An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems

Abstract

We introduce two reactive frameworks for dynamic adapating some parameters of an Ant Colony Optimization (ACO) algorithm. Both reactive frameworks use ACO to adapt parameters: pheromone trails are associated with parameter values; these pheromone trails represent the learnt desirability of using parameter values and are used to dynamically set parameters in a probabilistic way. The two frameworks differ in the granularity of parameter learning. We experimentally evaluate these two frameworks on an ACO algorithm for solving constraint satisfaction problems.
Fichier principal
Vignette du fichier
final-version.pdf (186.6 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01437618 , version 1 (24-03-2020)

Identifiers

Cite

Madjid Khichane, Patrick Albert, Christine Solnon. An ACO-Based Reactive Framework for Ant Colony Optimization: First Experiments on Constraint Satisfaction Problems. Learning and Intelligent OptimizatioN (LION), Jan 2009, Trento, Italy. pp.119-133, ⟨10.1007/978-3-642-11169-3_9⟩. ⟨hal-01437618⟩
136 View
128 Download

Altmetric

Share

Gmail Facebook X LinkedIn More