z_i=X_i+\Sigma_i,$ where the $X_i$'s are {\em i.i.d.} with unknown density $f$, the $\Sigma_i$'s are {\em i.i.d.} with known density $f_\Sigma$, the $U_i$'s are {\em i.i.d.} with uniform density on $[0,1]$. The sequences $(X_i), (U_i), (\Sigma_i)$ are independent. We define projection estimators of $f$ in the two cases of indirect observations of $(X_1, \dots, X_n)$, and we give upper bounds for their ${\mathbb L}^2$-risks on specific Sobolev-Laguerre or Sobolev-Hermite spaces. Data-driven procedures are described and proved to perform automatically the bias variance compromise.
Fichier principal
Vignette du fichier
LaguerreHermiteInverse10_17.pdf (441.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01449799 , version 1 (30-01-2017)
hal-01449799 , version 2 (04-10-2017)

Identifiants

Citer

Fabienne Comte, Valentine Genon-Catalot. Laguerre and Hermite bases for inverse problems . Journal of the Korean Statistical Society, 2018, 47 (3), pp.273-296. ⟨10.1016/j.jkss.2018.03.001⟩. ⟨hal-01449799v2⟩
189 Consultations
480 Téléchargements

Altmetric

Partager

More