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Introduction

The aim of this paper is to demonstrate that some classical inverse problems of nonparametric statistics can be dealt with by using projection estimators either on a Laguerre basis or on a Hermite basis and that this approach provides easy and performing solutions. We make a unified presentation joining novelties and improvements of previous results.

To motivate the framework, first consider X 1 , . . . , X n n i.i.d. random variables with unknown density f . If the X i 's are observed and f is square integrable, nonparametric estimators of f can be built by using a projection method on an orthonormal basis. Many authors use compactly supported bases (see e.g. [START_REF] Massart | Concentration inequalities and model selection[END_REF], [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF]). Non compactly supported wavelet bases of L 2 (R) have also been used (see [START_REF] Juditsky | On minimax density estimation on R[END_REF], and the references therein). The L 2 (R) basis of Hermite functions is another possibility, investigated in e.g. Schwarz (1967), Walter (1977) and more recently, in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] As enlighted in the latter paper, projection estimators on a Hermite basis have the following advantages. First, as the basis is not compactly supported, there is no need to fix an interval for estimation. This is convenient, especially for inverse problems. Second, from the computational point of view, they have a much lower complexity than other estimators based on non compactly supported bases such as deconvolution estimators. Nevertheless they perform asymptotically as well as estimators built from competing methods. If f is R + -supported, one can use an orthonormal basis of L 2 (R + ). The Laguerre basis is then well fitted. The qualities of Laguerre projection estimators have been recently investigated (see e.g. [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF], [START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF], and for actuarial applications Zhang and Su (2017)). If the X i 's are not directly observed, the estimation of f is an inverse problem. The inverse problems considered here are the following ones. First, we assume that observations are [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] Y i = X i U i , i = 1, . . . , n where the sequences (X i ), (U i ) are independent and (U i ) are i.i.d. with uniform distribution on [0, 1]. Model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] is called multiplicative censoring model and covers several important statistical problems (see e.g. [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF]). Numerous papers deal with the estimation of f for model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] whether by nonparametric maximum likelihood [START_REF] Vardi | Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation[END_REF], [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF], Asgharian et al. (2012)), by projection methods [START_REF] Andersen | Multiplicative censoring: density estimation by a series expansion approach[END_REF], [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF][START_REF] Abbaszadeh | Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk[END_REF]) or kernel methods (Brunel et al. (2015)). In [START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF], f is supposed to be R + -supported and estimated by projection estimators on a Laguerre basis. We revisit this problem and obtain an improvement of the risk bound, under a slight additional moment assumption. In the case of real-valued random variables X i , we investigate the estimation of f from model (1) by using a Hermite basis approach. Second, we consider observations Z 1 , . . . , Z n such that

(2)

Z i = X i + Σ i , i = 1, . . . , n.
where (Σ i ) are i.i.d. with known density f Σ and the sequences (X i ), (Σ i ) are independent. Density estimation from noisy observations is the subject of a huge number of contributions. This deconvolution problem is classically solved by Fourier methods (see e.g. [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF] and the references therein). Recently, when the X i 's are non-negative, the study of one-sided errors, i.e. Σ i ≥ 0, was motivated by applications in the field of finance (see [START_REF] Jirak | Adaptive function estimation in nonparametric regression with one-sided errors[END_REF]) or in survival models, (see van Es et al. (1998), [START_REF] Jongbloed | Exponential deconvolution: two asymptotically equivalent estimators[END_REF]). In particular, [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] proposes for model [START_REF] Abbaszadeh | Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk[END_REF] projection estimators of f using a Laguerre basis whose properties allow deconvolution of densities on R + . We detail this approach and provide an improvement of the risk bound of the projection estimators. In the case of real-valued random variables X i , Σ i , we study the estimation of f by using a Hermite basis approach.

To our knowledge, the estimation of f from observations (1)-( 2) by projection estimators on a Hermite basis, which is investigated here, is new. We compare Hermite estimators to the deconvolution estimators for models [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] and [START_REF] Abbaszadeh | Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk[END_REF]. Note that the estimation of f in model [START_REF] Abbaszadeh | Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods[END_REF] by deconvolution is also new.

In each of the above models, we exhibit explicit relations between the projection coefficients of the density of the observed variables and the projection coefficients of the unknown density f . This allows to build projection estimators of f . We provide risk bounds for the estimators. Afterwards, we propose data-driven procedures, including for model (1) a random penalty which avoids a priori knowledge of the variance rate. This is important as the variance order varies in function of moment assumptions.

Laguerre and Hermite bases are related to specific function spaces, respectively the Sobolev-Laguerre spaces (see e.g. [START_REF] Shen | Stable and efficient spectral methods in unbounded domains using Laguerre functions[END_REF] and Bongioanni and Torrea (2007)) or the Sobolev-Hermite spaces [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]). The links between rate of decay of the projection coefficients and regularity properties of functions in these spaces have been described respectively in [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF] and in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]. This allows to assess the rate of bias terms of L 2 -risks in the projection approach, and to compute upper bounds for the rates of convergence.

In Section 2, we describe the Laguerre and Hermite bases and spaces. In Section 3, for the purpose of comparison with the other models, we study the case of direct observations of X 1 , . . . , X n . Section 4 deals with model (1). Section 5 is concerned with model [START_REF] Abbaszadeh | Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk[END_REF]. In Section 6, we give some concluding remarks. Section 7 contains useful formulae for Laguerre and Hermite functions and all proofs. In the Appendix, we recall some properties of Sobolev-Laguerre and Sobolev-Hermite spaces, and the Talagrand inequality used in proofs.

2. About Laguerre and Hermite bases and spaces 2.1. Laguerre and Hermite bases. We start by presenting the Laguerre and Hermite bases and the Sobolev-Laguerre and Sobolev-Hermite regularity spaces. More details on Laguerre and Hermite functions are given in Section 7.1.

Below we denote the scalar product and the L 2 -norm on L 2 (R + ) by: ∀s, t ∈ L 2 (R + ), s, t

+ = +∞ 0 s(x)t(x)dx, t 2 + = +∞ 0 t 2 (x)dx.
We also denote by . the L 2 -norm on R and by •, • the L 2 (R)-scalar product.

Consider the Laguerre polynomials (L j ) and the Laguerre functions (ϕ j ) given by

(3) L j (x) = j k=0 (-1) k j k x k k! , ϕ j (x) = √ 2L j (2x)e -x 1 I x≥0 , j ≥ 0.
The collection (ϕ j ) j≥0 constitutes a complete orthonormal system on L 2 (R + ), and is such that (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]):

(4) ∀j ≥ 0, ∀x ∈ R + , |ϕ j (x)| ≤ √ 2. For f ∈ L 2 (R + ), we can develop f on the Laguerre basis, f = j≥0 a j (f )ϕ j , a j (f ) = f, ϕ j + .
The Hermite polynomial and the Hermite function of order j are given, for j ≥ 0, by:

(5)

H j (x) = (-1) j e x 2 d j dx j (e -x 2 ), h j (x) = c j H j (x)e -x 2 /2 , c j = 2 j j! √ π -1/2
The sequence (h j , j ≥ 0) is an orthonormal basis of L 2 (R). When the density f belongs to L 2 (R), it can be developed in the Hermite basis f = j≥0 a j (f )h j where a j (f ) = R f (x)h j (x)dx = f, h j . The infinite norm of h j satisfies (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF], Szegö (1959) p.242): [START_REF] Andersen | Multiplicative censoring: density estimation by a series expansion approach[END_REF] h j ∞ ≤ Φ 0 , Φ 0 1, 086435/π 1/4 0.8160, and the following more precise bound is available (with C ∞ a constant given in Szegö (1959))

(7) h j ∞ ≤ C ∞ (j + 1) 1/12 , j = 0, 1, . . . .
We use the notation ψ j to designate ϕ j in the Laguerre case and h j in the Hermite case, denote by S m = span(ψ 0 , ψ 1 , . . . , ψ m-1 ) the linear space generated by the m functions ψ 0 , . . . , ψ m-1 and by f m = m-1 j=0 a j (f )ψ j the orthogonal projection of f on S m , where a j (f ) = f, ψ j will mean either f, ϕ j + or f, h j . 2.2. Sobolev-Laguerre and Sobolev-Hermite spaces. For s ≥ 0, the Sobolev-Laguerre space with index s (see Bongioanni and Torrea (2007)) is defined by: (8)

W s L = {θ : R + → R, θ ∈ L 2 (R + ), |θ| 2 s := k≥0 k s a 2 k (θ) < +∞}.
where a k (θ) = θ, ϕ k + . We define the ball W s L (D) by

W s L (D) . = θ ∈ W s L , |θ| 2 s = ∞ k=0 k s a 2 k (θ) ≤ D .
Analogously, the Sobolev-Hermite space with regularity s (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]) is given by ( 9)

W s H = {θ : R → R, θ ∈ L 2 (R), k≥0 k s a 2 k (θ) < +∞}.
where a k (θ) = θ, h k , and the Sobolev-Hermite ball

W s H (D) = {θ ∈ L 2 (R), k≥0 k s a 2 k (θ) ≤ D}. Thus, for f in W s L (D) or in W s H (D), we have f -f m 2 ≤ Dm -s .
For details and especially for regularity properties of functions in these spaces, we refer also to Section 7 of Comte and Genon-Catalot (2015), Section 7. 3. Projection estimators of f when X i 's are observed 3.1. Risk bound. We assume that f belongs to L 2 (R + ) or L 2 (R) and provide for each m ≥ 1, a projection estimator of f by estimating the coefficients a j (f ), j = 0, . . . , m -1. In the case where the X i 's are observed, we define the empirical and unbiased estimator of a j (f ) by

âj (X) = 1 n n i=1 ψ j (X i ) and the projection estimator f X m = m-1 j=0 âj (X)ψ j .
Clearly, f X m an unbiased estimator of f m = m-1 j=0 a j (f )ψ j , the orthogonal projection of f on S m . By the Pythagoras Theorem, we have f X m -

f 2 = f -f m 2 + f X m -f m 2 . As (ψ j ) j is orthonormal, we get f X m -f m 2 = m-1 j=0 (â j (X) -a j (f )) 2 and E[(â j (X) -a j (f )) 2 ] = 1 n Var(ψ j (X 1 )) = 1 n E(ψ 2 j (X 1 )) - a 2 j (f ) n .
Let us define (10)

V X m = m-1 j=0 E[ψ 2 j (X 1 )],
we have

(11) E( f X m -f 2 ) = f -f m 2 + V X m n - f m 2 n .
With (4) or [START_REF] Andersen | Multiplicative censoring: density estimation by a series expansion approach[END_REF], we obtain V X m ≤ Cm, with C = 2 in the Laguerre case and C = Φ 2 0 (see [START_REF] Andersen | Multiplicative censoring: density estimation by a series expansion approach[END_REF]) in the Hermite case. In the latter case, using [START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF], we get V X m ≤ Cm 5/6 , which is better. However, these bounds on the variance term are not optimal and can be improved under rather weak moment assumptions.

Proposition 3.1. If E(1/ √ X 1 ) < +∞ in the Laguerre case or E(|X 1 | 2/3 ) < +∞ in the Hermite case, then for m large enough, V X m ≤ c √ m/n
where c is a constant, and thus

(12) E( f X m -f 2 ) ≤ f -f m 2 + c √ m n .
In the Laguerre case, this result improves the variance order obtained in The risk bound decomposition [START_REF] Chesneau | Wavelet estimation of a density in a GARCH-type model[END_REF] involves a bias term f -f m 2 = j≥m a 2 j (f ) which is decreasing with m and a variance term of order √ m/n which is increasing with m. Therefore, to evaluate the rate of convergence, we have to perform a compromise to select relevantly m. More precisely, for

f in W s L (D) or in W s H (D), we have f -f m 2 = j≥m a 2 j (f ) ≤ Dm -s . Choosing m opt = [n 1/(s+1/2)
] in the r.h.s. of [START_REF] Chesneau | Wavelet estimation of a density in a GARCH-type model[END_REF] implies

E( f X mopt -f 2 ) ≤ C 0 (s, D)n -2s/(2s+1)
where C 0 (s, D), is a constant depending on s and D only. This is the usual rate for density estimation for f belonging to a classical Sobolev ball with regularity s: indeed, [START_REF] Schipper | Optimal rates and constants in L2-minimax estimation of probability density functions[END_REF] proves that this rate is minimax optimal with exact Pinsker constant on Sobolev balls for an integer s, Efromovich (2002) proves the result for s < 1/2 and Rigollet (2006) builds an adaptive deconvolution estimator based on the blockwise Stein method, which reaches the optimal rate with exact constant for any s > 1/2. The upper bound O( √ m) on the term V X m is somehow optimal as we can prove: Proposition 3.2. Assume that inf a≤x≤b f (x) > 0 for some interval [a, b], with a < b in the Hermite case and 0 < a < b in the Laguerre case, then, for m large enough, 3.2. Specific rates under small bias. For some classes of distributions, the rate of the bias term can be much smaller than polynomial. This implies a much better rate of convergence for the L 2 -risk of estimators.

V X m ≥ c √ m where c is a constant. Therefore E( f X m -f 2 ) ≥ f -f m 2 + c √ m n - f 2 n .
• Laguerre case. Consider the class of mixtures of exponential distributions defined, for v > 1, by 

E(v) = f : f (x) = ∞ 0 θ exp (-θx)dΠ(θ), Π[1/v, v] = 1 Proposition 3.3. Let f ∈ E(v) for some real number v > 1 and set ρ = (v -1/v + 1) 2 < 1. Then, for m opt = [log n/| log ρ|], E( f X mopt -f ) log n/n.
F(C) = f : f (x) = φ Π(x) = φ(x -u)dΠ(u), Π ∈ P(C) , P(C) := Π ∈ P(R), Π(|u| > t) ≤ C exp(-t 2 /C) for all positive t . For f ∈ F(C) and m opt = [log(n)(eC + 1/ log(2))], we have E( f X mopt -f 2 ) log(n)/n.

Now consider the class of variance mixtures

G(v) = f : f (x) = +∞ 0 φ(x/u) u dΠ(u), Π([1/ √ v, √ v]) = 1 , v > 1.
For f ∈ G(v) and m opt = [log(n)/| log(ρ)|], with ρ as above, E( f X mopt -f 2 ) log(n)/n.

3.3. Adaptive estimation. The density f being unknown, we do not know what kind of regularity it has, therefore, a data-driven choice of the dimension of the projection space has to be done. The interest of the data-driven procedure is that it allows to realize automatically the finite sample bias-variance compromise and also to automatically reach the best possible asymptotic rate without requiring any knowledge on the bias order. The data-driven choice of m mimicks the minimization of the squared bias-variance bound using estimators of the risk bound terms. As

f -f m 2 = f 2 -f m 2 , the squared bias is estimated by -f X m 2
, getting rid of f 2 which is unknown but constant. Thus we set, for κ a numerical constant, mX = arg min m∈{1,...,mn}

-f X m 2 + pen X (m) , pen X (m) = κ V X m n , V X m = 1 n n i=1 m-1 j=0 ψ 2 j (X i ).
Clearly, V X m is an estimate of E( m-1 j=0 ψ 2 j (X 1 )). We set pen X (m) := E( pen X (m)) = κV X m /n and prove: Theorem 3.1. Assume that m n ≤ (n/ log(n)) α with α = 1 for Laguerre and α = 6/5 for Hermite, then there exists a numerical value κ 0 such that for all κ ≥ κ 0 ,

E( f X mX -f 2 ) ≤ 3 inf m∈{1,...,n} f -f m 2 + pen X (m) + C n ,
where C is a constant depending on f .

The Hermite case is proved in Belomestny et al. (2017, Theorem 2.1). We prove here the result in the Laguerre case.

Remark 3.1. Note that the risk bound achieves automatically the bias-variance compromise, up to a negligible term of order O(1/n), and in this sense, f X mX is adaptive.

4. Projection estimator of f when Y i 's are observed Now, our aim is to build an estimator of f from the observations Y 1 , . . . , Y n given by (1).

4.1. Preliminary properties and risk bounds. The estimation of f in model ( 1) is an inverse problem which can be solved by Hermite or Laguerre projection estimator, depending on the support of the density f . The hidden variables X i are either real-valued or nonnegative, with unknown density f . The construction of estimators rely on relations between the density f Y and survival function FY (y) = P(Y > y) of Y i and those of X i . We recall these relations:

(13) ∀y ∈ R, f Y (y) = +∞ y f (x) x dx 1 I(y ≥ 0) + y -∞ f (x) |x| dx 1 I(y < 0), ( 14 
) ∀y ∈ R, FY (y) + yf Y (y) = F (y).
When f is R + -supported, [START_REF] Comte | Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging[END_REF] reduces to f Y (y) = +∞ y (f (u)/u)du1 I y≥0 . We can prove:

Lemma 4.1.

(1) Let t : R → R be bounded, derivable, then

(15) E(t(Y 1 ) + Y 1 t (Y 1 )) = Et(X 1
). In particular, for all j ≥ 0, [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF] a 15) is the basement of the estimation procedure and leads to [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF], which links the coefficients of f and f Y on the Laguerre or Hermite basis. So, using [START_REF] Efromovich | Nonparametric curve estimation. Methods, theory, and applications[END_REF], we get for all j ≥ 0:

j (f ) = f, ψ j = f Y , (yψ j ) (2) Assume that E|X 1 | < +∞. Let t ∈ L 2 (R) or L 2 (R + ), then E(Y 2 1 t 2 (Y 1 )) ≤ E|X 1 | t 2 . Equality (
(17) a j (f ) = E(ψ j (Y 1 ) + Y 1 ψ j (Y 1 )).
Therefore, we define a collection of projection estimator of f based on the observation (Y 1 , . . . , Y n ) by:

(18) fm (x) = m j=1 âj ψ j (x), with âj = 1 n n i=1 [Y i ψ j (Y i ) + ψ j (Y i )].
Then we can prove the following risk bound.

Proposition 4.1. Let fm be the estimator defined by ( 18), then we have

(19) E( fm -f 2 ) = f -f m 2 + V m n - f m 2 n , V m = m-1 j=0 E Y 1 ψ j (Y 1 ) + ψ j (Y 1 )
2 where V m is such that, for m large enough,

V m ≤ cm 3/2 , (1) in the Laguerre case, if E(X 1 ) < +∞ and E(1/ √ X 1 ) < +∞, (2) in the Hermite case, if E(|X 1 | 2+2/3 ) < +∞,
where c is a constant which does not depend on m, but depends on the above moments of X 1 .

Remark 4.1. In the Laguerre case, with no moment condition, we have, for all m ≥ 1, V m ≤ Cm 3 (see [START_REF] Belomestny | Nonparametric Laguerre estimation in the multiplicative censoring model[END_REF].

In the Hermite case, if 11/6 , see the proof in Section 7.10. We can deduce rates of convergence on Sobolev-Laguerre and Sobolev-Hermite balls. 8) and ( 9)).

E(|X 1 |) < +∞, then for all m ≥ 1, V m ≤ Cm 2 and if E(X 2 1 ) < +∞, then V m ≤ Cm
Proposition 4.2. Assume that f belongs to W s L (D) or to W s H (D) (see (
If E(X 1 ) < +∞ and E(1/ √ X 1 ) < +∞ in the Laguerre case, or if E|X 1 | 2/3 < +∞ in the Hermite case, then for m opt = [n 1/(s+3/2) ], E( fmopt -f 2 ) n -2s 2s+3 .
The results of Section 3.2 apply here. For exponential mixtures in the Laguerre case, or mean or variance Gaussian mixtures in the Hermite case, the bias is exponentially decreasing. Thus, the same choices m opt yield a rate of order [log(n)] 3/2 /n.

Similarly as above, the bound O(m 3/2 ) on the variance term cannot be improved:

Proposition 4.3.
(1) Laguerre case: if E(1/ √ X 1 ) < +∞ and there exist 0 < a < b, with inf a≤x≤b f (x) ≥ c > 0, then, for m large enough, there exists a constant c 1 such that V m ≥ c 1 m 3/2 , where c 1 does not depend on m.

(2) Hermite case: If there exist a < b, with inf a≤x≤b f (x) ≥ c > 0, then, for m large enough, there exists a constant c 2 such that V m ≥ c 2 m 3/2 , where c 2 does not depend on m. Consequently in each case, for c = c 1 or c 2 , we have

E( fm -f 2 ) ≥ f -f m 2 + c m 3/2 n - f 2 n .
4.2. Matrix representations. Now, we give formulae providing the links between the coefficients of f and those of f Y on basis (ψ j ) 0≤j≤m-1 and allowing to build easily the estimators. For g a function, we denote a k (g) := t (a 0 (g), . . . , a k-1 (g)), k ≥ 1, where a j (g) = g, ψ j .

• Specific Laguerre formula. Using formula (47) (see Section 7.1), we get

a 0 (f ) = (1/2)a 0 (f Y )+ (1/2)a 1 (f Y ) and for j ≥ 1, a j (f ) = - j 2 a j-1 (f Y ) + 1 2 a j (f Y ) + j + 1 2 a j+1 (f Y ).
Introducing the matrix

H m = ([H m ] k, ) 1≤k, ≤m with size m × (m + 1) given by [H m ] k, = 0 if = k -1, k, k + 1 and [H m ] 1,1 = 1/2, [H m ] 1,2 = 1/2 and for k ≥ 2, ( 20 
) [H m ] k,k-1 = - k -1 2 , [H m ] k,k = 1 2 , [H m ] k,k+1 = k 2 ,
yields the linear relation between the vectors of coefficients of f and f Y :

a m-1 (f ) = H m a m (f Y ). We thus have for m ≥ 1, setting âm-1 = t (â j ) 0≤j≤m-1 , âm (Y ) = t (â j (Y )) 0≤j≤m , the following relation which is convenient to compute the estimator (21) âm-1 = H m âm (Y ) with âj (Y ) := 1 n n i=1 ϕ j (Y i ).
• Specific Hermite formula. From xf Y (x) = -f (x) and the relations (52), we get

     a 0 (f ) = (1/2) a 0 (f Y ) - √ 2a 2 (f Y ) , a 1 (f ) = (1/2) a 1 (f Y ) - √ 6a 3 (f Y ) a j (f ) = (1/2) a j (f Y ) -(j + 1)(j + 2)a j+2 (f Y ) + (j -1)ja j-2 (f Y ) , j ≥ 2. Therefore a m (f ) = A m,m+2 a m+2 (f Y ), where A m,m+2 is the m × (m + 2) matrix deduced from the above relations. So, for m ≥ 1, setting âm = t (â j ) 0≤j≤m-1 , âm+2 (Y ) = t (â j (Y )) 0≤j≤m+1 ,
gives the following relation:

(22) âm = A m,m+2 âm+2 (Y ) with âj (Y ) := 1 n n i=1 h j (Y i ). 4.3. Model selection. Define M n = {1, . . . , m n }
, where m n is the largest integer of the collection and set

(23) m = arg min m∈Mn {-fm 2 + pen(m)}, pen(m) = κ V m n , V m = 1 n n i=1 m-1 j=0 Y i ψ j (Y i ) + ψ j (X i ) 2 , where κ is a numerical constant. Note that V m is an estimate of V m such that E( V m ) = V m . We denote pen(m) = E( pen(m)) = κV m /n.
Theorem 4.1. Assume that, in the Hermite case, E(|X 1 |) < +∞ and inf a≤x≤b f (x) > 0 for some interval [a, b] and in the Laguerre case, E(1/ √ X 1 ) < +∞ and inf a≤x≤b f (x) > 0 for some interval [a, b] with 0 < a < b. Assume also that the collection of models is such that [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] m n ≤ n β with β = 1/3 for Laguerre case, β = 6/17 for Hermite case.

Then there exists a numerical constant κ 0 such that, for κ ≥ κ 0 , the estimator f m where m is defined by ( 23) satisfies

E f m -f 2 ≤ C inf m∈Mn f -f m 2 + κ V m n + C log(n) n ,
where C is a numerical constant(C = 4 suits) and C is a constant depending on f ∞ .

Note that Remark 3.1 applies here also. The restriction [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF] implies that the optimal order of m, for f in a Sobolev ball, can be reached only if the function is regular enough i.e. s large enough. More precisely, under the assumptions of Theorem 4.1 and of Proposition 4.2, we have,

for f ∈ W s L (D) (Laguerre case) that m opt = [n 1/(s+(3/2)) ] can be reached in the model collection if s > 3/2 (n 1/(s+3/2) < n 1/3 ). For f ∈ W s H (D) (Hermite case), m opt is reached for s > 4/3 (n 1/(s+3/2) < n 6/17 ).
4.4. Deconvolution estimator based on multiplicative censored observations. In Belomestny et al. (2017), for the case of direct observations X 1 , . . . , X n , projection estimators on the Hermite basis are compared to projection estimators on the sine cardinal basis. The comparison is relevant as Sobolev Hermite spaces with regularity index s are included in usual Sobolev spaces with the same regularity index (see Appendix A). For direct observations, the two estimators are proved in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] to be asymptotically equivalent. We prove here that it is also the case in the multiplicative censored case.

Let us recall the definition of the sine cardinal basis. For u, v ∈ L 1 (R) ∩ L 2 (R), we denote by u * (t) = e itx u(x)dx and u, v = uv = (2π) -1 u * , v * . We recall that u * * (•) = 2πu(-•). Let θ(x) = sin(πx)/(πx) which satisfies θ * (t) = 1 I [-π,π] (t), where θ * denotes the Fourier transform of θ. The functions (θ ,j (x) = √ θ( x -j), j ∈ Z) constitute an orthonormal system in L 2 (R). The space F generated by this system is exactly the subspace of L 2 (R) of functions having Fourier transforms with compact support [-π , π ]. The orthogonal projection f of f on

F satisfies f * = f * 1 I [-π ,π ] and (25) f (x) = 1 2π π -π e -itx f * (t)dt = ∈Z a ,j θ ,j , a ,j = f, θ ,j . Note that (26) f -f 2 = 1 2π |t|≥π |f * (t)| 2 dt.
Now, relation (15) holds for t(x) = e iux : E(e iuY 1 + iuY 1 e iuY 1 ) = Ee iuX 1 . Therefore, we can estimate the Fourier transform f * (u) = e iux f (x)dx of f by

1 n n k=1 e iuY k + iuY k e iuY k .
This yields the following new estimator of f , of deconvolution type:

(27) f (x) = 1 2π π -π e -iux 1 n n k=1 e iuY k + iuY k e iuY k du,
which is an unbiased estimator of f given in [START_REF] Massart | Concentration inequalities and model selection[END_REF]. We can integrate and obtain:

(28) f (x) = 1 n n k=1 (-x) sin(π (Y k -x)) π(Y k -x) 2 + Y k Y k -x cos(π (Y k -x)).
Alternatively, using a truncated series expansion gives an approximation of the estimator which may be easier to compute in practice. Let ( 29)

f (n) (x) = |j|≤Ln ã ,j θ ,j (x) where ã ,j = 1 n n k=1 θ ,j (Y k ) + Y k θ ,j (Y k ).
We can prove:

Proposition 4.4. Assume that E(X 2 1 ) < +∞. The estimator f satisfies (30) E( f -f 2 ) ≤ f -f 2 + π 2 3 EY 2 1 3n + n . If moreover M 2 = x 2 f 2 (x)dx < +∞, (31) E( f (n) -f 2 ) ≤ f -f 2 + n 1 + EY 2 1 π 2 2 3 + 4(M 2 + 1) 2 L n .
As we consider estimators f with bounded variance, we will impose 3 ≤ n. Consequently, if L n ≥ n, the last residual term 2 /L n is of order O( 2 /n) and thus less than the variance term 3 /n; if L n ≥ n 5/3 , it is of order O(1/n) and thus negligible. In this context, Sobolev balls are defined by

(32) W s (L) = {f ∈ L 2 (R), R (1 + t 2s )|f * (t)| 2 dt ≤ L < +∞}.
It is easy to see that, if f ∈ W s (L), then, from (26), we have f -f ≤ L -2s . Choosing opt = cn -1/(2s+3) , implies, from [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF], that E( f opt -f 2 ) ≤ Cn -2s/(2s+3) . This optimal rate is identical to the rate obtained for fmopt under E(|X 1 | 2+2/3 ) < +∞. Consequently, the deconvolution and Hermite estimators are asymptotically equivalent (with = √ m). However, from the computational efficiency point of view, the Hermite estimator is to be preferred. In Belomestny et al. (2017), Section 4.5, a notion of complexity is defined. Hermite estimators are proved to have much lower complexity than deconvolution estimators in the case of direct observations. Analogous computations of complexity in the present indirect observations case lead to the same conclusions.

Projection estimator of f when

Z i = X i + Σ i are observed 5.1.
Estimation strategy in the Laguerre case. We consider Model (2) where X i and Σ i are nonnegative. It holds that

f Z (x) = f f Σ (x) = x 0 f (u)f Σ (x -u)du.
The convolution property of the Laguerre functions (ϕ j ) j given in formula (49) allows to write

∞ k=0 a k (f Z )ϕ k (x) = +∞ j=0 +∞ k=0 a j (f )a k (f Σ )ϕ j ϕ k (x) = ∞ k=0 ϕ k (x) k =0 2 -1/2 (a k-(f Σ ) -a k--1 (f Σ ))a (f ), with convention a k (f ) = 0 if k < 0.
Define the m × m triangular matrix Σ m = (σ i,j ) 0≤i,j≤m-1 where (33)

σ i,j = 2 -1/2 ( f Σ , ϕ i-j 1 I i-j≥0 -f Σ , ϕ i-j-1 1 I i-j-1≥0 ).
As

σ i,j = σ(i -j)1 I i-j≥0 , Σ m is a Toeplitz triangular matrix with diagonal elements σ i,i = 2 -1/2 f Σ , ϕ 0 > 0. It is thus invertible and for all m ≥ 1, (34) a m (f Y ) = t (a j (f )) 0≤j≤m-1 = Σ -1 m [(a j (f Z )) 0≤j≤m-1 ] = Σ -1 m a m (f Z ), The projection estimator of f on S m based on (Z 1 , . . . , Z n ) is given by (35) fm = m-1 j=0 ãj ϕ j , ãm = t (ã j ) 0≤j≤m-1 = Σ -1 m âm (Z), m ≥ 1
where âm (Z) = [(â j (Z)) 0≤j≤m-1 ] and âj (Z) is defined by

(36) âj (Z) := 1 n n i=1 ϕ j (Z i ).
This estimator is proposed in Mabon (2017) and inspired from Comte et al. (2017). The following risk bound is an improvement of the bound given in Mabon (2017).

Proposition 5.1. Assume that f Σ ∞ < +∞ and either E(X

-1/2 1 ) < +∞ or E(Σ -1/2 1
) < +∞. Let fm be given by ( 35). Then we have F in function of m is studied. In particular, if Σ i has a Gamma distribution Γ(r, λ), r ∈ N, r ≥ 1, there exist constants c, C such that

E( fm -f 2 ) ≤ f -f m 2 + [c √ m Σ -1 m 2 op ] ∧ [ f Σ ∞ Σ -1 m 2 F ] n where A 2 F =
cm 2r ≤ Σ -1 m 2 op ≤ Σ -1 m 2 F ≤ Cm 2r .
Therefore the following corollary holds:

Corollary 5.1. Assume that f ∈ W s L (D)
, and that Σ i has a Gamma distribution Γ(r, λ), r integer, r ≥ 1. Then fm given by (35) satisfies, for

m opt = [n 2r+s ] E( fmopt -f 2 ) ≤ C(s, D)n -s/(2r+s) .
The matrix Σ m in the case of gamma noise with integer tail parameter can be computed explicitely: we give it for r = 1, 2 hereafter. Remark 5.1.

•

For Σ 1 ∼ E(λ) = γ(1, λ), we have [Σ m ] i,i = λ/(1 + λ) and (37) [Σ m ] i,j = -2λ (λ -1) i-j-1 (λ + 1) (i-j+1) if j < i and [Σ m ] i,j = 0 otherwise.
We can compute [Σ -1 m ] i,j = (λ + 1)/λ if i = j, 2/λ if i > j and 0 otherwise. Note that

Σ -1 m 2 F = 2 m 2 λ 2 + m(1 + 2 λ - 1 λ 2 ). • For Σ 1 ∼ Γ(2, µ), we have [Σ m ] i,i = (µ/(1 + µ)) 2 , [Σ m ] i+1,i = -4µ 2 /(1 + µ) 3 and (38) [Σ m ] i,j = 4(i -j -µ)µ 2 (µ -1) i-j-2 (µ + 1) i-j+2 if i > j + 1 and [Σ m ] i,j = 0 otherwise.
We can propose a method to select m automatically, aiming at a data driven bias variance compromise and simplifying [START_REF] Mabon | Adaptive deconvolution on the nonnegative real line[END_REF]. We define

(39) m = arg min m∈Mn -fm 2 + pen(m) with pen(m) = κ log(2 + Σ -1 m 2 
F ) Σ -1 m 2 F
n where

M n = {m ∈ N * , m ≤ n/ log(2 + n), Σ -1 m 2 F ≤ n}.
Theorem 5.1. Let fm be given by ( 35) and m by (39). There exists a numerical constant κ 0 such that for any κ ≥ κ 0 , we have

E( f m -f 2 ) ≤ C 1 inf m∈Mn f -f m 2 + pen(m) + C 2 n .
In the penalty, we have chosen

Σ -1 m 2 F rather than √ m Σ -1 m 2
op , which is easier to handle.

5.2.

Estimation strategy in the Hermite case. We consider Model (2) where now (X i ) 1≤i≤n and (Σ i ) 1≤i≤n are real valued. This model is classically dealt with by Fourier deconvolution, and yields the following estimator

f (x) := 1 2π π -π e -itx f * Z (t) f * Σ (-t) dt where f * Z (t) = 1 n n k=1 e itZ k
is the empirical characteristic function of Z.

Here we propose projection estimators on the Hermite basis. We use that h * j (t) = √ 2πi j h j (t) and write that f Z = f f Σ and thus f * Z = f * f * Σ , where f * = √ 2π j≥0 a j (f )i j h j . Therefore,

a j (f ) = (-i) k √ 2π f * Z , h j f * Σ (-.)
. This leads to define the estimator of a j (f ) as follows:

(40) ǎj, = (-i) j √ 2π π -π f * Z (t) h j (t) f * Σ (t) dt,
and the projection estimator of f as

(41) fm (x) = m-1 j=0 ǎj, √ m h j (x).
Note that we have chosen = √ m in (40). The following risk bound holds.

Proposition 5.2. Consider fm given by ( 41) and (40). Then 9) and ( 32) and Appendix A), then the two bias terms in Proposition 5.2 have the same order:

E( fm -f 2 ) ≤ j≥m a 2 j (f ) + 1 2π |t|≥π √ m |f * (t)| 2 dt + 1 2π n π √ m -π √ m 1 |f * Σ (t)| 2 dt. Thus, if f ∈ W s H (L) ⊂ W s (L ) (see (
j≥m a 2 j (f ) + 1 2π |t|≥π √ m |f * (t)| 2 dt ≤ Lm -s + L 2π (π √ m) -2s = Cm -s .
For comparison,

E( f √ m -f 2 ) ≤ 1 2π |t|≥π √ m |f * (t)| 2 dt + 1 2π n π √ m -π √ m 1 |f * Σ (t)| 2 dt.
This shows that the two estimators have asymptotically the same rate. The deconvolution estimator has a smaller risk bound. However, in terms of computational efficiency, as described in Belomestny al. (2017), the Hermite estimator is to be preferred as it has lower complexity.

For sake of brevity, we do not develop the adaptive procedure.

Extensions and concluding remarks

In this paper, the use of a Laguerre basis to estimate a function f ∈ L 2 (R + ) or a Hermite basis to estimate a function f ∈ L 2 (R) is illustrated in examples of inverse problems. Projection estimators which are easy to implement are built and studied. Data-driven choices of the projection dimension can be proposed leading to adaptive estimators.

Using formulae of Section 7.1.2, the estimation of a function f ∈ L 2 (R + ) by projection estimators on a Laguerre basis (ϕ (δ) j ) for all δ > -1 is possible for direct observations or multiplicative censored observations. Thanks to Lemma 7.2, we can obtain risk bounds of the same type. In the case of multiplicative censoring, setting a (δ)

j (f ) = f, ϕ (δ)
j + , and using relation (50), we obtain:

(42) a (δ)

j (f ) = (j + 1)(j + δ + 1) 2 a (δ) j+1 (f Y ) + 1 2 a (δ) j (f Y ) - j(j + δ) 2 a (δ) j-1 (f Y ).
This allows to define analogously a matrix H

m which helps practical computing of the projection estimator. On the contrary, except for δ = 0, the bases (ϕ (δ) j ) do not seem fitted to the deconvolution setting of densities on R + .

An extension of the results presented here could be to study the combination of models (1) and ( 2) and estimate f , the density of

X i if observations are either (X i + Σ i )U i or X i U i + Σ i .
7. Proofs 7.1. Formulae for Laguerre functions. The Laguerre polynomial with index δ, δ > -1, and degree k is given by

L (δ) k (x) = 1 k! e x x -δ d k dx k x δ+k e -x = k j=0 k + δ k -j (-x) j j! .
The following holds:

(43) L (δ) k (x) = -L (δ+1) 
k-1 (x), for k ≥ 1, and

+∞ 0 L (δ) k (x) 2 x δ e -x dx = Γ(k + α + 1) k! .
The sequence (φ

(δ) k (x) = L (δ) k (x)x δ/2 e -x/2 k! Γ(k+α+1 1/2
) is an orthonormal basis of L 2 (R + ). In this paper, we rather consider the Laguerre functions with index δ, given by ( 44)

ϕ (δ) k (x) = √ 2φ (δ) k (2x) = 2 (δ+1)/2 k! Γ(k + δ + 1) 1/2 L (δ) k (2x)e -x x δ/2 ,
which are more convenient for computing derivatives or integrals of the basis functions especially when δ = 0. The family (ϕ

(δ) k ) k≥0 is an orthonormal basis of L 2 (R + ). 7.1.1. Formulae for δ = 0. For δ = 0, we set L (0) k = L k , ϕ (0) 
k = ϕ k . Formula (22.7.12) in [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF] states that

(45) xL j (x) = -(j + 1)L j+1 (x) + (2j + 1)L j (x) -jL j-1 (x), xL j (x) = j(L j (x) -L j-1 (x)). implying (46) xϕ j (x) = - j + 1 2 ϕ j+1 (x) + (j + 1 2 )ϕ j (x) - j 2 ϕ j-1 (x), (47) 
(xϕ j (x)) = ϕ j (x) + xϕ j (x) = - j 2 ϕ j-1 (x) + 1 2 ϕ j (x) + j + 1 2 ϕ j+1 (x).
Using (43), we obtain for j ≥ 1:

(48)

ϕ j (x) = -ϕ j (x) - 2j x ϕ (1) 
j-1 (x).

The following convolution property (formula 22.13.14 in Abramowitz and Stegun (1964)) makes the Laguerre basis relevant in the deconvolution setting

(49) ϕ k ϕ j (x) = x 0 ϕ k (u)ϕ j (x -u)du = 2 -1/2 (ϕ k+j (x) -ϕ k+j+1 (x))
where stands for the convolution product.

Lemma 7.1. For all x ≥ 0, ϕ 0 (x) = -ϕ 0 (x), ϕ j (x) = -ϕ j (x) -2 j-1 k=0 ϕ k (x), j ≥ 1. More- over, |ϕ j (x)| ≤ √ 2(2j + 1) ≤ 2 √ 2(j + 1), |xϕ j (x) + ϕ j (x)| ≤ √ 2(j + 1).
Proof of Lemma 7.1. The following equality holds ϕ j (x) = -ϕ j (x) + 2 √ 2e -x L j (2x) which is a polynomial function of degree j multiplied by e -x . Thus, it can be decomposed as

ϕ j (x) = j k=0 a (j) k ϕ k (x) with a (j) k = ϕ j , ϕ k = +∞ 0 ϕ j (x)ϕ k (x)dx = [ϕ j (x)ϕ k (x)] +∞ 0 - +∞ 0 ϕ j (x)ϕ k (x)dx = -ϕ j (0)ϕ k (0) - +∞ 0 ϕ j (x)ϕ k (x)dx = -2 -ϕ j , ϕ k = -2 -a (k) j
Notice that this formula is also true when k = j: ϕ j , ϕ j = +∞ 0 ϕ j (x)ϕ j (x)dx = -(1/2)ϕ 2 j (0) = -2/2 = -1. Thus we obtain:

ϕ j (x) = j k=0 a (j) k ϕ k (x) = -2 j k=0 ϕ k (x) - j k=0 ϕ j , ϕ k ϕ k (x) = -ϕ j (x) -2 j-1 k=0 ϕ k (x) - j-1 k=0 ϕ j , ϕ k ϕ k (x)
Note that the ϕ j , ϕ k are zero for k ≤ j -1. Thus we obtain the first formula. The bound on ϕ j (x) follows from |ϕ j (x)| ≤ √ 2 and the bound on |xϕ j (x) + ϕ j (x)| from (47). 2 7.1.2. Formulae for δ > -1. The following holds: 

xL (δ) j (x) = -(j + 1)L (δ) j+1 (x) + (2j + δ + 1)L (δ) j (x) -(j + δ)L (δ) j-1 (x), x(L (δ) j ) (x) = jL (δ) j (x) -(j + δ)L (δ) j-1 (x), implying xϕ (δ) j (x) = - (j + 1)(j + δ + 1) 2 ϕ (δ) j+1 (x) + (j + δ + 1 2 )ϕ (δ) j (x) - j(j + δ) 2 ϕ (δ) j-1 (x), (50) (xϕ (δ) 
j (x)) = - j(j + δ) 2 ϕ (δ) j-1 (x) + 1 2 ϕ (δ) j (x) + (j + 1)(j + δ + 1) 2 ϕ (δ) j+1 (x).
|ϕ (δ) k (x/2)| ≤ C                a) (xν) δ/2 if 0 ≤ x ≤ 1/ν b) (xν) -1/4 if 1/ν ≤ x ≤ ν/2 c) ν -1/4 (ν -x) -1/4 if ν/2 ≤ x ≤ ν -ν 1/3 d) ν -1/3 if ν -ν 1/3 ≤ x ≤ ν + ν 1/3 e) ν -1/4 (x -ν) -1/4 e -γ 1 ν -1/2 (x-ν) 3/2 if ν + ν 1/3 ≤ x ≤ 3ν/2 f ) e -γ 2 x if x ≥ 3ν/2
where γ 1 and γ 2 are positive and fixed constants. From these estimates, we can prove Lemma 7.2. Let p be a nonnegative real number. Assume that a random variable R has density f R on R + and that E(R p-1/2 ) < +∞ and E(R p ) < +∞. For k large enough,

+∞ 0 x p [ϕ (δ) k (x)] 2 f R (x)dx ≤ c √ k ,
where c = c p > 0 is a constant depending on p and E(R p-1/2 ), E(R p ).

Proof of Lemma 7.2. We have six terms to compute to find the order of

+∞ 0 x p [ϕ (δ) k (x)] 2 f R (x)dx = (1/2 p+1 ) +∞ 0 u p [ϕ (δ) k (u/2)] 2 f R (u/2)du := 6 =1 I . a) I 1 1 2 p+1 1/ν 0 u p (uν) δ f R (u/2)du f R ν -(p+1/2) f R k -(p+1/2) . b) I 2 ν -1/2 ν/2 1/ν f R (u/2)u p-1/2 du k -1/2 E(R p-1/2 ). c) I 3 ν -1/2 ν -1/6 ν-ν 1/3 ν/2 u p f R (u/2)du = o(1/ √ k), as ν -u ≥ ν 1/3 and E(R p ) < +∞. d) I 4 ν -2/3 ν+ν 1/3 ν-ν 1/3 u p f R (u/2)du = o(1/ √ k) as E(R p ) < +∞. e) I 5 ν -1/2 3ν/2 ν+ν 1/3 u p (u -ν) -1/2 f R (u/2)du ν -1/2 ν -1/6 E(R p ) = o(1/ √ k), (exp is bounded by 1, u -ν ≥ ν 1/3 ). f) I 6 e -γ 2 (3ν/2) E(R p ) = o(1/ √ k).
The result of Lemma 7.2 follows from these orders. 2 7.2. Formulae for Hermite functions. Using (see [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF])

(51) 2xH j (x) = H j+1 (x) + 2jH j-1 (x), H j (x) = 2jH j-1 (x), j ≥ 1.
we get:

(52) √ 2h j (x) = j h j-1 (x)-j + 1h j+1 (x), 2x h j (x) = 2(j + 1) h j+1 (x)+ 2j h j-1 (x). Moreover, h * j (t) = √ 2πi j h j (t). Lemma 7.3. There exist constants C ∞ , C" ∞ such that, for all j ≥ 0, (1) h j ∞ ≤ C ∞ (j + 1) 5/12 , ( 2 
) yh j + h j ∞ ≤ C" ∞ (j + 1) 11/12 .
Proof of Lemma 7.3. For (1), we use (52) and the first bound:

h j ∞ ≤ C ∞ √ 2 (1 + √ j + 1 (j + 2) 1/12 ) ≤ √ 2C ∞ (j + 1) 5/12 .
Next, (52) implies that (yh j (y)) = (j + 1)/2h j+1 (y) + j/2h j-1 (y) = 1 2 j(j -1)h j-2 (y) + h j (y) -(j + 1)(j + 2)h j+2 (y) , where the last line follows from (52). Thus, 

|yh j (y) + h j (y)| ≤ 2C ∞ (j + 1)
H 2n (x) = (-1) n 2 2n n!L (-1/2) n (x 2 ), H 2n+1 (x) = (-1) n 2 2n+1 n!x L (1/2) n (x 2 ).
The Hermite polynomials are even for even n and odd for odd n. From this, we deduce the following link between Hermite and Laguerre functions:

Lemma 7.4. For x ≥ 0, h 2n (x) = (-1) n x/2 ϕ (-1/2) n (x 2 /2), h 2n+1 (x) = (-1) n x/2 ϕ (1/2) n (x 2 /2).
Proof of Lemma 7.4. We have

h 2n (x) = c 2n e -x 2 /2 H 2n (x) = (-1) n d 2n L (-1/2) n (x 2 )e -x 2 /2 (x 2 ) -1/4 (x 2 ) 1/4 , with c 2n , d 2n > 0. Thus, h 2n (x) = (-1) n d 2n φ (-1/2) n (x 2 ) √ x = (-1) n d 2n x/2 ϕ (-1/2) n (x 2 /2). Therefore, ∞ 0 h 2 2n (x)dx = 1/2 = d 2 2n ∞ 0 φ (-1/2) n (x 2 ) 2 x dx = d 2 n /2.
This shows

d 2 2n = 1, hence d 2n = 1. Analogously, h 2n+1 (x) = c 2n+1 e -x 2 /2 H 2n+1 (x) = (-1) n d 2n+1 √ x L (1/2) n (x 2 )e -x 2 /2 √ x, with c 2n+1 , d 2n+1 > 0. We get h 2n+1 (x) = (-1) n d 2n+1 φ (1/2) n (x 2 ) √
x. We conclude as above that d 2n+1 = 1. 2 7.3. Asymptotic formulae. Now, we can use the estimates of [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF] for ϕ (δ) n to obtain the following result: Lemma 7.5. Let p be a nonnegative real number. Assume that a random variable R has density f R on R and that E(|R| p+2/3 ) < +∞. For k large enough, +∞ 0

x p h 2 k (x)f R (x)dx ≤ c √ k ,
where c > 0 is a constant which depends on p.

Proof of Lemma 7.5. We start with the even indexes. Again,we have six terms to compute to find the order of +∞ 0

x p h 2 2k (x)f R (x)dx = (1/2) +∞ 0 x p+1 ϕ (-1/2) n (x 2 /2) 2 f R (x)dx := 6 =1
J .

We take ν = 4k + 1.

J 1 = 1/ √ ν 0 x p h 2 2k (x)f R (x)dx = 1 2 1/ √ ν 0 x p+1 ϕ (-1/2) n (x 2 /2) 2 f R (x)dx ≤ C 1/ √ ν 0 x p+1 (x 2 ν) -1/4 2 f R (x)dx ≤ C ν (p+1)/2 1/ √ ν 0 f R (x)dx ≤ C ν (p+1)/2 , J 2 = √ ν/2 1/ √ ν x p h 2 2k (x)f R (x)dx ≤ C 2 √ ν/2 1/ √ ν x p+1 x 2 ν -1/2 f R (x)dx ≤ C 2 √ ν E(|R| p ), J 3 = (ν-ν 1/3 ) 1/2 √ ν/2 x p h 2 2k (x)f R (x)dx ≤ C 2 (ν-ν 1/3 ) 1/2 √ ν/2 x 1/3 x p+2/3 ν -1/2 (ν -x 2 ) -1/2 f R (x)dx ≤ C 2 √ ν E(|R| p+2/3 ), J 4 = (ν+ν 1/3 ) 1/2 (ν-ν 1/3 ) 1/2 x p h 2 2k (x)f R (x)dx ≤ C 2 ν -1/2 E(|R| p+2/3 ), J 5 = √ 3ν/2 (ν+ν 1/3 ) 1/2 x p h 2 2k (x)f R (x)dx ≤ C 2 √ ν E(|R| p+2/3 ), J 6 = +∞ √ 3ν/2 x p h 2 2k (x)f R (x)dx ≤ C exp (-3γ 2 ν/2).

Now, we deal with

+∞ 0 x p h 2 2k+1 (x)f R (x)dx = (1/2) +∞ 0 x p+1 ϕ (1/2) n (x 2 /2) 2 f R (x)dx := 6 =1 K ,
and take ν = 4k + 3. The only difference is on the first term:

K 1 = 1/ √ ν 0 x p h 2 2k+1 (x)f R (x)dx ≤ C 2 1/ √ ν 0 x p (x 2 ν) 1/2 f R (x)dx ≤ C 2ν (p+1)/2 .
This ends the proof. 2 7.4. Proof of Proposition 3.1. We first prove the result in the Laguerre case. From Lemma 7.2 with δ = 0, p = 0, we get that, if E(1/ √ X 1 ) < +∞, then for j large enough,

E(ϕ 2 j (X 1 )) = +∞ 0 ϕ 2 j (x)f (x)dx ≤ c √ j ,
where c > 0 is a constant. As a consequence, for m large enough,

E( f X m -f m 2 ) ≤ m-1 j=0 E[ϕ 2 j (X 1 )] m 1/2 ,
which gives the announced result.

In the Hermite case, we apply Lemma 7.5 for p = 0. Thus for k large enough, 

V X m Φ 2 0 + m-1 k=1 k -1/2 = O( √ m),
(δ) k (x) = c(kx) -1/4 cos(2 √ 2 √ kx -δπ/2 -π/4) + (kx) -1/2 O(1) , where O(1) is uniform on [b/k, b] and c = 2 1/4 / √ π. Take k such that b/k < a < b < b and set d = inf a≤x≤b f (x). Then write +∞ 0 ϕ 2 k (x)f (x)dx ≥ d b a ϕ 2 k (x)dx. (54) ϕ 
We have,

ϕ 2 k (x) = c 2 2 (kx) -1/2 (1 + sin(4 √ 2kx)) + (kx) -1 O(1).
Therefore, as b a sin(4

√ 2kx)dx = 2 √ b √ a sin(4 √ 2ku)udu = O(1/ √ k), b a ϕ 2 k (x)dx ≥ c 2 2 √ a k -1/2 b -a + O( 1 √ k ) + O( 1 k ).
Consequently, for k large enough, we get

+∞ 0 ϕ 2 k (x)f (x)dx ≥ c / √ k. 2 7.6. Proof of Proposition 3.3. Let X have density f (x) = ∞ 0 θ exp (-θx)dΠ(θ).
Then, X = L Z/T where Z, T are independent, Z has exponential distribution with parameter 1 and T has distribution Π. For fixed θ > 0, elementary computations yield

Eϕ j (Z/θ) = +∞ 0 θ exp (-θx)ϕ j (x)dx = √ 2 θ θ + 1 θ -1 θ + 1 j .
Then, we compute

Eϕ j (X) = E (E(ϕ j (Z/T )|T )) = +∞ 0 √ 2 θ θ + 1 θ -1 θ + 1 j dΠ(θ) = E √ 2 T T + 1 T -1 T + 1 j Consequently, j≥m a 2 j (f ) = j≥m 2 E T T + 1 T -1 T + 1 j 2 ≤ 1 2 ET T -1 T + 1 2m ≤ v 2 ρ 2m .
Note that for Z ∼ E(1),

E 1 √ X ≤ √ vE 1 √ Z < +∞.
Choosing The Laguerre case is identical, except for one point. We use that sup

m opt = [log(n)/| log(ρ)|]
x m-1 j=0 ϕ 2 j (x) ≤ 2m, instead of sup x m-1 j=0 h 2 j (x) ≤ C ∞ m 5/6
. This explains the new bound on m n . 2 7.8. Proof of formula ( 13)-( 14) and Lemma 4.1. Equality ( 13) is elementary. For y ≥ 0,

FY (y) = +∞ y f Y (z)dz = +∞ y +∞ z f (x) x dxdz = ( x y dz) f (x) x 1 I(y ≤ x)dx = +∞ y (x -y) f (x) x dx = +∞ y f (x)dx -y +∞ y f (x) x dx = F (y) -yf Y (y).
For y ≤ 0,

F Y (y) = y -∞ f Y (z)dz = y -∞ dz z -∞ f (x) |x| dx = ( y x dz) f (x) |x| 1 I(x ≤ y)dx = y -∞ (y -x) f (x) |x| dx = yf Y (y) + F (y)
Thus, FY (y) = F (y) -yf Y (y), which is [START_REF] Comte | Adaptive Laguerre density estimation for mixed Poisson models[END_REF]. For [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], by [START_REF] Comte | Laplace deconvolution and its application to Dynamic Contrast Enhanced imaging[END_REF], yf Y (y) tends to 0 as both y tends to +∞ and -∞. Integrating by parts yields

R f Y (y)(t(y) + yt (y))dy = - R yt(y)(f Y (y)) dy = -[ +∞ 0 yt(y)(- f (y) y )dy + 0 -∞ yt(y) f (y) |y| dy] = +∞ -∞ t(y)f (y)dy. Note that EY 2 1 t 2 (Y 1 ) ≤ EX 2 1 t 2 (U 1 X 1 ). Then, EX 2 t 2 (U 1 X 1 ) = +∞ 0 xf (x)( x 0 t 2 (v)dv)dx + 0 -∞ |x|f (x)( 0 x t 2 (v)dv)dx ≤ E(|X 1 |) t 2 . 2
7.9. Proof of Proposition 4.1.

• Laguerre case. First, we bound V m in the case ψ j = ϕ j . We write

E (Y 1 ϕ j (Y 1 ) + ϕ j (Y 1 )) 2 = E (Y 1 ϕ j (Y 1 )) 2 + E 2Y 1 ϕ j (Y 1 )ϕ j (Y 1 ) + ϕ 2 j (Y 1 ) . Formula (15) applied to t = ϕ 2 j yields E 2Y 1 ϕ j (Y 1 )ϕ j (Y 1 ) + ϕ 2 j (Y 1 ) = E(ϕ 2 j (X 1 )). Therefore E (Y 1 ϕ j (Y 1 ) + ϕ j (Y 1 )) 2 = E (Y 1 ϕ j (Y 1 )) 2 + E(ϕ 2 j (X 1 )
), where the second rhs term is the same as in the direct case, and thus E(ϕ 2 j (X 1 )) j -1/2 for j large enough and if E(1/ √ X 1 ) < +∞. For the first rhs term, we use formula (48):

yϕ j (y) = - √ 2jyϕ (1) 
j-1 (y) -yϕ j (y). Therefore, for j large enough, we have

+∞ 0 [yϕ j (y)] 2 f Y (y)dy j +∞ 0 y[ϕ (1) j-1 (y)] 2 f Y (y)dy + +∞ 0 y 2 ϕ 2 j (y)f Y (y)dy.
Now we apply Lemma 7.2 to the first term with p = 1 and δ = 1, so that we get that

+∞ 0 y[ϕ (1) 
j-1 (y)] 2 f Y (y)dy 1/ √ j if E(X 1
) is finite. For the second term, we use formula (46) and uv ≤ (u 2 + v 2 )/2 and obtain +∞ 0

y 2 ϕ 2 j (y)f Y (y)dy = +∞ 0 yϕ j (y)[- j + 1 2 ϕ j+1 (y) + (j + 1 2 )ϕ j (y) - j 2 ϕ j-1 (y)]f Y (y)dy ≤ ( 3j 2 + 3 4 ) +∞ 0 yϕ 2 j (y)f Y (y)dy + j + 1 4 +∞ 0 yϕ 2 j+1 (y)f Y (y)dy + j 4 +∞ 0 yϕ 2 j-1 (y)f Y (y)dy = O( j)
by Lemma 7.2 with p = 1 and δ = 0, if E(X 1 ) is finite. Therefore, we get that, for m large enough, if E(1/ √ X 1 ) < +∞ and E(X 1 ) < +∞,

V m = m-1 j=0 E (Y 1 ϕ j (Y 1 ) + ϕ j (Y 1 )) 2 m 3/2 .
• Hermite case. Now, we bound V m in the case ψ j = h j . Using (52), we get that

xh j (x) = x √ 2 ( jh j-1 (x) -j + 1h j+1 (x))
and the order of R (yh j (y) + h j (y)) 2 f Y (y)dy follows from Lemma 7.5 applied for p = 2 and p = 0. We obtain a bound of order √ j for j large enough, if E(|X 1 | 2+2/3 ) < +∞. Therefore, we get that, for m large enough, if

E(|X 1 | 2+2/3 ) < +∞, V m = m-1 j=0 E (Y 1 h j (Y 1 ) + h j (Y 1 )) 2 m 3/2 . 2 7.10. Proof of Remark 4.1. Using Formula (15) with t = h 2 j , (55) 
V m = m-1 j=0 E(Y 2 1 (h j (Y 1 )) 2 ) + m-1 j=0 Eh 2 j (X 1 ) = m-1 j=0 E(Y 2 1 (h j (Y 1 )) 2 ) + V X m .
We know that V X m ≤ cm 5/6 . For the first term of the r.h.s. above, we can use Lemma 4.1:

E(Y 2 1 (h j (Y 1 )) 2 ) ≤ E|X 1 | h j 2 = E|X 1 |(j + 1 2 ) 
as

h j = ( √ jh j-1 - √ j + 1h j+1 )/ √ 2 (see (52)). Consequently, (56) 
m-1 j=0 E(Y 2 1 (h j (Y 1 )) 2 ) ≤ m 2 2 E|X 1 |.
Joining (55) and (56) gives the first risk bound.

For the second point, we note that

E(Y 2 1 (h j (Y 1 )) 2 ) ≤ EY 2 h j 2 ∞ = 1 3 EX 2 1 h j 2 ∞
where h j ∞ ≤ C ∞ (j + 1) 5/12 by Lemma 7.3. Therefore,

(Y 2 1 (h j (Y 1 )) 2 ) ≤ (C ∞ ) 2 3 EX 2 1 11/6 . (57) m-1 j=0 E 
This gives the second risk bound. 2 7.11. Proof of Proposition 4.3.

• Laguerre case. By assumption, there exist 0 < a < b and c > 0 such that inf a≤x≤b f (x) > c > 0. This implies that we can find 0 < a < b and c such that inf a ≤y≤b yf Y (y) = c > 0. Indeed,

inf a/2≤y≤a yf Y (y) ≥ a 2 b a f (x) x dx ≥ ca 2 log(b/a). Thus inf a ≤y≤b yf Y (y) = c > 0 holds with a = a/2, b = a, c = (ca/2) log(b/a). Now E (Y 1 ϕ j (Y 1 ) + ϕ j (Y 1 )) 2 = E (Y 1 ϕ j (Y 1 )) 2 + E(ϕ 2 j (X 1 )) ≥ E [ 2jY 1 ϕ (1) j-1 (Y 1 ) + Y 1 ϕ j (Y 1 )] 2 ≥ 2j b a y[ϕ (1) j-1 (y)] 2 f Y (y)dy + 2 2j b a y √ yϕ (1) j-1 (y)ϕ j (y)f Y (y)dy := T 1 + T 2 .
We have, by applying Lemma 7.

2 for p = 0 if E(1/ √ X 1 ) < +∞, |T 2 | ≤ 2j(b ) 3/2 b a ([ϕ (1) 
j-1 ] 2 (y) + ϕ 2 j (y))f Y (y)dy = O(1).
Next, using (54), we proceed as in the proof of Proposition 3.2,

T 1 ≥ 2jc b a [ϕ (1) 
j-1 ] 2 (y)dy ≥ c j.
We conclude that V m ≥ Cm 3/2 + O(m).

• Hermite case. Analogously, we can find a < b and c such that inf a ≤y≤b y 2 f Y (y) = c > 0.

For instance if b > 0, we can assume a > 0. Then inf a/2≤y≤a (58)

y 2 f Y (y) ≥ a 2 4 b a f (x) x dx ≥ ca 2 4 
h j (x) = λ j cos (2j + 1) 1/2 x - jπ 2 + 1 (2j + 1) 1/2 ξ j (x)
where λ j = |h j (0)| if j is even, λ j = |h j (0)|/(2j + 1) 1/2 if j is odd and (59)

ξ j (x) = x 0 sin [(2j + 1) 1/2 (x -t)] t 2 h j (t)dt.
We have

λ 2j = (2j)! 1/2 2 j j!π 1/4 , λ 2j+1 = λ 2j √ 2j + 1 2j + 3/2 .
By the Stirling formula and its proof, λ 2j ∼ π -1/2 j -1/4 , λ 2j+1 ∼ π -1/2 j -1/4 and for all j, there exists constants c 1 , c 2 such that, for all j ≥ 1,

(60) c 1 π 1/2 j 1/4 ≤ λ j ≤ c 2 π 1/2 j 1/4 .
By derivating (58), we get (61) h j (x) = -2j + 1 λ j sin (2j + 1) 1/2 x -jπ 2 + 1 (2j + 1) 1/2 ξ j (x) with

ξ j (x) = 2j + 1 x 0 cos [(2j + 1) 1/2 (x -t)] t 2 h j (t)dt.
Then we have, using (61), Thus, the second term is lower bounded by -O(j 1/4 ). For the first term, λ 2 j ≥ j -1/2 c 2 1 /π and

y 2 (h j (y)) 2 f Y (y)dy ≥ c b a (h j ) 2 (y)dy ≥ c (2j + 1)λ 2
(2j + 1)λ 2 j b a sin 2 (2j + 1) 1/2 x - jπ 2 dx = (2j + 1)λ 2 j b -a 2 + O( 1 √ j ) .
Therefore, as λ

2 j (2j + 1) ≥ C √ j, y 2 (h j (y)) 2 f (y)dy ≥ c j(1 + O(j -1/2 )) -j 1/4
Consequently, for j large enough, y 2 (h j (y)) 2 f Y (y)dy ≥ c j 1/2 . This implies, as

V X m m 5/6 (5/6 < 3/2), V m = m-1 j=0 E[(Y 1 h j (Y 1 )) 2 ] + V X m ≥ cm 3/2 . 2 7.
12. Proof of Theorem 4.1. Recall that S m is the space spanned by {ψ 0 , . . . , ψ m-1 } and B m = {t ∈ S m , t = 1}. We have fm = arg min t∈Sm γ n (t) where

(62) γ n (t) = t 2 -2n -1 n i=1 φ t (Y i ), φ t (Y i ) := Y i t (Y i ) + t(Y i )
and γ n ( fm ) = -fm 2 . Now, we write, for two functions t, s ∈ L 2 (R) ,

γ n (t) -γ n (s) = t -f 2 -s -f 2 -2ν n (t -s) where (63) ν n (t) = 1 n n i=1 [φ t (Y i ) -t, f ], recall that t, f = E(φ t (Y 1 )). Then, for any m ∈ M n = {1 ≤ m ≤ m n }, and any f m ∈ S m , γ n ( f m) + pen( m) ≤ γ n (f m ) + pen(m). This yields f m -f 2 ≤ f -f m 2 + pen(m) -pen( m) + 2ν n ( f m -f m ).
We use that

2ν n ( f m -f m ) ≤ 4 sup t∈B m∨ m[ν n (t)] 2 + 1 4 f m -f m 2 ,
and some classical algebra to obtain:

1 2 f m -f 2 ≤ 3 2 f -f m 2 + pen(m) + 4 sup t∈B m∨ m[ν n (t)] 2 -p(m ∨ m) + +(4p(m ∨ m) -pen( m)) + (pen( m) -pen( m)). (64) Lemma 7.6. Assume that E(X 1 + (1/ √ X 1 
)) < +∞ in the Laguerre case, E(|X 1 |) < +∞ in the Hermite case, and that m n ≤ n β where β = 1/3 for Laguerre and β = 6/17 for Hermite. Then for p(m) = 4V m /n, we have

(65) E sup t∈B m∨ m[ν n (t)] 2 -p(m ∨ m) + ≤ c n , (66) 
and E(pen( m) -pen( m))

+ ≤ 1 2 E(pen( m)) + c log(n) n .
where c and c are positive constants.

Taking expectation in (64) and using Lemma 7.6 yields

1 2 E( f m -f 2 ) ≤ 3 2 f -f m 2 + pen(m) + E(4p(m ∨ m) -pen( m)) + 1 2 E(pen( m)) +c log(n) n + 4c n .
Now we note that, for κ ≥ 32 := κ 0 , 4p(m ∨ m) -1 2 pen( m) ≤ 1 2 pen(m). Finally, we get, for all

m ∈ M n , E( f m -f 2 ) ≤ 3 f -f m 2 + 3pen(m) + c log(n)
n , which ends the proof. 2 7.13. Proof of Lemma 7.6. 7.13.1. Proof of (65). Note that

(67) E sup t∈B m∨ m[ν n (t)] 2 -p(m ∨ m) ≤ m ∈Mn E sup t∈B m∨m [ν n (t)] 2 -p(m ∨ m ) + .
We apply the Talagrand Inequality (see Theorem B.1):

E sup t∈Bm [ν n (t)] 2 -4H 2 + ≤ C 1 n v 2 e -C 2 nH 2 v 2 + M 2 1 n e -C 3 nH M 1
where

H, v, M 1 are such that E sup t∈Bm [ν n (t)] 2 ≤ H 2 , sup t∈Bm Var(φ t (Y 1 )) ≤ v 2 and sup t∈Bm sup y |φ t (y)| ≤ M 1 .
We have

E sup t∈Bm [ν n (t)] 2 ≤ m-1 j=0 E[ν 2 n (ψ j )] = V m n := H 2 .
Using Lemma 4.1, we have

sup t∈Bm Var(φ t (Y 1 )) ≤ sup t∈Bm E(φ 2 t (Y 1 )) ≤ sup t∈Bm E(Y 2 1 [t (Y 1 )] 2 ) + E(t 2 (X 1 )) .
For any t ∈ B m ,

E(t 2 (X 1 )) ≤ t ∞ |t|f ≤ t ∞ f √ m f .
We need a specific study for the term sup t∈Bm E(Y 2 1 [t (Y 1 )] 2 ).

Laguerre case. From formula (48), we get

yt (y) = - m-1 j=0 a j (t)yϕ j (y) - m-1 j=0 a j (t) 2jyϕ (1) 
j-1 (y).

By ( 13) and ( 14), 0 ≤ yf Y (y) ≤ 1 and 0 ≤ y 2 f Y (y) = y 2 x 1 x≥y f (x)dx ≤ E(X 1 ). Thus, using the orthonormality of (ϕ j ) 0≤j≤m-1 and (ϕ with ω = 3/2 in Laguerre case and ω = 17/12 in Hermite case. Therefore in both cases, by using condition (24), M 2 1 /n ≤ 1 and we obtain

(1) j ) 0≤j≤m-1 , we have, for t ∈ B m , E[(Y 1 t (Y 1 )) 2 ] ≤ 2 +∞ 0 ( m-1 j=0 a j (t)ϕ j (y)) 2 y 2 f Y (y)dy + 2 +∞ 0 ( m-1 j=0 a j (t) 2jϕ
E sup t∈Bm [ν n (t)] 2 -4 V m n + ≤ c 1 n me -C 2 Vm m + e -C 3 √ nVm m 3/2 .
Therefore as V m m 3/2 under our assumptions, we get, using that m 3/4-3/2 = m -3/4 ≥ n -9/34 under m n ≤ n 6/17 (Hermite case, which contains the Laguerre case m n ≤ n 1/3 ), 

E sup t∈Bm [ν n (t)] 2 -4 V m n + ≤ c 1 n me -c 2 √ m + e -c
= m-1 j=0 φ 2 ψ j (Y i ), V m = 1 n n i=1 Z (m) i : 
(m) i ) ≤ E[(Z (m) i ) 2 ] ≤ V m m-1 j=0 φ 2 ψ j ∞ ≤ Cm 1/β V m := s 2 , and |Z (m) i | ≤ m-1 j=0 φ 2 ψ j ∞ ≤ m 1/β := b Let us define the set Ω = ∀m ∈ M n , 1 n n i=1 (Z (m) i -E(Z (m) i )) ≤ 2V m Cm 1/β 2 log(n) n + Cm 1/β 2 log(n) 3n . 
Now, applying the Bernstein inequality gives P(Ω c ) ≤ m∈Mn 2e -2 log(n) ≤ c/n. We write

E(pen( m) -pen( m)) + ≤ E [(pen( m) -pen( m)) + 1 Ω ] + E [(pen( m) -pen( m)) + 1 Ω c ] . On Ω, | V m -V m| ≤ 2V m Cm 1/β 2 log(n) n + Cm 1/β 2 log(n) 3n ≤ 1 2 V m + 8 3 C m1/β log(n) n , using that 2xy ≤ x 2 + y 2 applied to √ 2V A = 2 V /2 √ A ≤ V /2 + A with V = V m and A = 2Cm 1/β log(n)/n. Thus, as by definition of M n , m1/β ≤ m 1/β n ≤ n, E [(pen( m) -pen( m)) + 1 Ω ] + ≤ 1 2 E(pen( m)) + c log(n) n .
On the other hand, on Ω c , E [(pen( m) -pen( m)) + 1 Ω c ] ≤ 2κP(Ω c ) ≤ c/n. Thus ( 66) follows from the last two inequalities.2 7.14. Proof of Proposition 4.4. We have for all > 0,

E[ f -f 2 ] = f -f 2 + E[ f -f 2 ].
Next,

E[ f -f 2 ] = 1 2π E[ f * -f * 2 ] = 1 2πn π -π Var e iuY 1 + iuY 1 e iuY 1 du = 1 2πn π -π E e iuY 1 + iuY 1 e iuY 1 2 du - f 2 n = 1 2πn π -π (1 + u 2 E(Y 2 1 ))du - f 2 n = n 1 + π 2 3 E(Y 2 1 ) 2 - f 2 n .
Gathering the two terms gives Inequality [START_REF] Vardi | Large sample study of empirical distributions in a random-multiplicative censoring model[END_REF]. On the other hand, we have for all > 0, (68)

E[ f (n) -f 2 ] ≤ f -f 2 + 2 f -E f (n) 2 + 2E[ f (n) -E( f (n) 2 ] := T 1 + T 2 + T 3 .
The term T 1 is the same bias term as before. 

T 3 = |j|≤Ln Var( ã ,j ) = 1 n |j|≤Ln Var θ ,j (Y 1 ) + Y 1 θ ,j (Y 1 ) ≤ 1 n |j|≤Ln E θ 2 ,j (Y 1 ) + 2Y 1 θ ,j (Y 1 )θ ,j (Y 1 ) + Y 2 1 (θ ,j (Y 1 )) 2 = 1 n |j|≤Ln E[θ 2 ,j (X 1 )] + E[Y 2 1 (θ ,j (Y 1 )) 2 ]
Next, we know that |j|≤Ln θ 2 ,j ≤ j∈Z θ 2 ,j = . As moreover

j∈Z θ ,j (x) 2 = 1 2π j∈Z θ * ,j √ 2π , te -itx 2 = 1 2π π -π t 2 dt = π 2 3 3 ,
we obtain 

T 3 ≤ n 1 + E(Y 2 
-f 2 = f -f m 2 + fm -f m 2
where f m = m-1 j=0 a j (f )ϕ j is the projection of f on S m = span(ϕ 0 , . . . , ϕ m-1 ) and f -f m 2 is the square bias term. Next we have

fm -f m 2 = m-1 j=0 (ã j -a j (f )) 2 = Σ -1 m ( â(Z) m-1 -E( â(Z) m-1 )) 2 2 ,
where x 2 denotes the Euclidean norm of the m-vector x. So,

E( fm -f m 2 ) ≤ Σ -1 m 2 op E( â(Z) m-1 -E( â(Z) m-1 ) 2 2 ) ≤ Σ -1 m 2 op m-1 j=0 Var(â j (Z)) = 1 n Σ -1 m 2 op m-1 j=0 
Var(ϕ j (Z 1 ))

≤ 1 n Σ -1 m 2 op m-1 j=0 E(ϕ 2 j (Z 1 )) ≤ c √ m Σ -1 m 2 op
n , using Lemma 7.2. On the other hand,

E( fm -f m 2 ) = 1 n Var   j [Σ -1 m ] ,j ϕ j (Z 1 )   ≤ 1 n E     j [Σ -1 m ] ,j ϕ j (Z 1 )   2   ≤ f Z ∞ n   j [Σ -1 m ] ,j ϕ j (z)   2 dz = f Z ∞ n j [Σ -1 m ] 2 ,j ≤ f Σ ∞ n Σ -1 m 2 F .
Combining the previous bounds implies the result. 

(x) = m-1 j=0 ǎj, h j (x) and E( f ,m ) = f ,m where f ,m = m-1 j=0 a j, h j , a j, (f ) = E(ǎ j, ) = (-i) j √ 2π π -π f * (t)h j (t)dt.
We have

E( f ,m -f 2 ) = f -f ,m 2 + E( f ,m -f ,m 2 ) = f -f m 2 + m-1 j=0 (a j (f ) -a j, (f )) 2 + m-1 j=0 Var(ǎ j, ) = j≥m a 2 j (f ) + m-1 j=0 (a j (f ) -a j, (f )) 2 + 1 n m-1 j=0 Var (-i) j √ 2π π -π e itZ 1 h j (t) f * Σ (t) dt Then m-1 j=0 (a j (f ) -a j, (f )) 2 = m-1 j=0 1 2π f * (t)1 |t|≥π h j (t)dt 2 ≤ 1 2π |t|≥π |f * (t)| 2 dt.
On the other hand, for the variance term, we have For f a derivable function on (0, +∞), consider the operator

1 n m-1 j=0 Var (-i) j √ 2π π -π e itZ 1 h j (t) f * Σ (t) dt ≤ 1 n m-1 j=0 E (-i) j √ 2π π -π e itZ 1 h j (t) f * Σ (t) dt 2 = 1 2π n E   m-1 j=0 1 |t|≤π e itZ 1 f * Σ (t) h j (t)dt 2   ≤ 1 2π n 1 |t|≤π |f * Σ (t)| 2 dt. Therefore we obtain E( f ,m -f 2 ) ≤
∂ δ a (f )(x) = √ xf (x) + ( a 2 √ x - δ 2 √ x )f (x).
If g = exp (ax/2)x -δ/2 f and f is m + 1 times derivable, then, the following holds:

∂ δ+m a . . . • ∂ δ+1 a
• ∂ δ a (f )(x) = g (m+1) (x) exp (-ax/2)x (δ+m+1)/2 . For s integer, the space W s δ,a is exactly the space of functions f : (0, +∞) → R, f ∈ L 2 ((0, +∞)) such tht f is s -1 derivable, f (s-1) is absolutely continuous and ∂ δ+m a . . . • ∂ δ+1 a • ∂ δ a (f ) belongs to L 2 ((0, +∞)) for m = 0, 1, . . . , s -1. The choice a = 2, δ = 0 seems the simplest one, and W s L = W s 0,2 . Hermite case. For s integer, f ∈ W s H holds if and only if f admits derivatives up to order s which satisfy f, f , . . . , f (s) , x s-f ( ) , = 0, . . . , s -1 belong to L 2 (R). The usual Sobolev space with regularity index s is defined by . By density arguments, this result can be extended to the case where F is a unit ball of a linear normed space, after checking that f → ν n (f ) is continuous and F contains a countable dense family.

  2 of Belomestny et al. (2016) and Section 4.1 of Belomestny et al. (2017), see Appendix A.

Proposition 3 .

 3 2 in the Hermite case is proved in Belomestny et al. (2017), Proposition 2.2.

1 m 2 op = 1 and Σ - 1 m 2 F

 1212 Tr( t AA) (Tr denotes the trace of the matrix) and A 2 op = λ max ( t AA) is the maximal eigenvalue of t AA. The bias term is unchanged. The variance term is increasing in m because of the special form of Σ -1 m (lower triangular and Toeplitz, see Mabon (2017)). If Σ i = 0 and thus Σ m = Id, then Σ -= m thus the variance term is of order √ m/n as expected. In Comte et al. (2017), the order of Σ -1 m 2

7. 1 . 3 .

 13 Asymptotic formulae. From Askey and Wainger (1965), we have for ν = 4k + 2δ + 2, and k large enough

and the result follows. 2 7. 5 .

 25 Proof of Proposition 3.2. We only study the Laguerre case, as the Hermite case is proved in Belomestny et al. (2017), Proposition 2.2. By Theorem 8.22.5 in Szego (1959), reminding formula (44), we have: for all δ > -1, and for b/k ≤ x ≤ b, where b, b are arbitrary constants,

2 7. 7 .

 27 and using Proposition 3.1, the result follows.Proof of Theorem 3.1. The Hermite case is proved in Theorem 2.1 of Belomestny et al. (2017b).

  log(b/a). Thus inf a ≤y≤b y 2 f Y (y) = c > 0 holds with a = a/2, b = a, c = (ca 2 /4) log(b/a). Here, we can use as in Walter (1977), the following expression for the Hermite function h j (see Szegö (1959, p.248)):

  (y)) 2 yf Y (y)dy ≤ 2E(X 1 ) + 4m. Thus sup t∈Bm Var(φ t (Y 1 )) ≤ Cm := v 2 where C depends on E(X 1 ) and f . Hermite case. By Lemma 4.1, 2), we have sup t∈Bm E[(Y 1 t (Y 1 )) 2 ] ≤ sup t∈Bm E(|X 1 |) t 2 and by (52) we easily get that t 2 ≤ 2m. Thus v 2 = Cm where C depends on E(|X 1 |) and f . Next we note that, using Lemma 7.1 in Laguerre case and Lemma 7.3-(2) in Hermite case, we get, recalling that φ t (y) = yt (y) + t(y), sup t∈Bm sup y |φ t (y)| ≤ cm ω := M 1

m gives the announced result. 2 7. 17 .Lemma 7 . 7 . 1 m * 2 F 2 7. 18 . 1 m * 2 F 1 m * 2 F 2 F 2 op ≤ Σ - 1 m 2 . 2 F 2 + 2 +≤ 2

 2177712218121222122222 Proof of Theorem 5.1. Let M = max M n the maximal element of the collection. We follow the lines of the proof of Theorem 4.1, with (62) replaced by γn (t) = t 2 -2 t, fM , and (63) by νn (t) = t, fM -f M . Note that for t ∈ S m , then νn (t) = t, fm -f m . Then we getf m -f 2 ≤ 3 f -f m 2 + 2 pen(m) + 8( sup t∈B m, m ν2 n (t) -p(m, m)) + 8p(m, m) -2 pen( m)with p(m, m ) satisfying 4p(m, m ) ≤ pen(m) + pen(m ) for κ ≥ κ 0 , where p(m, m ) and κ 0 are specified by the next Lemma. Under the assumptions of Theorem 5.1, for m * = m ∨ m andp(m, m ) = 2(2 ∨ f Σ ∞ )(1 + 2c log(2 + Σ max(3/b, 21 2 /2b 2 )where b is a constant given in Theorem B.1, we haveWe obtain that ∀m ∈ M n ,E( f m -f 2 ) ≤ 3 f -f m 2 + 4 pen(m) + 8 K n ,which ends the proof of Theorem 5.1. Proof of Lemma 7.7. The proof of (69) follows the line of the proof of Proposition 7.1 in Mabon (2015). We start as in the proof of Lemma 7.6 and compute the terms H 2 , v and M of Theorem B.1. For t ∈ B( m, m) and m * = m ∨ m , we getE sup t∈B(m ,m ν2 n (t) ≤ m * -1 j=0 E ν2 n (ϕ j ) ≤ m * -1 j=0 E ϕ j , fm * -f m * 2 = E( fm * -f m * 2 ).From Proposition 5.1, we deduceH 2 = (2 ∨ f Σ ∞ ) Σ -/n. Clearly, v = nH 2 (Z i ) -E(ψ t (Z i ))], ψ t (x) = m * -1 j=0 t, ϕ j [V -1 m * ϕ m * -1 (x)] jwhere ϕ m-1 (x) = t (ϕ 0 (x), . . . , ϕ m-1 (x)) and [ x] j denotes the jth coordinate of vector x. Thus sup t∈B(m ,m)sup x |ψ t (x)| ≤ sup x Σ -1 m * ϕ m * -1 (x) 2 ≤ Σ -1 m * op √ 2m * := M. Let α(m * ) = c log(2 + Σ ),and let us apply Theorem B.1 exp(-bα(m * )) + m * * ) log(n + 2) , where we have used that m * ≤ n/ log(n + 2) and Σ -1 m For c ≥ max(3/b, 21 2 /2b 2 ) and as Σ -1m ≥ 2m * /a 0 (f Σ ), we getE sup t∈B(m ,m) ν2 n (t) -2(1 + 2α(m * ))H ) -2(1 + 2α(m * ))H C"/n.This concludes of Lemma 7.7.This sequence is an orthonormal basis of L 2 (R + ). We set a(δ,a) k (f ) = f, ϕ (δ,a) kand define the Sobolev-Laguerre space with regularity index s and scale parameter a by: W s δ,a = {f : (0, +∞) → R, f ∈ L 2 ((0, +∞)), k≥0 k s (a (δ,a) k (f )) 2 < +∞}.

( 1 +- 1 ) ∧ 1 ,

 111 (70)W s = {f ∈ L 2 (R), f 2 s,sob = R t 2s )|f * (t)| 2 dt < +∞} If s is integer, then W s = {f ∈ L 2 (R), f admits derivatives up to order s such that |f | 2 s,sob = f 2 + f 2 + . . . + f (s) 2 < +∞}. Therefore, for s integer, W s H ⊂ W s . Morevover, the following properties are proved in Bongioanni and Torrea (2006): for all s > 0,• W s H W s . If f ∈ W s has compact support, then f ∈ W s H . • f ∈ W s H ⇒ x s f ∈ L 2 (R).Appendix B. Talagrand's inequalityWe recall the Talagrand concentration inequality given in[START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].Theorem B.1. Consider n ∈ N * , F a class at most countable of measurable functions, and (X i ) i∈{1,...,n} a family of real independent random variables. Define, for f ∈ F,ν n (f ) = (1/n) n i=1 (f (X i ) -E[f (X i )]), and assume that there are three positive constants M , H and v such that supf ∈F f ∞ ≤ M , E[sup f ∈F |ν n (f )|] ≤ H, and sup f ∈F (1/n) n i=1 Var(f (X i )) ≤ v.Then for all α > 0, and b =1 6 

  Belomestny et al. (2016), under the additional moment assumption E(1/ √ X 1 ) < +∞. For the Hermite case, the order O( √ m) is obtained in Belomestny et al. (2017b), Proposition 2.1, but under the stronger moment condition E(|X 1 | 5 ) < +∞. Note that even the Cauchy distribution satisfies E(|X 1 | 2/3 ) < +∞.

  11/12 . So we get (2).2The Hermite polynomials are linked with the Laguerre polynomials as follows (seeAbramowitz and Stegun, 1964, p.779, 22.5.40, 22.5.41). For x ≥ 0,

	(53)

  3 n 4/17 .

Choosing p(m) = 4 V m /n and using Inequality (67) yields (65). 2 7.13.2. Proof of (66). We proceed in this proof similarly to

[START_REF] Massart | Concentration inequalities and model selection[END_REF]

, chapter 7 (see Theorem 7.7). Let us define Z

  Proof of Proposition 5.1. The risk of the estimator can be written as usual fm
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	Plugging this bound in Inequality (68) gives Inequality (31). 2