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LAGUERRE AND HERMITE BASES FOR INVERSE PROBLEMS

F. COMTE(1) & V. GENON-CATALOT(2)

Abstract. We present inverse problems of nonparametric statistics which have a performing
and smart solution using projection estimators on bases of functions with non compact support,
namely, a Laguerre basis or a Hermite basis. The models are Yi = XiUi, Zi = Xi + Σi, where
the Xi’s are i.i.d. with unknown density f , the Σi’s are i.i.d. with known density fΣ, the Ui’s
are i.i.d. with uniform density on [0, 1]. The sequences (Xi), (Ui), (Σi) are independent. We
define projection estimators of f in the two cases of indirect observations of (X1, . . . , Xn), and
we give upper bounds for their L2-risks on specific Sobolev-Laguerre or Sobolev-Hermite spaces.
Data-driven procedures are described and proved to perform automatically the bias variance
compromise.
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1. Introduction

The aim of this paper is to demonstrate that some classical inverse problems of nonparametric
statistics can be dealt with by using projection estimators either on a Laguerre basis or on a
Hermite basis and that this approach provides easy and performing solutions. We make a unified
presentation joining novelties and improvements of previous results.

To motivate the framework, first consider X1, . . . , Xn n i.i.d. random variables with unknown
density f . If the Xi’s are observed and f is square integrable, nonparametric estimators of f
can be built by using a projection method on an orthonormal basis. Many authors use com-
pactly supported bases (see e.g. Massart (2007), Efromovich (1999)). Non compactly supported
wavelet bases of L2(R) have also been used (see Juditsky and Lambert-Lacroix (2004), and the
references therein). The L2(R) basis of Hermite functions is another possibility, investigated in
e.g. Schwarz (1967), Walter (1977) and more recently, in Belomestny et al., 2017. As enlighted in
the latter paper, projection estimators on a Hermite basis have the following advantages. First,
as the basis is not compactly supported, there is no need to fix an interval for estimation. This
is convenient, especially for inverse problems. Second, from the computational point of view,
they have a much lower complexity than other estimators based on non compactly supported
bases such as deconvolution estimators. Nevertheless they perform asymptotically as well as
estimators built from competing methods. If f is R+-supported, one can use an orthonormal
basis of L2(R+). The Laguerre basis is then well fitted. The qualities of Laguerre projection
estimators have been recently investigated (see e.g. Mabon (2017), Vareschi (2015), and for ac-
tuarial applications Zhang and Su (2017)). If the Xi’s are not directly observed, the estimation
of f is an inverse problem. The inverse problems considered here are the following ones. First,
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we assume that observations are

(1) Yi = XiUi, i = 1, . . . , n

where the sequences (Xi), (Ui) are independent and (Ui) are i.i.d. with uniform distribution on
[0, 1]. Model (1) is called multiplicative censoring model and covers several important statistical
problems (see e.g. Vardi (1989)). Numerous papers deal with the estimation of f for model
(1) whether by nonparametric maximum likelihood (Vardi (1989), Vardi and Zhang (1992), As-
gharian et al. (2012)), by projection methods (Andersen and Hansen (2001), Abbaszadeh et
al. (2012,2013)) or kernel methods (Brunel et al. (2015)). In Belomestny et al. (2016), f is
supposed to be R+-supported and estimated by projection estimators on a Laguerre basis. We
revisit this problem and obtain an improvement of the risk bound, under a slight additional mo-
ment assumption. In the case of real-valued random variables Xi, we investigate the estimation
of f from model (1) by using a Hermite basis approach.

Second, we consider observations Z1, . . . , Zn such that

(2) Zi = Xi + Σi, i = 1, . . . , n.

where (Σi) are i.i.d. with known density fΣ and the sequences (Xi), (Σi) are independent. Den-
sity estimation from noisy observations is the subject of a huge number of contributions. This
deconvolution problem is classically solved by Fourier methods (see e.g. Comte et al. (2006)
and the references therein). Recently, when the Xi’s are non-negative, the study of one-sided
errors, i.e. Σi ≥ 0, was motivated by applications in the field of finance (see Jirak et al. (2014))
or in survival models, (see van Es et al. (1998), Jongbloed (1998)). In particular, Mabon (2017)
proposes for model (2) projection estimators of f using a Laguerre basis whose properties allow
deconvolution of densities on R+. We detail this approach and provide an improvement of the
risk bound of the projection estimators. In the case of real-valued random variables Xi,Σi, we
study the estimation of f by using a Hermite basis approach.

To our knowledge, the estimation of f from observations (1)-(2) by projection estimators on
a Hermite basis, which is investigated here, is new. We compare Hermite estimators to the
deconvolution estimators for models (1) and (2). Note that the estimation of f in model (1) by
deconvolution is also new.

In each of the above models, we exhibit explicit relations between the projection coefficients
of the density of the observed variables and the projection coefficients of the unknown density
f . This allows to build projection estimators of f . We provide risk bounds for the estimators.
Afterwards, we propose data-driven procedures, including for model (1) a random penalty which
avoids a priori knowledge of the variance rate. This is important as the variance order varies in
function of moment assumptions.

Laguerre and Hermite bases are related to specific function spaces, respectively the Sobolev-
Laguerre spaces (see e.g. Shen (2000) and Bongioanni and Torrea (2007)) or the Sobolev-Hermite
spaces (Bongioanni and Torrea (2006)). The links between rate of decay of the projection
coefficients and regularity properties of functions in these spaces have been described respectively
in Comte and Genon-Catalot (2015) and in Belomestny et al. (2017). This allows to assess the
rate of bias terms of L2-risks in the projection approach, and to compute upper bounds for the
rates of convergence.

In Section 2, we describe the Laguerre and Hermite bases and spaces. In Section 3, for
the purpose of comparison with the other models, we study the case of direct observations of
X1, . . . , Xn. Section 4 deals with model (1). Section 5 is concerned with model (2). In Section 6,
we give some concluding remarks. Section 7 contains useful formulae for Laguerre and Hermite
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functions and all proofs. In the Appendix, we recall some properties of Sobolev-Laguerre and
Sobolev-Hermite spaces, and the Talagrand inequality used in proofs.

2. About Laguerre and Hermite bases and spaces

2.1. Laguerre and Hermite bases. We start by presenting the Laguerre and Hermite bases
and the Sobolev-Laguerre and Sobolev-Hermite regularity spaces. More details on Laguerre and
Hermite functions are given in Section 7.1.

Below we denote the scalar product and the L2-norm on L2(R+) by: ∀s, t ∈ L2(R+), 〈s, t〉+ =∫ +∞
0 s(x)t(x)dx, ‖t‖2+ =

∫ +∞
0 t2(x)dx. We also denote by ‖.‖ the L2-norm on R and by 〈·, ·〉 the

L2(R)-scalar product.
Consider the Laguerre polynomials (Lj) and the Laguerre functions (ϕj) given by

(3) Lj(x) =

j∑
k=0

(−1)k
(
j

k

)
xk

k!
, ϕj(x) =

√
2Lj(2x)e−x1Ix≥0, j ≥ 0.

The collection (ϕj)j≥0 constitutes a complete orthonormal system on L2(R+), and is such that
(see Abramowitz and Stegun (1964)):

(4) ∀j ≥ 0, ∀x ∈ R+, |ϕj(x)| ≤
√

2.

For f ∈ L2(R+), we can develop f on the Laguerre basis, f =
∑

j≥0 aj(f)ϕj , aj(f) = 〈f, ϕj〉+.
The Hermite polynomial and the Hermite function of order j are given, for j ≥ 0, by:

(5) Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
), hj(x) = cjHj(x)e−x

2/2, cj =
(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R). When the density f belongs to L2(R),
it can be developed in the Hermite basis f =

∑
j≥0 aj(f)hj where aj(f) =

∫
R f(x)hj(x)dx =

〈f, hj〉. The infinite norm of hj satisfies (see Abramowitz and Stegun (1964), Szegö (1959)
p.242):

(6) ‖hj‖∞ ≤ Φ0, Φ0 ' 1, 086435/π1/4 ' 0.8160,

and the following more precise bound is available (with C∞ a constant given in Szegö (1959))

(7) ‖hj‖∞ ≤
C∞

(j + 1)1/12
, j = 0, 1, . . . .

We use the notation ψj to designate ϕj in the Laguerre case and hj in the Hermite case, denote
by Sm = span(ψ0, ψ1, . . . , ψm−1) the linear space generated by the m functions ψ0, . . . , ψm−1 and

by fm =
∑m−1

j=0 aj(f)ψj the orthogonal projection of f on Sm, where aj(f) = 〈f, ψj〉 will mean

either 〈f, ϕj〉+ or 〈f, hj〉.

2.2. Sobolev-Laguerre and Sobolev-Hermite spaces. For s ≥ 0, the Sobolev-Laguerre
space with index s (see Bongioanni and Torrea (2007)) is defined by:

(8) W s
L = {θ : R+ → R, θ ∈ L2(R+), |θ|2s :=

∑
k≥0

ksa2
k(θ) < +∞}.

where ak(θ) = 〈θ, ϕk〉+. We define the ball W s
L(D) by

W s
L(D)

.
=

{
θ ∈W s

L, |θ|2s =

∞∑
k=0

ksa2
k(θ) ≤ D

}
.



4 F. COMTE(1) & V. GENON-CATALOT(2)

Analogously, the Sobolev-Hermite space with regularity s (see Bongioanni and Torrea (2006))
is given by

(9) W s
H = {θ : R→ R, θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) < +∞}.

where ak(θ) = 〈θ, hk〉, and the Sobolev-Hermite ball

W s
H(D) = {θ ∈ L2(R),

∑
k≥0

ksa2
k(θ) ≤ D}.

Thus, for f in W s
L(D) or in W s

H(D), we have ‖f − fm‖2 ≤ Dm−s.

For details and especially for regularity properties of functions in these spaces, we refer also
to Section 7 of Comte and Genon-Catalot (2015), Section 7.2 of Belomestny et al. (2016) and
Section 4.1 of Belomestny et al. (2017), see Appendix A.

3. Projection estimators of f when Xi’s are observed

3.1. Risk bound. We assume that f belongs to L2(R+) or L2(R) and provide for each m ≥ 1,
a projection estimator of f by estimating the coefficients aj(f), j = 0, . . . ,m − 1. In the case
where the Xi’s are observed, we define the empirical and unbiased estimator of aj(f) by

âj(X) =
1

n

n∑
i=1

ψj(Xi) and the projection estimator f̂Xm =
m−1∑
j=0

âj(X)ψj .

Clearly, f̂Xm an unbiased estimator of fm =
∑m−1

j=0 aj(f)ψj , the orthogonal projection of f on

Sm. By the Pythagoras Theorem, we have ‖f̂Xm − f‖2 = ‖f − fm‖2 + ‖f̂Xm − fm‖2 . As (ψj)j is

orthonormal, we get ‖f̂Xm − fm‖2 =
∑m−1

j=0 (âj(X)− aj(f))2 and

E[(âj(X)− aj(f))2] =
1

n
Var(ψj(X1)) =

1

n
E(ψ2

j (X1))−
a2
j (f)

n
.

Let us define

(10) V X
m =

m−1∑
j=0

E[ψ2
j (X1)],

we have

(11) E(‖f̂Xm − f‖2) = ‖f − fm‖2 +
V X
m

n
− ‖fm‖

2

n
.

With (4) or (6), we obtain V X
m ≤ Cm, with C = 2 in the Laguerre case and C = Φ2

0 (see (6)) in

the Hermite case. In the latter case, using (7), we get V X
m ≤ Cm5/6, which is better. However,

these bounds on the variance term are not optimal and can be improved under rather weak
moment assumptions.

Proposition 3.1. If E(1/
√
X1) < +∞ in the Laguerre case or E(|X1|2/3) < +∞ in the Hermite

case, then for m large enough, V X
m ≤ c

√
m/n where c is a constant, and thus

(12) E(‖f̂Xm − f‖2) ≤ ‖f − fm‖2 + c

√
m

n
.
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In the Laguerre case, this result improves the variance order obtained in Belomestny et
al. (2016), under the additional moment assumption E(1/

√
X1) < +∞. For the Hermite case,

the order O(
√
m) is obtained in Belomestny et al. (2017b), Proposition 2.1, but under the

stronger moment condition E(|X1|5) < +∞. Note that even the Cauchy distribution satisfies

E(|X1|2/3) < +∞.
The risk bound decomposition (12) involves a bias term ‖f − fm‖2 =

∑
j≥m a

2
j (f) which is

decreasing with m and a variance term of order
√
m/n which is increasing with m. Therefore, to

evaluate the rate of convergence, we have to perform a compromise to select relevantly m. More
precisely, for f in W s

L(D) or in W s
H(D), we have ‖f − fm‖2 =

∑
j≥m a

2
j (f) ≤ Dm−s. Choosing

mopt = [n1/(s+1/2)] in the r.h.s. of (12) implies

E(‖f̂Xmopt
− f‖2) ≤ C0(s,D)n−2s/(2s+1)

where C0(s,D), is a constant depending on s and D only. This is the usual rate for density
estimation for f belonging to a classical Sobolev ball with regularity s: indeed, Schipper (1996)
proves that this rate is minimax optimal with exact Pinsker constant on Sobolev balls for an
integer s, Efromovich (2002) proves the result for s < 1/2 and Rigollet (2006) builds an adaptive
deconvolution estimator based on the blockwise Stein method, which reaches the optimal rate
with exact constant for any s > 1/2.
The upper bound O(

√
m) on the term V X

m is somehow optimal as we can prove:

Proposition 3.2. Assume that infa≤x≤b f(x) > 0 for some interval [a, b], with a < b in the
Hermite case and 0 < a < b in the Laguerre case, then, for m large enough, V X

m ≥ c′
√
m where

c′ is a constant. Therefore

E(‖f̂Xm − f‖2) ≥ ‖f − fm‖2 + c′
√
m

n
− ‖f‖

2

n
.

Proposition 3.2 in the Hermite case is proved in Belomestny et al. (2017), Proposition 2.2.

3.2. Specific rates under small bias. For some classes of distributions, the rate of the bias
term can be much smaller than polynomial. This implies a much better rate of convergence for
the L2-risk of estimators.
• Laguerre case. Consider the class of mixtures of exponential distributions defined, for v > 1,
by

E(v) =

{
f : f(x) =

∫ ∞
0

θ exp (−θx)dΠ(θ), Π[1/v, v] = 1

}
Proposition 3.3. Let f ∈ E(v) for some real number v > 1 and set ρ = (v − 1/v + 1)2 < 1.
Then, for mopt = [log n/| log ρ|],

E(‖f̂Xmopt − f‖) .
√

log n/n.

• Hermite case. In Belomestny et al. (2017), Section 4.4, we investigated the risk rate of
Hermite estimators on classes of mean mixtures or variance mixtures of Gaussian distributions
and obtained the following results. Define, for φ the standard Gaussian density,

F(C) =

{
f : f(x) = φ ?Π(x) =

∫
φ(x− u)dΠ(u), Π ∈ P(C)

}
,

P(C) :=
{

Π ∈ P(R),Π(|u| > t) ≤ C exp(−t2/C) for all positive t
}
.

For f ∈ F(C) and mopt = [log(n)(eC + 1/ log(2))], we have E(‖f̂Xmopt
− f‖2) .

√
log(n)/n.
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Now consider the class of variance mixtures

G(v) =

{
f : f(x) =

∫ +∞

0

φ(x/u)

u
dΠ(u),Π([1/

√
v,
√
v]) = 1

}
, v > 1.

For f ∈ G(v) and mopt = [log(n)/| log(ρ)|], with ρ as above, E(‖f̂Xmopt
− f‖2) .

√
log(n)/n.

3.3. Adaptive estimation. The density f being unknown, we do not know what kind of
regularity it has, therefore, a data-driven choice of the dimension of the projection space has
to be done. The interest of the data-driven procedure is that it allows to realize automatically
the finite sample bias-variance compromise and also to automatically reach the best possible
asymptotic rate without requiring any knowledge on the bias order. The data-driven choice of
m mimicks the minimization of the squared bias-variance bound using estimators of the risk
bound terms. As ‖f − fm‖2 = ‖f‖2 − ‖fm‖2, the squared bias is estimated by −‖f̂Xm ‖2, getting
rid of ‖f‖2 which is unknown but constant. Thus we set, for κ a numerical constant,

m̂X = arg min
m∈{1,...,mn}

(
−‖f̂Xm ‖2 + p̂enX(m)

)
, p̂enX(m) = κ

V̂ X
m

n
, V̂ X

m =
1

n

n∑
i=1

m−1∑
j=0

ψ2
j (Xi).

Clearly, V̂ X
m is an estimate of E(

∑m−1
j=0 ψ2

j (X1)). We set penX(m) := E(p̂enX(m)) = κV X
m /n

and prove:

Theorem 3.1. Assume that mn ≤ (n/ log(n))α with α = 1 for Laguerre and α = 6/5 for
Hermite, then there exists a numerical value κ0 such that for all κ ≥ κ0,

E(‖f̂Xm̂X − f‖
2) ≤ 3 inf

m∈{1,...,n}

(
‖f − fm‖2 + penX(m)

)
+
C

n
,

where C is a constant depending on ‖f‖.

The Hermite case is proved in Belomestny et al. (2017, Theorem 2.1). We prove here the result
in the Laguerre case.

Remark 3.1. Note that the risk bound achieves automatically the bias-variance compromise,
up to a negligible term of order O(1/n), and in this sense, f̂Xm̂X is adaptive.

4. Projection estimator of f when Yi’s are observed

Now, our aim is to build an estimator of f from the observations Y1, . . . , Yn given by (1).

4.1. Preliminary properties and risk bounds. The estimation of f in model (1) is an inverse
problem which can be solved by Hermite or Laguerre projection estimator, depending on the
support of the density f . The hidden variables Xi are either real-valued or nonnegative, with
unknown density f . The construction of estimators rely on relations between the density fY
and survival function F̄Y (y) = P(Y > y) of Yi and those of Xi. We recall these relations:

(13) ∀y ∈ R, fY (y) =

∫ +∞

y

f(x)

x
dx 1I(y ≥ 0) +

∫ y

−∞

f(x)

|x|
dx 1I(y < 0),

(14) ∀y ∈ R, F̄Y (y) + yfY (y) = F̄ (y).

When f is R+-supported, (13) reduces to fY (y) =
∫ +∞
y (f(u)/u)du1Iy≥0. We can prove:
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Lemma 4.1. (1) Let t : R→ R be bounded, derivable, then

(15) E(t(Y1) + Y1t
′(Y1)) = Et(X1).

In particular, for all j ≥ 0,

(16) aj(f) = 〈f, ψj〉 = 〈fY , (yψj)′〉
(2) Assume that E|X1| < +∞. Let t ∈ L2(R) or L2(R+), then E(Y 2

1 t
2(Y1)) ≤ E|X1|‖t‖2.

Equality (15) is the basement of the estimation procedure and leads to (16), which links the
coefficients of f and fY on the Laguerre or Hermite basis. So, using (16), we get for all j ≥ 0:

(17) aj(f) = E(ψj(Y1) + Y1ψ
′
j(Y1)).

Therefore, we define a collection of projection estimator of f based on the observation (Y1, . . . , Yn)
by:

(18) f̂m(x) =
m∑
j=1

âjψj(x), with âj =
1

n

n∑
i=1

[Yiψ
′
j(Yi) + ψj(Yi)].

Then we can prove the following risk bound.

Proposition 4.1. Let f̂m be the estimator defined by (18), then we have

(19) E(‖f̂m − f‖2) = ‖f − fm‖2 +
Vm
n
− ‖fm‖

2

n
, Vm =

m−1∑
j=0

E
[
Y1ψ

′
j(Y1) + ψj(Y1)

]2
where Vm is such that, for m large enough,

Vm ≤ cm3/2,

(1) in the Laguerre case, if E(X1) < +∞ and E(1/
√
X1) < +∞,

(2) in the Hermite case, if E(|X1|2+2/3) < +∞,

where c is a constant which does not depend on m, but depends on the above moments of X1.

Remark 4.1. In the Laguerre case, with no moment condition, we have, for all m ≥ 1, Vm ≤
Cm3 (see Belomestny et al., 2016).

In the Hermite case, if E(|X1|) < +∞, then for all m ≥ 1, Vm ≤ Cm2 and if E(X2
1 ) < +∞,

then Vm ≤ Cm11/6, see the proof in Section 7.10.

We can deduce rates of convergence on Sobolev-Laguerre and Sobolev-Hermite balls.

Proposition 4.2. Assume that f belongs to W s
L(D) or to W s

H(D) (see (8) and (9)).

If E(X1) < +∞ and E(1/
√
X1) < +∞ in the Laguerre case, or if E|X1|2/3 < +∞ in the Hermite

case, then for mopt = [n1/(s+3/2)],

E(‖f̂mopt − f‖2) . n−
2s

2s+3 .

The results of Section 3.2 apply here. For exponential mixtures in the Laguerre case, or mean
or variance Gaussian mixtures in the Hermite case, the bias is exponentially decreasing. Thus,
the same choices mopt yield a rate of order [log(n)]3/2/n.

Similarly as above, the bound O(m3/2) on the variance term cannot be improved:

Proposition 4.3. (1) Laguerre case: if E(1/
√
X1) < +∞ and there exist 0 < a < b, with

infa≤x≤b f(x) ≥ c > 0, then, for m large enough, there exists a constant c1 such that

Vm ≥ c1m
3/2, where c1 does not depend on m.
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(2) Hermite case: If there exist a < b, with infa≤x≤b f(x) ≥ c > 0, then, for m large enough,

there exists a constant c2 such that Vm ≥ c2m
3/2, where c2 does not depend on m.

Consequently in each case, for c? = c1 or c2, we have

E(‖f̂m − f‖2) ≥ ‖f − fm‖2 + c?
m3/2

n
− ‖f‖

2

n
.

4.2. Matrix representations. Now, we give formulae providing the links between the coeffi-
cients of f and those of fY on basis (ψj)0≤j≤m−1 and allowing to build easily the estimators.
For g a function, we denote ~ak(g) := t(a0(g), . . . , ak−1(g)), k ≥ 1, where aj(g) = 〈g, ψj〉.
• Specific Laguerre formula. Using formula (47) (see Section 7.1), we get a0(f) = (1/2)a0(fY )+

(1/2)a1(fY ) and for j ≥ 1,

aj(f) = − j
2
aj−1(fY ) +

1

2
aj(fY ) +

j + 1

2
aj+1(fY ).

Introducing the matrix Hm = ([Hm]k,`)1≤k,`≤m with size m × (m + 1) given by [Hm]k,` = 0 if
` 6= k − 1, k, k + 1 and [Hm]1,1 = 1/2, [Hm]1,2 = 1/2 and for k ≥ 2,

(20) [Hm]k,k−1 = −k − 1

2
, [Hm]k,k =

1

2
, [Hm]k,k+1 =

k

2
,

yields the linear relation between the vectors of coefficients of f and fY : ~am−1(f) = Hm~am(fY ).

We thus have for m ≥ 1, setting ~̂am−1 = t(âj)0≤j≤m−1, ~̂am(Y ) = t(âj(Y ))0≤j≤m, the following

relation which is convenient to compute the estimator

(21) ~̂am−1 = Hm
~̂am(Y ) with âj(Y ) :=

1

n

n∑
i=1

ϕj(Yi).

• Specific Hermite formula. From xf ′Y (x) = −f(x) and the relations (52), we get
a0(f) = (1/2)

(
a0(fY )−

√
2a2(fY )

)
, a1(f) = (1/2)

(
a1(fY )−

√
6a3(fY )

)
aj(f) = (1/2)

(
aj(fY )−

√
(j + 1)(j + 2)aj+2(fY ) +

√
(j − 1)jaj−2(fY )

)
, j ≥ 2.

Therefore ~am(f) = Am,m+2 ~am+2(fY ), where Am,m+2 is the m× (m+ 2) matrix deduced from

the above relations. So, for m ≥ 1, setting ~̂am = t(âj)0≤j≤m−1, ~̂am+2(Y ) = t(âj(Y ))0≤j≤m+1,

gives the following relation:

(22) ~̂am = Am,m+2
~̂am+2(Y ) with âj(Y ) :=

1

n

n∑
i=1

hj(Yi).

4.3. Model selection. Define Mn = {1, . . . ,mn}, where mn is the largest integer of the col-
lection and set

(23) m̂ = arg min
m∈Mn

{−‖f̂m‖2 + p̂en(m)}, p̂en(m) = κ
V̂m
n
,

V̂m =
1

n

n∑
i=1

m−1∑
j=0

[
Yiψ

′
j(Yi) + ψj(Xi)

]2
,

where κ is a numerical constant. Note that V̂m is an estimate of Vm such that E(V̂m) = Vm. We
denote pen(m) = E(p̂en(m)) = κVm/n.
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Theorem 4.1. Assume that, in the Hermite case, E(|X1|) < +∞ and infa≤x≤b f(x) > 0 for
some interval [a, b] and in the Laguerre case, E(1/

√
X1) < +∞ and infa≤x≤b f(x) > 0 for some

interval [a, b] with 0 < a < b. Assume also that the collection of models is such that

(24) mn ≤ nβ with β = 1/3 for Laguerre case, β = 6/17 for Hermite case.

Then there exists a numerical constant κ0 such that, for κ ≥ κ0, the estimator f̂m̂ where m̂ is
defined by (23) satisfies

E
(
‖f̂m̂ − f‖2

)
≤ C inf

m∈Mn

(
‖f − fm‖2 + κ

Vm
n

)
+ C ′

log(n)

n
,

where C is a numerical constant(C = 4 suits) and C ′ is a constant depending on ‖f‖∞.

Note that Remark 3.1 applies here also. The restriction (24) implies that the optimal order
of m, for f in a Sobolev ball, can be reached only if the function is regular enough i.e. s large
enough. More precisely, under the assumptions of Theorem 4.1 and of Proposition 4.2, we have,
for f ∈W s

L(D) (Laguerre case) that mopt = [n1/(s+(3/2))] can be reached in the model collection

if s > 3/2 (n1/(s+3/2) < n1/3). For f ∈ W s
H(D) (Hermite case), mopt is reached for s > 4/3

(n1/(s+3/2) < n6/17).

4.4. Deconvolution estimator based on multiplicative censored observations. In Be-
lomestny et al. (2017), for the case of direct observations X1, . . . , Xn, projection estimators
on the Hermite basis are compared to projection estimators on the sine cardinal basis. The
comparison is relevant as Sobolev Hermite spaces with regularity index s are included in usual
Sobolev spaces with the same regularity index (see Appendix A). For direct observations, the
two estimators are proved in Belomestny et al. (2017) to be asymptotically equivalent. We prove
here that it is also the case in the multiplicative censored case.

Let us recall the definition of the sine cardinal basis. For u, v ∈ L1(R)∩L2(R), we denote by
u∗(t) =

∫
eitxu(x)dx and 〈u, v〉 =

∫
uv̄ = (2π)−1〈u∗, v∗〉. We recall that u∗∗(·) = 2πu(−·). Let

θ(x) = sin(πx)/(πx) which satisfies θ∗(t) = 1I[−π,π](t), where θ∗ denotes the Fourier transform of

θ. The functions (θ`,j(x) =
√
`θ(`x− j), j ∈ Z) constitute an orthonormal system in L2(R). The

space F` generated by this system is exactly the subspace of L2(R) of functions having Fourier
transforms with compact support [−π`, π`]. The orthogonal projection f̄` of f on F` satisfies
f̄∗` = f∗1I[−π`,π`] and

(25) f̄`(x) =
1

2π

∫ π`

−π`
e−itxf∗(t)dt =

∑
`∈Z

a`,jθ`,j , a`,j = 〈f, θ`,j〉.

Note that

(26) ‖f − f̄`‖2 =
1

2π

∫
|t|≥π`

|f∗(t)|2dt.

Now, relation (15) holds for t(x) = eiux: E(eiuY1 + iuY1e
iuY1) = EeiuX1 . Therefore, we can

estimate the Fourier transform f∗(u) =
∫
eiuxf(x)dx of f by

1

n

n∑
k=1

(
eiuYk + iuYke

iuYk
)
.

This yields the following new estimator of f , of deconvolution type:

(27) f̃`(x) =
1

2π

∫ π`

−π`
e−iux

1

n

n∑
k=1

(
eiuYk + iuYke

iuYk
)
du,
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which is an unbiased estimator of f̄` given in (25). We can integrate and obtain:

(28) f̃`(x) =
1

n

n∑
k=1

(−x)
sin(π`(Yk − x))

π(Yk − x)2
+

Yk
Yk − x

` cos(π`(Yk − x)).

Alternatively, using a truncated series expansion gives an approximation of the estimator which
may be easier to compute in practice. Let

(29) f̃
(n)
` (x) =

∑
|j|≤Ln

ã`,jθ`,j(x) where ã`,j =
1

n

n∑
k=1

θ`,j(Yk) + Ykθ
′
`,j(Yk).

We can prove:

Proposition 4.4. Assume that E(X2
1 ) < +∞. The estimator f̃` satisfies

(30) E(‖f̃` − f‖2) ≤ ‖f − f̄`‖2 +
π2`3EY 2

1

3n
+
`

n
.

If moreover M2 =
∫
x2f2(x)dx < +∞,

(31) E(‖f̃ (n)
` − f‖2) ≤ ‖f − f̄`‖2 +

`

n

(
1 + EY 2

1

π2`2

3

)
+ 4(M2 + 1)

`2

Ln
.

As we consider estimators f̃` with bounded variance, we will impose `3 ≤ n. Consequently, if
Ln ≥ n, the last residual term `2/Ln is of order O(`2/n) and thus less than the variance term

`3/n; if Ln ≥ n5/3, it is of order O(1/n) and thus negligible.
In this context, Sobolev balls are defined by

(32) Ws(L) = {f ∈ L2(R),

∫
R

(1 + t2s)|f∗(t)|2dt ≤ L < +∞}.

It is easy to see that, if f ∈ Ws(L), then, from (26), we have ‖f − f̄`‖ ≤ L`−2s. Choosing

`opt = cn−1/(2s+3), implies, from (30), that E(‖f̃`opt − f‖2) ≤ Cn−2s/(2s+3). This optimal

rate is identical to the rate obtained for f̂mopt under E(|X1|2+2/3) < +∞. Consequently, the
deconvolution and Hermite estimators are asymptotically equivalent (with ` =

√
m). However,

from the computational efficiency point of view, the Hermite estimator is to be preferred. In
Belomestny et al. (2017), Section 4.5, a notion of complexity is defined. Hermite estimators
are proved to have much lower complexity than deconvolution estimators in the case of direct
observations. Analogous computations of complexity in the present indirect observations case
lead to the same conclusions.

5. Projection estimator of f when Zi = Xi + Σi are observed

5.1. Estimation strategy in the Laguerre case. We consider Model (2) where Xi and Σi

are nonnegative. It holds that

fZ(x) = f ? fΣ(x) =

∫ x

0
f(u)fΣ(x− u)du.

The convolution property of the Laguerre functions (ϕj)j given in formula (49) allows to write

∞∑
k=0

ak(fZ)ϕk(x) =
+∞∑
j=0

+∞∑
k=0

aj(f)ak(fΣ)ϕj ? ϕk(x)

=
∞∑
k=0

ϕk(x)
k∑
`=0

2−1/2 (ak−`(fΣ)− ak−`−1(fΣ))a`(f),
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with convention ak(f) = 0 if k < 0.
Define the m×m triangular matrix Σm = (σi,j)0≤i,j≤m−1 where

(33) σi,j = 2−1/2(〈fΣ, ϕi−j〉1Ii−j≥0 − 〈fΣ, ϕi−j−1〉1Ii−j−1≥0).

As σi,j = σ(i − j)1Ii−j≥0, Σm is a Toeplitz triangular matrix with diagonal elements σi,i =

2−1/2〈fΣ, ϕ0〉 > 0. It is thus invertible and for all m ≥ 1,

(34) ~am(fY ) = t(aj(f))0≤j≤m−1 = Σ−1
m [(aj(fZ))0≤j≤m−1] = Σ−1

m ~am(fZ),

The projection estimator of f on Sm based on (Z1, . . . , Zn) is given by

(35) f̃m =
m−1∑
j=0

ãjϕj , ~̃am = t(ãj)0≤j≤m−1 = Σ−1
m
~̂am(Z), m ≥ 1

where ~̂am(Z) = [(âj(Z))0≤j≤m−1] and âj(Z) is defined by

(36) âj(Z) :=
1

n

n∑
i=1

ϕj(Zi).

This estimator is proposed in Mabon (2017) and inspired from Comte et al. (2017). The following
risk bound is an improvement of the bound given in Mabon (2017).

Proposition 5.1. Assume that ‖fΣ‖∞ < +∞ and either E(X
−1/2
1 ) < +∞ or E(Σ

−1/2
1 ) < +∞.

Let f̃m be given by (35). Then we have

E(‖f̃m − f‖2) ≤ ‖f − fm‖2 +
[c
√
m‖Σ−1

m ‖2op] ∧ [‖fΣ‖∞‖Σ−1
m ‖2F ]

n

where ‖A‖2F = Tr( tAA) (Tr denotes the trace of the matrix) and ‖A‖2op = λmax( tAA) is the

maximal eigenvalue of tAA.

The bias term is unchanged. The variance term is increasing in m because of the special form
of Σ−1

m (lower triangular and Toeplitz, see Mabon (2017)). If Σi = 0 and thus Σm = Id, then
‖Σ−1

m ‖2op = 1 and ‖Σ−1
m ‖2F = m thus the variance term is of order

√
m/n as expected.

In Comte et al. (2017), the order of ‖Σ−1
m ‖2F in function of m is studied. In particular, if Σi

has a Gamma distribution Γ(r, λ), r ∈ N, r ≥ 1, there exist constants c, C such that

cm2r ≤ ‖Σ−1
m ‖2op ≤ ‖Σ−1

m ‖2F ≤ Cm2r.

Therefore the following corollary holds:

Corollary 5.1. Assume that f ∈ W s
L(D), and that Σi has a Gamma distribution Γ(r, λ), r

integer, r ≥ 1. Then f̃m given by (35) satisfies, for mopt = [n2r+s]

E(‖f̃mopt − f‖2) ≤ C(s,D)n−s/(2r+s).

The matrix Σm in the case of gamma noise with integer tail parameter can be computed
explicitely: we give it for r = 1, 2 hereafter.

Remark 5.1. • For Σ1 ∼ E(λ) = γ(1, λ), we have [Σm]i,i = λ/(1 + λ) and

(37) [Σm]i,j = −2λ
(λ− 1)i−j−1

(λ+ 1)(i−j+1)
if j < i and [Σm]i,j = 0 otherwise.

We can compute [Σ−1
m ]i,j = (λ+ 1)/λ if i = j, 2/λ if i > j and 0 otherwise. Note that

‖Σ−1
m ‖2F = 2

m2

λ2
+m(1 +

2

λ
− 1

λ2
).
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• For Σ1 ∼ Γ(2, µ), we have [Σm]i,i = (µ/(1 + µ))2, [Σm]i+1,i = −4µ2/(1 + µ)3 and

(38) [Σm]i,j = 4(i− j − µ)µ2 (µ− 1)i−j−2

(µ+ 1)i−j+2
if i > j + 1 and [Σm]i,j = 0 otherwise.

We can propose a method to select m automatically, aiming at a data driven bias variance
compromise and simplifying Mabon (2017). We define

(39) m̃ = arg min
m∈Mn

(
−‖f̃m‖2 + p̃en(m)

)
with p̃en(m) = κ

log(2 + ‖Σ−1
m ‖2F )‖Σ−1

m ‖2F
n

where

Mn = {m ∈ N∗, m ≤ n/ log(2 + n), ‖Σ−1
m ‖2F ≤ n}.

Theorem 5.1. Let f̃m be given by (35) and m̃ by (39). There exists a numerical constant κ0

such that for any κ ≥ κ0, we have

E(‖f̃m̃ − f‖2) ≤ C1 inf
m∈Mn

(
‖f − fm‖2 + p̃en(m)

)
+
C2

n
.

In the penalty, we have chosen ‖Σ−1
m ‖2F rather than

√
m‖Σ−1

m ‖2op, which is easier to handle.

5.2. Estimation strategy in the Hermite case. We consider Model (2) where now (Xi)1≤i≤n
and (Σi)1≤i≤n are real valued. This model is classically dealt with by Fourier deconvolution,
and yields the following estimator

f�` (x) :=
1

2π

∫ π`

−π`
e−itx

f̂∗Z(t)

f∗Σ(−t)
dt where f̂∗Z(t) =

1

n

n∑
k=1

eitZk

is the empirical characteristic function of Z.
Here we propose projection estimators on the Hermite basis. We use that h∗j (t) =

√
2πijhj(t)

and write that fZ = f ? fΣ and thus f∗Z = f∗f∗Σ, where f∗ =
√

2π
∑

j≥0 aj(f)ijhj . Therefore,

aj(f) =
(−i)k√

2π
〈f∗Z ,

hj
f∗Σ(−.)

〉.

This leads to define the estimator of aj(f) as follows:

(40) ǎj,` =
(−i)j√

2π

∫ π`

−π`
f̂∗Z(t)

hj(t)

f∗Σ(t)
dt,

and the projection estimator of f as

(41) f̌m(x) =

m−1∑
j=0

ǎj,
√
m hj(x).

Note that we have chosen ` =
√
m in (40). The following risk bound holds.

Proposition 5.2. Consider f̌m given by (41) and (40). Then

E(‖f̌m − f‖2) ≤
∑
j≥m

a2
j (f) +

1

2π

∫
|t|≥π

√
m
|f∗(t)|2dt+

1

2π n

∫ π
√
m

−π
√
m

1

|f∗Σ(t)|2
dt.
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Thus, if f ∈ W s
H(L) ⊂ Ws(L′) (see (9) and (32) and Appendix A), then the two bias terms

in Proposition 5.2 have the same order:∑
j≥m

a2
j (f) +

1

2π

∫
|t|≥π

√
m
|f∗(t)|2dt ≤ Lm−s +

L′

2π
(π
√
m)−2s = Cm−s.

For comparison,

E(‖f�√m − f‖
2) ≤ 1

2π

∫
|t|≥π

√
m
|f∗(t)|2dt+

1

2π n

∫ π
√
m

−π
√
m

1

|f∗Σ(t)|2
dt.

This shows that the two estimators have asymptotically the same rate. The deconvolution
estimator has a smaller risk bound. However, in terms of computational efficiency, as described
in Belomestny al. (2017), the Hermite estimator is to be preferred as it has lower complexity.
For sake of brevity, we do not develop the adaptive procedure.

6. Extensions and concluding remarks

In this paper, the use of a Laguerre basis to estimate a function f ∈ L2(R+) or a Hermite
basis to estimate a function f ∈ L2(R) is illustrated in examples of inverse problems. Projec-
tion estimators which are easy to implement are built and studied. Data-driven choices of the
projection dimension can be proposed leading to adaptive estimators.

Using formulae of Section 7.1.2, the estimation of a function f ∈ L2(R+) by projection estima-

tors on a Laguerre basis (ϕ
(δ)
j ) for all δ > −1 is possible for direct observations or multiplicative

censored observations. Thanks to Lemma 7.2, we can obtain risk bounds of the same type.

In the case of multiplicative censoring, setting a
(δ)
j (f) = 〈f, ϕ(δ)

j 〉+, and using relation (50), we
obtain:

(42) a
(δ)
j (f) =

√
(j + 1)(j + δ + 1)

2
a

(δ)
j+1(fY ) +

1

2
a

(δ)
j (fY )−

√
j(j + δ)

2
a

(δ)
j−1(fY ).

This allows to define analogously a matrix H
(δ)
m which helps practical computing of the projec-

tion estimator. On the contrary, except for δ = 0, the bases (ϕ
(δ)
j ) do not seem fitted to the

deconvolution setting of densities on R+.
An extension of the results presented here could be to study the combination of models (1)

and (2) and estimate f , the density of Xi if observations are either (Xi + Σi)Ui or XiUi + Σi.

7. Proofs

7.1. Formulae for Laguerre functions. The Laguerre polynomial with index δ, δ > −1, and
degree k is given by

L
(δ)
k (x) =

1

k!
exx−δ

dk

dxk

(
xδ+ke−x

)
=

k∑
j=0

(
k + δ

k − j

)
(−x)j

j!
.

The following holds:

(43)
(
L

(δ)
k (x)

)′
= −L(δ+1)

k−1 (x), for k ≥ 1, and

∫ +∞

0

(
L

(δ)
k (x)

)2
xδe−xdx =

Γ(k + α+ 1)

k!
.
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The sequence (φ
(δ)
k (x) = L

(δ)
k (x)xδ/2e−x/2

(
k!

Γ(k+α+1

)1/2
) is an orthonormal basis of L2(R+). In

this paper, we rather consider the Laguerre functions with index δ, given by

(44) ϕ
(δ)
k (x) =

√
2φ

(δ)
k (2x) = 2(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

L
(δ)
k (2x)e−xxδ/2,

which are more convenient for computing derivatives or integrals of the basis functions especially

when δ = 0. The family (ϕ
(δ)
k )k≥0 is an orthonormal basis of L2(R+).

7.1.1. Formulae for δ = 0. For δ = 0, we set L
(0)
k = Lk, ϕ

(0)
k = ϕk. Formula (22.7.12) in

Abramowitz and Stegun (1964) states that

(45) xLj(x) = −(j + 1)Lj+1(x) + (2j + 1)Lj(x)− jLj−1(x), xL′j(x) = j(Lj(x)− Lj−1(x)).

implying

(46) xϕj(x) = −j + 1

2
ϕj+1(x) + (j +

1

2
)ϕj(x)− j

2
ϕj−1(x),

(47) (xϕj(x))′ = ϕj(x) + xϕ′j(x) = − j
2
ϕj−1(x) +

1

2
ϕj(x) +

j + 1

2
ϕj+1(x).

Using (43), we obtain for j ≥ 1:

(48) ϕ′j(x) = −ϕj(x)−
√

2j

x
ϕ

(1)
j−1(x).

The following convolution property (formula 22.13.14 in Abramowitz and Stegun (1964)) makes
the Laguerre basis relevant in the deconvolution setting

(49) ϕk ? ϕj(x) =

∫ x

0
ϕk(u)ϕj(x− u)du = 2−1/2 (ϕk+j(x)− ϕk+j+1(x))

where ? stands for the convolution product.

Lemma 7.1. For all x ≥ 0, ϕ′0(x) = −ϕ0(x), ϕ′j(x) = −ϕj(x) − 2
∑j−1

k=0 ϕk(x), j ≥ 1. More-

over, |ϕ′j(x)| ≤
√

2(2j + 1) ≤ 2
√

2(j + 1), |xϕ′j(x) + ϕj(x)| ≤
√

2(j + 1).

Proof of Lemma 7.1. The following equality holds ϕ′j(x) = −ϕj(x) + 2
√

2e−xL′j(2x) which is

a polynomial function of degree j multiplied by e−x. Thus, it can be decomposed as ϕ′j(x) =
j∑

k=0

a
(j)
k ϕk(x) with

a
(j)
k = 〈ϕ′j , ϕk〉 =

∫ +∞

0
ϕ′j(x)ϕk(x)dx = [ϕj(x)ϕk(x)]+∞0 −

∫ +∞

0
ϕj(x)ϕ′k(x)dx

= −ϕj(0)ϕk(0)−
∫ +∞

0
ϕj(x)ϕ′k(x)dx = −2− 〈ϕj , ϕ′k〉 = −2− a(k)

j
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Notice that this formula is also true when k = j: 〈ϕ′j , ϕj〉 =
∫ +∞

0 ϕ′j(x)ϕj(x)dx = −(1/2)ϕ2
j (0) =

−2/2 = −1. Thus we obtain:

ϕ′j(x) =

j∑
k=0

a
(j)
k ϕk(x) = −2

j∑
k=0

ϕk(x)−
j∑

k=0

〈ϕj , ϕ′k〉ϕk(x)

= −ϕj(x)− 2

j−1∑
k=0

ϕk(x)−
j−1∑
k=0

〈ϕj , ϕ′k〉ϕk(x)

Note that the 〈ϕj , ϕ′k〉 are zero for k ≤ j − 1. Thus we obtain the first formula. The bound on

ϕ′j(x) follows from |ϕj(x)| ≤
√

2 and the bound on |xϕ′j(x) + ϕj(x)| from (47). 2

7.1.2. Formulae for δ > −1. The following holds:

xL
(δ)
j (x) = −(j + 1)L

(δ)
j+1(x) + (2j + δ + 1)L

(δ)
j (x)− (j + δ)L

(δ)
j−1(x),

x(L
(δ)
j )′(x) = jL

(δ)
j (x)− (j + δ)L

(δ)
j−1(x),

implying

xϕ
(δ)
j (x) = −

√
(j + 1)(j + δ + 1)

2
ϕ

(δ)
j+1(x) + (j +

δ + 1

2
)ϕ

(δ)
j (x)−

√
j(j + δ)

2
ϕ

(δ)
j−1(x),

(50) (xϕ
(δ)
j (x))′ = −

√
j(j + δ)

2
ϕ

(δ)
j−1(x) +

1

2
ϕ

(δ)
j (x) +

√
(j + 1)(j + δ + 1)

2
ϕ

(δ)
j+1(x).

7.1.3. Asymptotic formulae. From Askey and Wainger (1965), we have for ν = 4k+ 2δ+ 2, and
k large enough

|ϕ(δ)
k (x/2)| ≤ C



a) (xν)δ/2 if 0 ≤ x ≤ 1/ν

b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2
c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3

d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3

e) ν−1/4(x− ν)−1/4e−γ1ν−1/2(x−ν)3/2
if ν + ν1/3 ≤ x ≤ 3ν/2

f) e−γ2x if x ≥ 3ν/2

where γ1 and γ2 are positive and fixed constants. From these estimates, we can prove

Lemma 7.2. Let p be a nonnegative real number. Assume that a random variable R has density
fR on R+ and that E(Rp−1/2) < +∞ and E(Rp) < +∞. For k large enough,∫ +∞

0
xp[ϕ

(δ)
k (x)]2fR(x)dx ≤ c√

k
,

where c = cp > 0 is a constant depending on p and E(Rp−1/2), E(Rp).

Proof of Lemma 7.2. We have six terms to compute to find the order of∫ +∞

0
xp[ϕ

(δ)
k (x)]2fR(x)dx = (1/2p+1)

∫ +∞

0
up[ϕ

(δ)
k (u/2)]2fR(u/2)du :=

6∑
`=1

I`.

a) I1 .
1

2p+1

∫ 1/ν

0
up(uν)δfR(u/2)du . ‖fR‖ν−(p+1/2) . ‖fR‖k−(p+1/2).

b) I2 . ν−1/2

∫ ν/2

1/ν
fR(u/2)up−1/2du . k−1/2E(Rp−1/2).
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c) I3 . ν−1/2ν−1/6

∫ ν−ν1/3

ν/2
upfR(u/2)du = o(1/

√
k), as ν − u ≥ ν1/3 and E(Rp) < +∞.

d) I4 . ν−2/3

∫ ν+ν1/3

ν−ν1/3

upfR(u/2)du = o(1/
√
k) as E(Rp) < +∞.

e) I5 . ν−1/2

∫ 3ν/2

ν+ν1/3

up(u− ν)−1/2fR(u/2)du . ν−1/2ν−1/6E(Rp) = o(1/
√
k),

(exp is bounded by 1, u− ν ≥ ν1/3).

f) I6 . e−γ2(3ν/2)E(Rp) = o(1/
√
k).

The result of Lemma 7.2 follows from these orders. 2

7.2. Formulae for Hermite functions. Using (see Abramowitz and Stegun (1964))

(51) 2xHj(x) = Hj+1(x) + 2jHj−1(x), H ′j(x) = 2jHj−1(x), j ≥ 1.

we get:

(52)
√

2h′j(x) =
√
j hj−1(x)−

√
j + 1hj+1(x), 2x hj(x) =

√
2(j + 1) hj+1(x)+

√
2j hj−1(x).

Moreover, h∗j (t) =
√

2πijhj(t).

Lemma 7.3. There exist constants C ′∞, C”∞ such that, for all j ≥ 0,

(1) ‖h′j‖∞ ≤ C ′∞(j + 1)5/12,

(2) ‖yh′j + hj‖∞ ≤ C”∞(j + 1)11/12.

Proof of Lemma 7.3. For (1), we use (52) and the first bound:

‖h′j‖∞ ≤
C∞√

2
(1 +

√
j + 1

(j + 2)1/12
) ≤
√

2C∞(j + 1)5/12.

Next, (52) implies that

(yhj(y))′ =
√

(j + 1)/2h′j+1(y) +
√
j/2h′j−1(y)

=
1

2

(√
j(j − 1)hj−2(y) + hj(y)−

√
(j + 1)(j + 2)hj+2(y)

)
,

where the last line follows from (52). Thus, |yh′j(y) + hj(y)| ≤ 2C∞(j + 1)11/12. So we get (2).
2

The Hermite polynomials are linked with the Laguerre polynomials as follows (see Abramowitz
and Stegun, 1964, p.779, 22.5.40, 22.5.41). For x ≥ 0,

(53) H2n(x) = (−1)n22nn!L(−1/2)
n (x2), H2n+1(x) = (−1)n22n+1n!x L(1/2)

n (x2).

The Hermite polynomials are even for even n and odd for odd n. From this, we deduce the
following link between Hermite and Laguerre functions:

Lemma 7.4. For x ≥ 0,

h2n(x) = (−1)n
√
x/2 ϕ(−1/2)

n (x2/2), h2n+1(x) = (−1)n
√
x/2 ϕ(1/2)

n (x2/2).

Proof of Lemma 7.4. We have

h2n(x) = c2ne
−x2/2H2n(x) = (−1)nd2n L

(−1/2)
n (x2)e−x

2/2(x2)−1/4(x2)1/4,
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with c2n, d2n > 0. Thus, h2n(x) = (−1)nd2n φ
(−1/2)
n (x2)

√
x = (−1)nd2n

√
x/2 ϕ

(−1/2)
n (x2/2).

Therefore, ∫ ∞
0

h2
2n(x)dx = 1/2 = d2

2n

∫ ∞
0

(
φ(−1/2)
n (x2)

)2
x dx = d2

n/2.

This shows d2
2n = 1, hence d2n = 1. Analogously,

h2n+1(x) = c2n+1e
−x2/2H2n+1(x) = (−1)nd2n+1

√
x L(1/2)

n (x2)e−x
2/2√x,

with c2n+1, d2n+1 > 0. We get h2n+1(x) = (−1)nd2n+1 φ
(1/2)
n (x2)

√
x. We conclude as above

that d2n+1 = 1. 2

7.3. Asymptotic formulae. Now, we can use the estimates of Askey and Wainger (1965) for

ϕ
(δ)
n to obtain the following result:

Lemma 7.5. Let p be a nonnegative real number. Assume that a random variable R has density
fR on R and that E(|R|p+2/3) < +∞. For k large enough,∫ +∞

0
xph2

k(x)fR(x)dx ≤ c√
k
,

where c > 0 is a constant which depends on p.

Proof of Lemma 7.5. We start with the even indexes. Again,we have six terms to compute
to find the order of∫ +∞

0
xph2

2k(x)fR(x)dx = (1/2)

∫ +∞

0
xp+1

(
ϕ(−1/2)
n (x2/2)

)2
fR(x)dx :=

6∑
`=1

J`.

We take ν = 4k + 1.

J1 =

∫ 1/
√
ν

0
xph2

2k(x)fR(x)dx =
1

2

∫ 1/
√
ν

0
xp+1

(
ϕ(−1/2)
n (x2/2)

)2
fR(x)dx

≤ C

∫ 1/
√
ν

0
xp+1

(
(x2ν)−1/4

)2
fR(x)dx ≤ C

ν(p+1)/2

∫ 1/
√
ν

0
fR(x)dx ≤ C

ν(p+1)/2
,

J2 =

∫ √ν/2
1/
√
ν
xph2

2k(x)fR(x)dx ≤ C

2

∫ √ν/2
1/
√
ν
xp+1

(
x2ν
)−1/2

fR(x)dx ≤ C

2
√
ν
E(|R|p),

J3 =

∫ (ν−ν1/3)1/2

√
ν/2

xph2
2k(x)fR(x)dx

≤ C

2

∫ (ν−ν1/3)1/2

√
ν/2

x1/3xp+2/3ν−1/2(ν − x2)−1/2fR(x)dx ≤ C

2
√
ν
E(|R|p+2/3),

J4 =

∫ (ν+ν1/3)1/2

(ν−ν1/3)1/2

xph2
2k(x)fR(x)dx ≤ C

2
ν−1/2E(|R|p+2/3),

J5 =

∫ √3ν/2

(ν+ν1/3)1/2

xph2
2k(x)fR(x)dx ≤ C

2
√
ν
E(|R|p+2/3),

J6 =

∫ +∞

√
3ν/2

xph2
2k(x)fR(x)dx ≤ C ′ exp (−3γ2ν/2).
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Now, we deal with∫ +∞

0
xph2

2k+1(x)fR(x)dx = (1/2)

∫ +∞

0
xp+1

(
ϕ(1/2)
n (x2/2)

)2
fR(x)dx :=

6∑
`=1

K`,

and take ν = 4k + 3. The only difference is on the first term:

K1 =

∫ 1/
√
ν

0
xph2

2k+1(x)fR(x)dx ≤ C

2

∫ 1/
√
ν

0
xp(x2ν)1/2fR(x)dx ≤ C

2ν(p+1)/2
.

This ends the proof. 2

7.4. Proof of Proposition 3.1. We first prove the result in the Laguerre case. From Lemma
7.2 with δ = 0, p = 0, we get that, if E(1/

√
X1) < +∞, then for j large enough,

E(ϕ2
j (X1)) =

∫ +∞

0
ϕ2
j (x)f(x)dx ≤ c√

j
,

where c > 0 is a constant. As a consequence, for m large enough,

E(‖f̂Xm − fm‖2) ≤
m−1∑
j=0

E[ϕ2
j (X1)] . m1/2,

which gives the announced result.
In the Hermite case, we apply Lemma 7.5 for p = 0. Thus for k large enough, V X

m .
Φ2

0 +
∑m−1

k=1 k
−1/2 = O(

√
m), and the result follows. 2

7.5. Proof of Proposition 3.2. We only study the Laguerre case, as the Hermite case is proved
in Belomestny et al. (2017), Proposition 2.2. By Theorem 8.22.5 in Szego (1959), reminding
formula (44), we have: for all δ > −1, and for b/k ≤ x ≤ b̄, where b, b̄ are arbitrary constants,

(54) ϕ
(δ)
k (x) = c(kx)−1/4

(
cos(2

√
2
√
kx− δπ/2− π/4) + (kx)−1/2O(1)

)
,

where O(1) is uniform on [b/k, b̄] and c = 21/4/
√
π.

Take k such that b/k < a < b < b̄ and set d = infa≤x≤b f(x). Then write∫ +∞

0
ϕ2
k(x)f(x)dx ≥ d

∫ b

a
ϕ2
k(x)dx.

We have,

ϕ2
k(x) =

c2

2
(kx)−1/2(1 + sin(4

√
2kx)) + (kx)−1O(1).

Therefore, as
∫ b
a sin(4

√
2kx)dx = 2

∫ √b√
a sin(4

√
2ku)udu = O(1/

√
k),∫ b

a
ϕ2
k(x)dx ≥ c2

2
√
a
k−1/2

(
b− a+O(

1√
k

)

)
+O(

1

k
).

Consequently, for k large enough, we get∫ +∞

0
ϕ2
k(x)f(x)dx ≥ c′/

√
k. 2
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7.6. Proof of Proposition 3.3. Let X have density f(x) =
∫∞

0 θ exp (−θx)dΠ(θ). Then,
X =L Z/T where Z, T are independent, Z has exponential distribution with parameter 1 and
T has distribution Π. For fixed θ > 0, elementary computations yield

Eϕj(Z/θ) =

∫ +∞

0
θ exp (−θx)ϕj(x)dx =

√
2

θ

θ + 1

(
θ − 1

θ + 1

)j
.

Then, we compute

Eϕj(X) = E (E(ϕj(Z/T )|T )) =

∫ +∞

0

√
2

θ

θ + 1

(
θ − 1

θ + 1

)j
dΠ(θ) = E

(
√

2
T

T + 1

(
T − 1

T + 1

)j)
Consequently,

∑
j≥m

a2
j (f) =

∑
j≥m

2

[
E

T

T + 1

(
T − 1

T + 1

)j]2

≤ 1

2
ET
(
T − 1

T + 1

)2m

≤ v

2
ρ2m.

Note that for Z ∼ E(1),

E
(

1√
X

)
≤
√
vE
(

1√
Z

)
< +∞.

Choosing mopt = [log(n)/| log(ρ)|] and using Proposition 3.1, the result follows.2

7.7. Proof of Theorem 3.1. The Hermite case is proved in Theorem 2.1 of Belomestny et
al. (2017b).

The Laguerre case is identical, except for one point. We use that supx
∑m−1

j=0 ϕ2
j (x) ≤ 2m,

instead of supx
∑m−1

j=0 h2
j (x) ≤ C ′∞m5/6. This explains the new bound on mn. 2

7.8. Proof of formula (13)-(14) and Lemma 4.1. Equality (13) is elementary. For y ≥ 0,

F̄Y (y) =

∫ +∞

y
fY (z)dz =

∫ +∞

y

∫ +∞

z

f(x)

x
dxdz =

∫
(

∫ x

y
dz)

f(x)

x
1I(y ≤ x)dx

=

∫ +∞

y
(x− y)

f(x)

x
dx =

∫ +∞

y
f(x)dx− y

∫ +∞

y

f(x)

x
dx = F̄ (y)− yfY (y).

For y ≤ 0,

FY (y) =

∫ y

−∞
fY (z)dz =

∫ y

−∞
dz

∫ z

−∞

f(x)

|x|
dx =

∫
(

∫ y

x
dz)

f(x)

|x|
1I(x ≤ y)dx

=

∫ y

−∞
(y − x)

f(x)

|x|
dx = yfY (y) + F (y)

Thus, F̄Y (y) = F̄ (y)− yfY (y), which is (14).
For (15), by (13), yfY (y) tends to 0 as both y tends to +∞ and −∞. Integrating by parts

yields ∫
R
fY (y)(t(y) + yt′(y))dy = −

∫
R
yt(y)(fY (y))′dy

= −[

∫ +∞

0
yt(y)(−f(y)

y
)dy +

∫ 0

−∞
yt(y)

f(y)

|y|
dy] =

∫ +∞

−∞
t(y)f(y)dy.



20 F. COMTE(1) & V. GENON-CATALOT(2)

Note that EY 2
1 t

2(Y1) ≤ EX2
1 t

2(U1X1). Then,

EX2t2(U1X1) =

∫ +∞

0
xf(x)(

∫ x

0
t2(v)dv)dx+

∫ 0

−∞
|x|f(x)(

∫ 0

x
t2(v)dv)dx

≤ E(|X1|)‖t‖2. 2

7.9. Proof of Proposition 4.1.
• Laguerre case. First, we bound Vm in the case ψj = ϕj . We write

E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
= E

[
(Y1ϕ

′
j(Y1))2

]
+ E

[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕ2

j (Y1)
]
.

Formula (15) applied to t = ϕ2
j yields

E
[
2Y1ϕ

′
j(Y1)ϕj(Y1) + ϕ2

j (Y1)
]

= E(ϕ2
j (X1)).

Therefore
E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
= E

[
(Y1ϕ

′
j(Y1))2

]
+ E(ϕ2

j (X1)),

where the second rhs term is the same as in the direct case, and thus E(ϕ2
j (X1)) . j−1/2 for j

large enough and if E(1/
√
X1) < +∞.

For the first rhs term, we use formula (48): yϕ′j(y) = −
√

2jyϕ
(1)
j−1(y)− yϕj(y). Therefore, for

j large enough, we have∫ +∞

0
[yϕ′j(y)]2fY (y)dy . j

∫ +∞

0
y[ϕ

(1)
j−1(y)]2fY (y)dy +

∫ +∞

0
y2ϕ2

j (y)fY (y)dy.

Now we apply Lemma 7.2 to the first term with p = 1 and δ = 1, so that we get that∫ +∞
0 y[ϕ

(1)
j−1(y)]2fY (y)dy . 1/

√
j if E(X1) is finite.

For the second term, we use formula (46) and uv ≤ (u2 + v2)/2 and obtain∫ +∞

0
y2ϕ2

j (y)fY (y)dy =

∫ +∞

0
yϕj(y)[−j + 1

2
ϕj+1(y) + (j +

1

2
)ϕj(y)− j

2
ϕj−1(y)]fY (y)dy

≤ (
3j

2
+

3

4
)

∫ +∞

0
yϕ2

j (y)fY (y)dy +
j + 1

4

∫ +∞

0
yϕ2

j+1(y)fY (y)dy

+
j

4

∫ +∞

0
yϕ2

j−1(y)fY (y)dy = O(
√
j)

by Lemma 7.2 with p = 1 and δ = 0, if E(X1) is finite.
Therefore, we get that, for m large enough, if E(1/

√
X1) < +∞ and E(X1) < +∞,

Vm =

m−1∑
j=0

E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
. m3/2.

• Hermite case. Now, we bound Vm in the case ψj = hj . Using (52), we get that

xh′j(x) =
x√
2

(
√
jhj−1(x)−

√
j + 1hj+1(x))

and the order of
∫
R(yh′j(y) + hj(y))2fY (y)dy follows from Lemma 7.5 applied for p = 2 and

p = 0. We obtain a bound of order
√
j for j large enough, if E(|X1|2+2/3) < +∞. Therefore, we

get that, for m large enough, if E(|X1|2+2/3) < +∞,

Vm =

m−1∑
j=0

E
[
(Y1h

′
j(Y1) + hj(Y1))2

]
. m3/2. 2
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7.10. Proof of Remark 4.1. Using Formula (15) with t = h2
j ,

(55) Vm =

m−1∑
j=0

E(Y 2
1 (h

′
j(Y1))2) +

m−1∑
j=0

Eh2
j (X1) =

m−1∑
j=0

E(Y 2
1 (h

′
j(Y1))2) + V X

m .

We know that V X
m ≤ cm5/6. For the first term of the r.h.s. above, we can use Lemma 4.1:

E(Y 2
1 (h

′
j(Y1))2) ≤ E|X1|‖h

′
j‖2 = E|X1|(j +

1

2
)

as h
′
j = (

√
jhj−1 −

√
j + 1hj+1)/

√
2 (see (52)). Consequently,

(56)
m−1∑
j=0

E(Y 2
1 (h

′
j(Y1))2) ≤ m2

2
E|X1|.

Joining (55) and (56) gives the first risk bound.
For the second point, we note that

E(Y 2
1 (h

′
j(Y1))2) ≤ EY 2‖h′j‖2∞ =

1

3
EX2

1‖h
′
j‖2∞

where ‖h′j‖∞ ≤ C ′∞(j + 1)5/12 by Lemma 7.3. Therefore,

(57)
m−1∑
j=0

E(Y 2
1 (h

′
j(Y1))2) ≤ (C ′∞)2

3
EX2

1 m
11/6.

This gives the second risk bound. 2

7.11. Proof of Proposition 4.3.
• Laguerre case. By assumption, there exist 0 < a < b and c > 0 such that infa≤x≤b f(x) >
c > 0. This implies that we can find 0 < a′ < b′ and c′ such that infa′≤y≤b′ yfY (y) = c′ > 0.
Indeed,

inf
a/2≤y≤a

yfY (y) ≥ a

2

∫ b

a

f(x)

x
dx ≥ ca

2
log(b/a).

Thus infa′≤y≤b′ yfY (y) = c′ > 0 holds with a′ = a/2, b′ = a, c′ = (ca/2) log(b/a).
Now

E
[
(Y1ϕ

′
j(Y1) + ϕj(Y1))2

]
= E

[
(Y1ϕ

′
j(Y1))2

]
+ E(ϕ2

j (X1))

≥ E
{

[
√

2jY1ϕ
(1)
j−1(Y1) + Y1ϕj(Y1)]2

}
≥ 2j

∫ b′

a′
y[ϕ

(1)
j−1(y)]2fY (y)dy + 2

√
2j

∫ b′

a′
y
√
yϕ

(1)
j−1(y)ϕj(y)fY (y)dy

:= T1 + T2.

We have, by applying Lemma 7.2 for p = 0 if E(1/
√
X1) < +∞,

|T2| ≤
√

2j(b′)3/2

∫ b′

a′
([ϕ

(1)
j−1]2(y) + ϕ2

j (y))fY (y)dy = O(1).

Next, using (54), we proceed as in the proof of Proposition 3.2,

T1 ≥ 2jc′
∫ b′

a′
[ϕ

(1)
j−1]2(y)dy ≥ c

√
j.
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We conclude that Vm ≥ Cm3/2 +O(m).

• Hermite case. Analogously, we can find a′ < b′ and c′ such that infa′≤y≤b′ y
2fY (y) = c′ > 0.

For instance if b > 0, we can assume a > 0. Then

inf
a/2≤y≤a

y2fY (y) ≥ a2

4

∫ b

a

f(x)

x
dx ≥ ca2

4
log(b/a).

Thus infa′≤y≤b′ y
2fY (y) = c′ > 0 holds with a′ = a/2, b′ = a, c′ = (ca2/4) log(b/a).

Here, we can use as in Walter (1977), the following expression for the Hermite function hj (see
Szegö (1959, p.248)):

(58) hj(x) = λj cos

(
(2j + 1)1/2x− jπ

2

)
+

1

(2j + 1)1/2
ξj(x)

where λj = |hj(0)| if j is even, λj = |h′j(0)|/(2j + 1)1/2 if j is odd and

(59) ξj(x) =

∫ x

0
sin [(2j + 1)1/2(x− t)] t2hj(t)dt.

We have

λ2j =
(2j)!1/2

2jj!π1/4
, λ2j+1 = λ2j

√
2j + 1√

2j + 3/2
.

By the Stirling formula and its proof, λ2j ∼ π−1/2j−1/4, λ2j+1 ∼ π−1/2j−1/4 and for all j, there
exists constants c1, c2 such that, for all j ≥ 1,

(60)
c1

π1/2j1/4
≤ λj ≤

c2

π1/2j1/4
.

By derivating (58), we get

(61) h′j(x) = −
√

2j + 1 λj sin

(
(2j + 1)1/2x− jπ

2

)
+

1

(2j + 1)1/2
ξ′j(x)

with

ξ′j(x) =
√

2j + 1

∫ x

0
cos [(2j + 1)1/2(x− t)] t2hj(t)dt.

Then we have, using (61),∫
y2(h′j(y))2fY (y)dy ≥ c′

∫ b′

a′
(h′j)

2(y)dy

≥ c′(2j + 1)λ2
j

∫ b′

a′
sin2

(
(2j + 1)1/2y − jπ

2

)
dy

−2c′λj

∫ b′

a′
sin

(
(2j + 1)1/2y − jπ

2

)
ξ′j(y)dy.

We have j−3/4c1/
√
π ≤ 2λj

(2j+1)1/2 ≤ j−3/4
√

2/πc2 and

|λj
∫ b

a
sin

(
(2j + 1)1/2x− jπ

2

)
ξ′j(x)dx| ≤

√
2j + 1 λj

∫ b

a

|x|5/2√
10

dx . j1/4

Thus, the second term is lower bounded by −O(j1/4). For the first term, λ2
j ≥ j−1/2c2

1/π and

(2j + 1)λ2
j

∫ b

a
sin2

(
(2j + 1)1/2x− jπ

2

)
dx = (2j + 1)λ2

j

{
b− a

2
+O(

1√
j

)

}
.
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Therefore, as λ2
j (2j + 1) ≥ C

√
j,∫

y2(h′j(y))2f(y)dy ≥ c
[√

j(1 +O(j−1/2))− j1/4
]

Consequently, for j large enough,
∫
y2(h′j(y))2fY (y)dy ≥ c′j1/2. This implies, as V X

m . m5/6

(5/6 < 3/2), Vm =
∑m−1

j=0 E[(Y1h
′
j(Y1))2] + V X

m ≥ cm3/2. 2

7.12. Proof of Theorem 4.1. Recall that Sm is the space spanned by {ψ0, . . . , ψm−1} and

Bm = {t ∈ Sm, ‖t‖ = 1}. We have f̂m = arg mint∈Sm γn(t) where

(62) γn(t) = ‖t‖2 − 2n−1
n∑
i=1

φt(Yi), φt(Yi) := Yit
′(Yi) + t(Yi)

and γn(f̂m) = −‖f̂m‖2. Now, we write, for two functions t, s ∈ L2(R) ,

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2νn(t− s)

where

(63) νn(t) =
1

n

n∑
i=1

[φt(Yi)− 〈t, f〉],

recall that 〈t, f〉 = E(φt(Y1)). Then, for any m ∈Mn = {1 ≤ m ≤ mn}, and any fm ∈ Sm,

γn(f̂m̂) + p̂en(m̂) ≤ γn(fm) + p̂en(m).

This yields

‖f̂m̂ − f‖2 ≤ ‖f − fm‖2 + p̂en(m)− p̂en(m̂) + 2νn(f̂m̂ − fm).

We use that

2νn(f̂m̂ − fm) ≤ 4 sup
t∈Bm∨m̂

[νn(t)]2 +
1

4
‖f̂m̂ − fm‖2,

and some classical algebra to obtain:

1

2
‖f̂m̂ − f‖2 ≤ 3

2
‖f − fm‖2 + p̂en(m) + 4

(
sup

t∈Bm∨m̂
[νn(t)]2 − p(m ∨ m̂)

)
+

+(4p(m ∨ m̂)− pen(m̂)) + (pen(m̂)− p̂en(m̂)).(64)

Lemma 7.6. Assume that E(X1 + (1/
√
X1)) < +∞ in the Laguerre case, E(|X1|) < +∞ in the

Hermite case, and that mn ≤ nβ where β = 1/3 for Laguerre and β = 6/17 for Hermite. Then
for p(m) = 4Vm/n, we have

(65) E

(
sup

t∈Bm∨m̂
[νn(t)]2 − p(m ∨ m̂)

)
+

≤ c

n
,

(66) and E(pen(m̂)− p̂en(m̂))+ ≤
1

2
E(pen(m̂)) +

c′ log(n)

n
.

where c and c′ are positive constants.
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Taking expectation in (64) and using Lemma 7.6 yields

1

2
E(‖f̂m̂ − f‖2) ≤ 3

2
‖f − fm‖2 + pen(m) + E(4p(m ∨ m̂)− pen(m̂)) +

1

2
E(pen(m̂))

+c′
log(n)

n
+

4c

n
.

Now we note that, for κ ≥ 32 := κ0, 4p(m ∨ m̂)− 1
2pen(m̂) ≤ 1

2pen(m). Finally, we get, for all

m ∈Mn, E(‖f̂m̂ − f‖2) ≤ 3‖f − fm‖2 + 3pen(m) + c′′ log(n)
n , which ends the proof. 2

7.13. Proof of Lemma 7.6.

7.13.1. Proof of (65). Note that

(67) E

(
sup

t∈Bm∨m̂
[νn(t)]2 − p(m ∨ m̂)

)
≤

∑
m′∈Mn

E

(
sup

t∈Bm∨m′
[νn(t)]2 − p(m ∨m′)

)
+

.

We apply the Talagrand Inequality (see Theorem B.1):

E
(

sup
t∈Bm

[νn(t)]2 − 4H2

)
+

≤ C1

n

(
v2e−C2

nH2

v2 +
M2

1

n
e
−C3

nH
M1

)
whereH, v,M1 are such that E

(
supt∈Bm [νn(t)]2

)
≤ H2, supt∈Bm Var(φt(Y1)) ≤ v2 and supt∈Bm supy |φt(y)| ≤

M1. We have

E
(

sup
t∈Bm

[νn(t)]2
)
≤

m−1∑
j=0

E[ν2
n(ψj)] =

Vm
n

:= H2.

Using Lemma 4.1, we have

sup
t∈Bm

Var(φt(Y1)) ≤ sup
t∈Bm

E(φ2
t (Y1)) ≤ sup

t∈Bm

[
E(Y 2

1 [t′(Y1)]2) + E(t2(X1))
]
.

For any t ∈ Bm,

E(t2(X1)) ≤ ‖t‖∞
∫
|t|f ≤ ‖t‖∞‖f‖ .

√
m‖f‖.

We need a specific study for the term supt∈Bm E(Y 2
1 [t′(Y1)]2).

Laguerre case. From formula (48), we get

yt′(y) = −
m−1∑
j=0

aj(t)yϕj(y)−
m−1∑
j=0

aj(t)
√

2jyϕ
(1)
j−1(y).

By (13) and (14), 0 ≤ yfY (y) ≤ 1 and 0 ≤ y2fY (y) =
∫ y2

x 1x≥yf(x)dx ≤ E(X1). Thus, using

the orthonormality of (ϕj)0≤j≤m−1 and (ϕ
(1)
j )0≤j≤m−1 , we have, for t ∈ Bm,

E[(Y1t
′(Y1))2] ≤ 2

∫ +∞

0
(

m−1∑
j=0

aj(t)ϕj(y))2y2fY (y)dy + 2

∫ +∞

0
(

m−1∑
j=0

aj(t)
√

2jϕ
(1)
j−1(y))2yfY (y)dy

≤ 2E(X1) + 4m.

Thus supt∈Bm Var(φt(Y1)) ≤ Cm := v2 where C depends on E(X1) and ‖f‖.

Hermite case. By Lemma 4.1, 2), we have supt∈Bm E[(Y1t
′(Y1))2] ≤ supt∈Bm E(|X1|)‖t′‖2 and

by (52) we easily get that ‖t′‖2 ≤ 2m. Thus v2 = Cm where C depends on E(|X1|) and ‖f‖.
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Next we note that, using Lemma 7.1 in Laguerre case and Lemma 7.3-(2) in Hermite case,
we get, recalling that φt(y) = yt′(y) + t(y),

sup
t∈Bm

sup
y
|φt(y)| ≤ cmω := M1

with ω = 3/2 in Laguerre case and ω = 17/12 in Hermite case. Therefore in both cases, by
using condition (24), M2

1 /n ≤ 1 and we obtain

E
(

sup
t∈Bm

[νn(t)]2 − 4
Vm
n

)
+

≤ c1

n

(
me−C

′
2
Vm
m + e

−C′3
√
nVm

m3/2

)
.

Therefore as Vm & m3/2 under our assumptions, we get, using that m3/4−3/2 = m−3/4 ≥ n−9/34

under mn ≤ n6/17 (Hermite case, which contains the Laguerre case mn ≤ n1/3),

E
(

sup
t∈Bm

[νn(t)]2 − 4
Vm
n

)
+

≤ c′1
n

(
me−c

′
2

√
m + e−c

′
3n

4/17
)
.

Choosing p(m) = 4Vm/n and using Inequality (67) yields (65). 2

7.13.2. Proof of (66). We proceed in this proof similarly to Massart (2007), chapter 7 (see
Theorem 7.7). Let us define

Z
(m)
i :=

m−1∑
j=0

φ2
ψj

(Yi), V̂m =
1

n

n∑
i=1

Z
(m)
i .

Bernstein’s Inequality (see (2.23) in Massart (2007)) writes P(|Sn/n| ≥
√

2s2x/n+ bx/(3n)) ≤
2e−x for Sn =

∑n
i=1(Ui − E(Ui)), and i.i.d. Ui’s, with Var(U1) ≤ s2, |Ui| ≤ b. We consider

Ui = Z
(m)
i and x = 2 log(n). We have, using Lemma 7.1 in Laguerre case and Lemma 7.3-(2) in

Hermite case,

Var(Z
(m)
i ) ≤ E[(Z

(m)
i )2] ≤ Vm

∥∥∥∥∥∥
m−1∑
j=0

φ2
ψj

∥∥∥∥∥∥
∞

≤ Cm1/βVm := s2,

and |Z(m)
i | ≤

∥∥∥∥∥∥
m−1∑
j=0

φ2
ψj

∥∥∥∥∥∥
∞

≤ m1/β := b

Let us define the set

Ω =

{
∀m ∈Mn,

1

n

∣∣∣∣∣
n∑
i=1

(Z
(m)
i − E(Z

(m)
i ))

∣∣∣∣∣ ≤
√

2VmCm1/β
2 log(n)

n
+ Cm1/β 2 log(n)

3n

}
.

Now, applying the Bernstein inequality gives P(Ωc) ≤
∑

m∈Mn
2e−2 log(n) ≤ c/n. We write

E(pen(m̂)− p̂en(m̂))+ ≤ E [(pen(m̂)− p̂en(m̂))+1Ω] + E [(pen(m̂)− p̂en(m̂))+1Ωc ] .

On Ω, |V̂m̂ − Vm̂| ≤
√

2VmCm1/β
2 log(n)

n
+ Cm1/β 2 log(n)

3n

≤ 1

2
Vm̂ +

8

3
C
m̂1/β log(n)

n
,
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using that 2xy ≤ x2 + y2 applied to
√

2V A = 2
√
V/2
√
A ≤ V/2 + A with V = Vm̂ and

A = 2Cm1/β log(n)/n. Thus, as by definition of Mn, m̂1/β ≤ m1/β
n ≤ n,

E [(pen(m̂)− p̂en(m̂))+1Ω] + ≤ 1

2
E(pen(m̂)) + c

log(n)

n
.

On the other hand, on Ωc, E [(pen(m̂)− p̂en(m̂))+1Ωc ] ≤ 2κP(Ωc) ≤ c/n. Thus ( 66) follows
from the last two inequalities.2

7.14. Proof of Proposition 4.4. We have for all ` > 0,

E[‖f̃` − f‖2] = ‖f − f̄`‖2 + E[‖f̃` − f̄`‖2].

Next,

E[‖f̃` − f̄`‖2] =
1

2π
E[‖f̃∗` − f̄∗` ‖2] =

1

2πn

∫ π`

−π`
Var

(
eiuY1 + iuY1e

iuY1
)
du

=
1

2πn

∫ π`

−π`
E
∣∣eiuY1 + iuY1e

iuY1
∣∣2 du− ‖f̄`‖2

n

=
1

2πn

∫ π`

−π`
(1 + u2E(Y 2

1 ))du− ‖f̄`‖
2

n

=
`

n

(
1 +

π2

3
E(Y 2

1 )`2
)
− ‖f̄`‖

2

n
.

Gathering the two terms gives Inequality (30). On the other hand, we have for all ` > 0,

(68) E[‖f̃ (n)
` − f‖2] ≤ ‖f − f̄`‖2 + 2‖f̄` − Ef̃

(n)
` ‖

2 + 2E[‖f̃ (n)
` − E(f̃

(n)
` ‖

2] := T1 + T2 + T3.

The term T1 is the same bias term as before. The term T2 is bounded in Belomestny et al. (2017),
Proposition 3.1 and we have the bound T2 ≤ 4`2(M2 + 1)/Ln. This term is O(`/n) if ` ≤ n and
Ln ≥ n2.

For T3, using Lemma 4.1 with t = θ2
`,j , we write that

T3 =
∑
|j|≤Ln

Var(˜̃a`,j) =
1

n

∑
|j|≤Ln

Var
[
θ`,j(Y1) + Y1θ

′
`,j(Y1)

]
≤ 1

n

∑
|j|≤Ln

E
[
θ2
`,j(Y1) + 2Y1θ`,j(Y1)θ′`,j(Y1) + Y 2

1 (θ′`,j(Y1))2
]

=
1

n

∑
|j|≤Ln

[
E[θ2

`,j(X1)] + E[Y 2
1 (θ′`,j(Y1))2]

]
Next, we know that

∑
|j|≤Ln θ

2
`,j ≤

∑
j∈Z θ

2
`,j = `. As moreover

∑
j∈Z

[
θ′`,j(x)

]2
=

1

2π

∑
j∈Z

[
〈
θ∗`,j√

2π
, te−itx〉

]2

=
1

2π

∫ π`

−π`
t2dt =

π2`3

3
,

we obtain

T3 ≤
`

n

(
1 + E(Y 2

1 )
π2`2

3

)
.

Plugging this bound in Inequality (68) gives Inequality (31). 2
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7.15. Proof of Proposition 5.1. The risk of the estimator can be written as usual

‖f̃m − f‖2 = ‖f − fm‖2 + ‖f̃m − fm‖2

where fm =
∑m−1

j=0 aj(f)ϕj is the projection of f on Sm = span(ϕ0, . . . , ϕm−1) and ‖f − fm‖2 is
the square bias term. Next we have

‖f̃m − fm‖2 =
m−1∑
j=0

(ãj − aj(f))2 = ‖Σ−1
m (~̂a(Z)m−1 − E(~̂a(Z)m−1))‖22,

where ‖~x‖2 denotes the Euclidean norm of the m-vector ~x. So,

E(‖f̃m − fm‖2) ≤ ‖Σ−1
m ‖2opE(‖~̂a(Z)m−1 − E(~̂a(Z)m−1)‖22)

≤ ‖Σ−1
m ‖2op

m−1∑
j=0

Var(âj(Z)) =
1

n
‖Σ−1

m ‖2op

m−1∑
j=0

Var(ϕj(Z1))

≤ 1

n
‖Σ−1

m ‖2op

m−1∑
j=0

E(ϕ2
j (Z1)) ≤

c
√
m‖Σ−1

m ‖2op

n
,

using Lemma 7.2. On the other hand,

E(‖f̃m − fm‖2) =
1

n

∑
`

Var

∑
j

[Σ−1
m ]`,jϕj(Z1)

 ≤ 1

n

∑
`

E

∑
j

[Σ−1
m ]`,jϕj(Z1)

2
≤ ‖fZ‖∞

n

∑
`

∫ ∑
j

[Σ−1
m ]`,jϕj(z)

2

dz

=
‖fZ‖∞
n

∑
`

∑
j

[Σ−1
m ]2`,j ≤

‖fΣ‖∞
n
‖Σ−1

m ‖2F .

Combining the previous bounds implies the result. 2

7.16. Proof of Proposition 5.2. Let us denote by f̌`,m(x) =
∑m−1

j=0 ǎj,` hj(x) and E(f̌`,m) =

f`,m where f`,m =
∑m−1

j=0 aj,`hj ,

aj,`(f) = E(ǎj,`) =
(−i)j√

2π

∫ π`

−π`
f∗(t)hj(t)dt.

We have

E(‖f̌`,m − f‖2) = ‖f − f`,m‖2 + E(‖f̌`,m − f`,m‖2)

= ‖f − fm‖2 +

m−1∑
j=0

(aj(f)− aj,`(f))2 +

m−1∑
j=0

Var(ǎj,`)

=
∑
j≥m

a2
j (f) +

m−1∑
j=0

(aj(f)− aj,`(f))2 +
1

n

m−1∑
j=0

Var

(
(−i)j√

2π

∫ π`

−π`
eitZ1

hj(t)

f∗Σ(t)
dt

)
Then

m−1∑
j=0

(aj(f)− aj,`(f))2 =

m−1∑
j=0

1

2π

∣∣∣∣∫ f∗(t)1|t|≥π`hj(t)dt

∣∣∣∣2 ≤ 1

2π

∫
|t|≥π`

|f∗(t)|2dt.
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On the other hand, for the variance term, we have

1

n

m−1∑
j=0

Var

(
(−i)j√

2π

∫ π`

−π`
eitZ1

hj(t)

f∗Σ(t)
dt

)
≤ 1

n

m−1∑
j=0

E

(∣∣∣∣(−i)j√
2π

∫ π`

−π`
eitZ1

hj(t)

f∗Σ(t)
dt

∣∣∣∣2
)

=
1

2π n
E

m−1∑
j=0

∣∣∣∣∣
∫

1|t|≤π`e
itZ1

f∗Σ(t)
hj(t)dt

∣∣∣∣∣
2


≤ 1

2π n

∫
1|t|≤π`

|f∗Σ(t)|2
dt.

Therefore we obtain

E(‖f̌`,m − f‖2) ≤
∑
j≥m

a2
j (f) +

1

2π

∫
|t|≥π`

|f∗(t)|2dt+
1

2π n

∫
1|t|≤π`

|f∗Σ(t)|2
dt.

Choosing ` =
√
m gives the announced result. 2

7.17. Proof of Theorem 5.1. Let M = maxMn the maximal element of the collection. We
follow the lines of the proof of Theorem 4.1, with (62) replaced by

γ̃n(t) = ‖t‖2 − 2〈t, f̃M〉,

and (63) by ν̃n(t) = 〈t, f̃M − fM〉. Note that for t ∈ Sm, then ν̃n(t) = 〈t, f̃m − fm〉. Then we get

‖f̃m̃ − f‖2 ≤ 3‖f − fm‖2 + 2p̃en(m) + 8( sup
t∈Bm,m̃

ν̃2
n(t)− p̃(m, m̃)) + 8p̃(m, m̃)− 2p̃en(m̃)

with p̃(m,m′) satisfying 4p̃(m,m′) ≤ p̃en(m) + p̃en(m′) for κ ≥ κ0, where p̃(m,m′) and κ0 are
specified by the next Lemma.

Lemma 7.7. Under the assumptions of Theorem 5.1, for m∗ = m ∨m′ and

p̃(m,m′) = 2(2 ∨ ‖fΣ‖∞)(1 + 2c log(2 + ‖Σ1
m∗‖2F ))

‖Σ−1
m∗‖2F
n

, c ≥ max(3/b, 212/2b2)

where b is a constant given in Theorem B.1, we have

(69) E

( sup
~t∈B(m̃,m)

ν̃2
n(~t)− p̃(m, m̃)

)
+

 ≤ K

n

We obtain that ∀m ∈Mn,

E(‖f̃m̃ − f‖2) ≤ 3‖f − fm‖2 + 4p̃en(m) + 8
K

n
,

which ends the proof of Theorem 5.1. 2

7.18. Proof of Lemma 7.7. The proof of (69) follows the line of the proof of Proposition 7.1
in Mabon (2015). We start as in the proof of Lemma 7.6 and compute the terms H2, v and M
of Theorem B.1. For t ∈ B(m̃,m) and m∗ = m ∨m′, we get

E

(
sup

t∈B(m′,m
ν̃2
n(t)

)
≤

m∗−1∑
j=0

E
(
ν̃2
n(ϕj)

)
≤

m∗−1∑
j=0

E
(
〈ϕj , f̃m∗ − fm∗〉2

)
= E(‖f̃m∗ − fm∗‖2).
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From Proposition 5.1, we deduce H2 = (2 ∨ ‖fΣ‖∞)‖Σ−1
m∗‖2F /n. Clearly, v = nH2. Moreover

ν̃n(t) =
1

n

n∑
i=1

[ψt(Zi)− E(ψt(Zi))], ψt(x) =

m∗−1∑
j=0

〈t, ϕj〉[V −1
m∗ ~ϕm∗−1(x)]j

where ~ϕm−1(x) = t(ϕ0(x), . . . , ϕm−1(x)) and [~x]j denotes the jth coordinate of vector ~x. Thus

sup
t∈B(m′,m)

sup
x
|ψt(x)| ≤ sup

x
‖Σ−1

m∗ ~ϕm∗−1(x)‖2 ≤ ‖Σ−1
m∗‖op

√
2m∗ := M.

Let α(m∗) = c log(2 + ‖Σ1
m∗‖2F ), and let us apply Theorem B.1

E

(
sup

t∈B(m′,m)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C

n

(
‖Σ−1

m∗‖
2
F exp(−bα(m∗)) +

m∗‖Σ−1
m∗‖2op

n
exp

(
−
√

2b

7

√
α(m∗)n‖Σ−1

m∗‖F√
m∗‖Σ−1

m∗‖op

))

≤ C

n

(
1

‖Σ−1
m∗‖

2bc−2
F

+ ‖Σ−1
m∗‖

2
F exp

(
−
√

2b

7

√
α(m∗) log(n+ 2)

))
,

where we have used that m∗ ≤ n/ log(n+ 2) and ‖Σ−1
m ‖2op ≤ ‖Σ−1

m ‖2. Therefore

E

(
sup

t∈B(m′,m)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C

n

(
1

‖Σ−1
m∗‖

2bc−2
F

+
1

‖Σ−1
m∗‖

√
2cb/7−2

F

)
.

For c ≥ max(3/b, 212/2b2) and as ‖Σ−1
m ‖2F ≥ 2m∗/a0(fΣ), we get

E

(
sup

t∈B(m′,m)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C ′

n

1

(m∗)4

so that ∑
m′∈Mn

E

(
sup

t∈B(m′,m)
ν̃2
n(t)− 2(1 + 2α(m∗))H2

)
+

≤ C”/n.

This concludes of Lemma 7.7. 2
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Appendix A. Regularity properties of functions in Sobolev-Laguerre and
Sobolev-Hermite spaces

For this appendix, we refer to Bongionanni and Torrea (2006,2009), Belomestny et al. (2016,2017)
and Comte and Genon-Catalot (2015).
Laguerre case. For a > 0, consider the functions

ϕ
(δ,a)
k (x) = a(δ+1)/2

(
k!

Γ(k + δ + 1)

)1/2

exp (−ax/2)xδ/2L
(δ
k (ax), k ≥ 0.
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This sequence is an orthonormal basis of L2(R+). We set a
(δ,a)
k (f) = 〈f, ϕ(δ,a)

k 〉 and define the
Sobolev-Laguerre space with regularity index s and scale parameter a by:

W s
δ,a = {f : (0,+∞)→ R, f ∈ L2((0,+∞)),

∑
k≥0

ks(a
(δ,a)
k (f))2 < +∞}.

For f a derivable function on (0,+∞), consider the operator

∂δa(f)(x) =
√
xf ′(x) + (

a

2

√
x− δ

2
√
x

)f(x).

If g = exp (ax/2)x−δ/2f and f is m+ 1 times derivable, then, the following holds:

∂δ+ma . . . ◦ ∂δ+1
a ◦ ∂δa(f)(x) = g(m+1)(x) exp (−ax/2)x(δ+m+1)/2.

For s integer, the space W s
δ,a is exactly the space of functions f : (0,+∞)→ R, f ∈ L2((0,+∞))

such tht f is s− 1 derivable, f (s−1) is absolutely continuous and ∂δ+ma . . . ◦ ∂δ+1
a ◦ ∂δa(f) belongs

to L2((0,+∞)) for m = 0, 1, . . . , s− 1.
The choice a = 2, δ = 0 seems the simplest one, and W s

L = W s
0,2.

Hermite case. For s integer, f ∈ W s
H holds if and only if f admits derivatives up to order s

which satisfy f, f ′, . . . , f (s), xs−`f (`), ` = 0, . . . , s− 1 belong to L2(R). The usual Sobolev space
with regularity index s is defined by

(70) Ws = {f ∈ L2(R), ‖f‖2s,sob =

∫
R

(1 + t2s)|f∗(t)|2dt < +∞}

If s is integer, then

Ws = {f ∈ L2(R), f admits derivatives up to order s

such that ‖|f‖|2s,sob = ‖f‖2 + ‖f ′‖2 + . . .+ ‖f (s)‖2 < +∞}.
Therefore, for s integer, W s

H ⊂ Ws. Morevover, the following properties are proved in Bon-
gioanni and Torrea (2006): for all s > 0,

• W s
H  Ws. If f ∈ Ws has compact support, then f ∈W s

H .
• f ∈W s

H ⇒ xsf ∈ L2(R).

Appendix B. Talagrand’s inequality

We recall the Talagrand concentration inequality given in Klein and Rio (2005).

Theorem B.1. Consider n ∈ N∗, F a class at most countable of measurable functions, and
(Xi)i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F , νn(f) =

(1/n)
∑n

i=1(f(Xi) − E[f(Xi)]), and assume that there are three positive constants M , H and
v such that sup

f∈F
‖f‖∞ ≤ M , E[sup

f∈F
|νn(f)|] ≤ H, and sup

f∈F
(1/n)

∑n
i=1 Var(f(Xi)) ≤ v. Then for

all α > 0,

E

[(
sup
f∈F
|νn(f)|2 − 2(1 + 2α)H2

)
+

]
≤ 4

b

(
v

n
e−bα

nH2

v +
49M2

bC2(α)n2
e−
√

2bC(α)
√
α

7
nH
M

)
with C(α) = (

√
1 + α− 1) ∧ 1, and b = 1

6 .

By density arguments, this result can be extended to the case where F is a unit ball of a linear
normed space, after checking that f → νn(f) is continuous and F contains a countable dense
family.


