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Abstract. We introduce two reactive frameworks for dynamically adapt-
ing some parameters of an Ant Colony Optimization (ACO) algorithm.
Both reactive frameworks use ACO to adapt parameters: pheromone
trails are associated with parameter values; these pheromone trails rep-
resent the learnt desirability of using parameter values and are used to
dynamically set parameters in a probabilistic way. The two frameworks
differ in the granularity of parameter learning. We experimentally eval-
uate these two frameworks on an ACO algorithm for solving constraint
satisfaction problems.

1 Introduction

Ant Colony Optimization (ACO) has shown to be very effective to solve a wide
range of combinatorial optimization problems [1]. However, when solving a prob-
lem (with ACO like with other metaheuristics), one usually has to find a compro-
mise between two dual goals. On the one hand, one has to intensify the search
around the most promising areas, that are usually close to the best solutions
found so far. On the other hand, one has to diversify the search and favor ex-
ploration in order to discover new, and hopefully more successful, areas of the
search space. The behavior of the algorithm with respect to this intensifica-
tion/diversification duality (also called exploitation/exploration duality) can be
influenced by modifying parameter values.

Setting parameters is a difficult problem which usually lets the user balance
between two main tendencies. On the one hand, when choosing values which
emphasize diversification, the quality of the final solution is often better, but
the time needed to converge on this solution is also often higher. On the other
hand, when choosing values which emphasize intensification, the algorithm often
finds better solutions quicker, but it often converges on sub-optimal solutions.
Hence, the best parameter values both depend on the instance to be solved and
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on the time allocated for solving the problem. Moreover, it may be better to
change parameter values during the solution process, depending on the search
landscape around the current state, than to keep them fixed.

To improve the search process with respect to the intensification/diversifica-
tion duality, Battiti et al [2] propose to exploit the past history of the search
to automatically and dynamically adapt parameter values, thus giving rise to
reactive approaches.

In this paper, we introduce a reactive framework for ACO to dynamically
adapt some parameters during the search process. This dynamic adaptation is
done with ACO: pheromone trails are associated with parameter values; these
pheromone trails represent the learnt desirability of using parameter values and
are used to dynamically set parameters in a probabilistic way. Our approach
is experimentally evaluated on constraint satisfaction problems (CSPs) which
basically involve finding an assignment of values to variables so that a given set
of constraints is satisfied.

The paper is organized as follows. We first recall in section 2 some background
on CSPs and ACO. We show in section 3 how to use ACO to dynamically
adapt some parameters during the search process. In particular, we introduce two
different reactive frameworks for ACO: a first framework where parameter values
are fixed during the construction of a solution, and a second framework where
parameters are tailored for each variable so that parameters are dynamically
changed during the construction of a solution. We experimentally evaluate and
compare these two reactive frameworks in section 4, and we conclude on some
related work and further work in section 5.

2 Background

2.1 Constraint satisfaction problems (CSPs)

A CSP [3] is defined by a triple (X, D, C') such that X is a finite set of variables,
D is a function that maps every variable X; € X to its domain D(X;), that is,
the finite set of values that can be assigned to X;, and C is a set of constraints,
that is, relations between some variables which restrict the set of values that can
be assigned simultaneously to these variables.

An assignment, noted A = {< X7,v1 >,..., < Xg,vx >}, is a set of vari-
able/value couples such that all variables in A are different and every value
belongs to the domain of its associated variable. This assignment corresponds
to the simultaneous assignment of values vy, ..., v, to variables X1,..., X, re-
spectively. An assignment A is partial if some variables of X are not assigned in
Aj; it is complete if all variables are assigned.

The cost of an assignment A, denoted by cost(A), is defined by the number of
constraints that are violated by A. A solution of a CSP (X, D, () is a complete
assignment for all the variables in X, which satisfies all the constraints in C,
that is, a complete assignment with zero cost.

Most real-life CSPs are over-constrained, so that no solution exists. Hence,
the CSP framework has been generalized to maxCSPs [4]. In this case, the goal



is no longer to find a consistent solution, but to find a complete assignment that
maximizes the number of satisfied constraints. Hence, an optimal solution of a
mazrCSP is a complete assignment with minimal cost.

2.2 Ant Colony Optimization (ACO)

ACO is a metaheuristic [1] which has been successfully applied to a wide range of
combinatorial optimization problems such as, e.g., travelling salesman problems
[5], quadratic assignment problems [6], or car sequencing problems [7]. The basic
idea is to iteratively build solutions in a greedy randomized way. More precisely,
at each cycle, each ant builds a solution, starting from an empty solution, by
iteratively adding solution components until the solution is complete. At each
iteration of this construction, the next solution component to be added is chosen
with respect to a probability which depends on two factors:

— The pheromone factor reflects the past experience of the colony regarding the
selection of this component. This pheromone factor is defined with respect
to pheromone trails associated with solution components. These pheromone
trails are reinforced when the corresponding solution components have been
selected in good solutions; they are decreased by evaporation at the end of
each cycle, thus allowing ants to progressively forget older experiments.

— The heuristic factor evaluates the interest of selecting this component with
respect to the objective function.

These two factors are respectively weighted by two parameters o and (.
Besides a and 3, an ACO algorithm is also parameterized by

— the number of ants, nbAnts, which determines the number of constructed
solutions at each cycle;

— the evaporation rate, p €]0;1[, which is used at the end of each cycle to
decrease all pheromone trails by multiplying them by (1 — p);

— the lower and upper pheromone bounds, T, and T,ez, Which are used to
bound pheromone trails (when considering the MAX-MIN Ant System [6]).

The reactive framework proposed in this paper focuses on a and § which
have a great influence on the solution construction process.

The weight of the pheromone factor, «, is a key parameter for balancing in-
tensification and diversification. Indeed, the greater «, the stronger the search is
intensified around solutions containing components with high pheromone trails,
i.e., components that have been previously used to build good solutions. In par-
ticular, we have shown in [8] that the setting of « let us balance between two main
tendencies. On the one hand, when limiting the influence of pheromone with a
low pheromone factor weight, the quality of the final solution is better, but the
time needed to converge on this value is also higher. On the other hand, when
increasing the influence of pheromone with a higher pheromone factor weight,
ants find better solutions during the first cycles, but after a few hundreds or so
cycles, they are no longer able to find better solutions.



Algorithm 1: Ant Solver

Input: A CSP (X, D, C) and a set of parameters
{a, B, p, Tmin s Tmaz, NbAnts, mazCycles }
Output: A complete assignment for (X, D, C)
Initialize pheromone trails associated with (X, D,C') t0 Tmaa
repeat
foreach k in 1..nbAnts do
Construct an assignment Ay
L Improve Aj, by local search

Uk W N

Evaporate each pheromone trail by multiplying it by (1 — p)

Reinforce pheromone trails of Apest = argming, cqa,,...,4,, 4.3 C05t(Ax)
until cost(A;) =0 for some i € {1.nbAnts} or maxCycles reached ;
return the constructed assignment with the minimum cost

© w N o

The weight of the heuristic factor, 3, determines the greedyness of the search
and its best setting also depends on the instance to be solved. Indeed, the rele-
vancy of the heuristic factor usually varies from an instance to another. Moreover,
for a given instance, the relevancy of the heuristic factor may vary during the
solution construction process.

Note finally that not only the ratio between o and 3 matters, but also their
absolute value. Let us consider for example the two following parameter settings:
p1={a=1,6=2}and ps = {a = 2,8 = 4}. In both settings, 3 is twice as high
as «. However, po emphasizes more strongly differences than p;. Let us consider
for example the case where ants have to choose between two components a and
b which pheromone factors respectively are 7(a) = 1 and 7(b) = 2, and heuristic
factors respectively are n(a) = 2 and 7(b) = 3. When considering the p; setting,
choice probabilities are

1t.22 21 .32
pla) = T 20l 32 = 0.18 and p(b) = T 2ol 32 0.82
whereas when considering the ps setting, choice probabilities are
12.24 22 .34

= 0.05 and p(b) =0.95

p(a)

T 129t yo2. 3t T 129t iz 3t

2.3 Solving max-CSPs with ACO

The ACO algorithm considered in our comparative study is called Ant Solver
(AS) and is described in algorithm 1. We briefly describe below the main features
of this algorithm; more information can be found in [9, 10].

Pheromone trails associated with a CSP (X,D,C) (line 1). We associate a
pheromone trail with every variable/value couple (X;,v) such that X; € X
and v € D(X;). Intuitively, this pheromone trail represents the learned desir-
ability of assigning value v to variable X;. As proposed in [6], pheromone trails
are bounded between 7, and T4z, and they are initialized at 7,4



Construction of an assignment by an ant (line 4): At each cycle (lines 2-8),
each ant constructs an assignment: starting from an empty assignment A = (), it
iteratively adds variable/value couples to A until A is complete. At each step, to
select a variable/value couple, the ant first chooses a variable X; € X that is not
yet assigned in A. This choice is performed with respect to the smallest-domain
ordering heuristic, i.e., the ant selects a variable that has the smallest number of
consistent values with respect to the partial assignment A under construction.
Then, the ant chooses a value v € D(X) to be assigned to X; with respect to
the following probability:

[T(<Xj7 U>)]a ) [nA(<Xj7 ’U>)]ﬁ
S o 1<K, 0] - A< Xy, 0>

pA(<Xj,U>) =

where

— 7(<X,,v>) is the pheromone trail associated with <X, v>,

— na(< X;,v>) is the heuristic factor and is inversely proportional to the
number of new violated constraints when assigning value v to variable X,
Le., na(<X;,v>) =1/(1+ cost(AU{<X;,v>}) — cost(A)),

— « and [ are the parameters that determine the relative weights of the factors.

Local improvement of assignments (line 5): Once a complete assignment has
been constructed by an ant, it is improved by performing some local search,
i.e., by iteratively changing some variable/value assignments. Different heuris-
tics can be used to choose the variable to be repaired and the new value to be
assigned to this variable. For all experiments reported below, we have used the
min-conflict heuristics [11], i.e., we randomly select a variable involved in some
violated constraint, and then we assign this variable with the value that mini-
mizes the number of constraint violations. Such local improvements are iterated
until reaching a locally optimal solution which cannot be improved by modifying
one variable assignment.

Pheromone trails update (lines 6-7): Once every ant has constructed an assign-
ment, and improved it by local search, the amount of pheromone laying on each
variable/value couple is updated according to the ACO metaheuristic. First,
all pheromone trails are uniformly decreased (line 6) in order to simulate some
kind of evaporation that allows ants to progressively forget worse constructions.
Then, pheromone is added on every variable/value couple belonging to the best
assignment of the cycle, Apes¢ (line 7) in order to further attract ants towards
the corresponding area of the search space. The quantity of pheromone laid
is inversely proportional to the number of constraint violations in Apes, i.€.,

1/cost(Apest )-

3 Using ACO to dynamically adapt « and 3

We now propose to use ACO to dynamically adapt the values of o and (. In
particular, we propose and compare two different reactive frameworks. In the



first framework, called AS(GPL) and described in 3.1, the setting of « and (3 is
fixed during the construction of a solution and is adapted after each cycle, once
every ant has constructed a solution. In the second framework, called AS(DPL)
and described in 3.2, the setting of « and [ is personalized for each variable so
that it changes during the construction of a solution. These two frameworks are
experimentally evaluated in 4.

3.1 Description of AS(GPL)

AS(GPL) (Ant Solver with Global Parameter Learning) basically follows algo-
rithm 1 but integrates new features for dynamically adapting « and 3. Hence, «
and J are no longer given as input parameters of the algorithm, but their values
are chosen with respect to the ACO metaheuristic at each cycle!.

Parameters of AS(GPL). Besides the parameters of Ant Solver, i.e., the number
of cycles nbCycles, the number of ants nbAnts, the evaporation rate p, and the
lower and upper pheromone bounds 7Ty, and Timaz, AS(GPL) is parameterized
by a set of new parameters that are used to set « and g, i.e.,

— two sets of values Z, and Zg which respectively contain the set of values that
may be considered for setting o and [3;

— a lower and an upper pheromone bound, Tpin,, and Tmaz,,;

— an evaporation rate pag.

Note that our reactive framework supposes that « and § take their values
within two given discrete sets of values Z, and Z3 which must be known a priori.
These two sets should contain good values, i.e., those which allow Ant Solver to
find the best results for every possible instance. As discussed in Section 4, we
propose to choose the values of Z, and Zg by running Ant Solver with different
settings for a and (3 on a representative set of instances, and by keeping in Z,, and
T3 the values that allowed Ant Solver to find the best results on these instances.

Pheromone structure. We associate a pheromone trail 7,(i) with every value
i € I, and a pheromone trail 75(j) with every value j € Zg. Intuitively, these
pheromone trails represent the learnt desirability of setting o and 8 to ¢ and
j respectively. During the search process, these pheromone trails are bounded
between the two bounds Tiin., and Tmaz,,- At the beginning of the search
process, they are initialized to Taz., ;-

! We have experimentally compared two variants of this reactive framework: a first
variant where the values are chosen at the beginning of each cycle (between lines 2
and 3) so that every ant uses the same values during the cycle, and a second variant
where the values are chosen by ants before constructing an assignment (between
lines 3 and 4). The two variants obtain results that are not significantly different.
Hence, we only consider the first variant which is described in this section.



Choice of values for o and 3. At each cycle (i.e., between lines 2 and 3 of
algorithm 1), « (resp. ) is set by choosing a value i € Z,, (resp. i € Zg) with
respect to a probability p,(¢) (resp. pg(i)) which is proportional to the amount
of pheromone laying on i, i.e.,

) = 77’0‘@) res 1) = 7Tﬁ(i)
pa(l) = Zjel’a Ta(j) ( p- pﬁ( ) Zjelg Tﬁ(j)

Pheromone trails update. The pheromone trails associated with av and 3 are up-
dated at each cycle, between lines 7 and 8 of algorithm 1. First, each pheromone
trail 74(7) (resp. 75(¢)) is evaporated by multiplying it by (1 — pag). Then
the pheromone trail associated with « (resp. () is reinforced. The quantity of
pheromone laid on 7, () (resp. 75(3)) is inversely proportional to the number of
constraint violations in Ap.s¢, the best assignment built during the cycle. There-
fore, the values of a and [ that have allowed ants to build better assignments
will receive more pheromone.

3.2 Description of AS(DPL)

The reactive framework described in the previous section dynamically adapts
«a and 3 at every cycle, but it considers the same setting for all assignment
constructions within a same cycle. We now describe another reactive framework
called AS(DPL) (Ant Solver with Distributed Parameter Learning). The basic
idea is to choose new values for v and (§ at each step of the construction of an
assignment, i.e., each time an ant has to choose a value for a variable. The goal
is to tailor the setting of o and [ for each variable of the CSP.

Parameters of AS(DPL). The parameters of AS(DPL) are the same as the ones
of AS(GPL).

Pheromone structure. We associate a pheromone trail 7, (X%, ¢) with every vari-
able X, € X and every value ¢ € Z, and a pheromone trail 73(X}, j) with every
variable X, € X and every value j € Zg. Intuitively, these pheromone trails
respectively represent the learnt desirability of setting o and 3 to 7 and j when
choosing a value for variable Xj. During the search process, these pheromone
trails are bounded between the two bounds 7y, , and Tmaz.,- At the beginning
of the search process, they are initialized to Thaz,,-

Choice of values for a and 3. At each step of the construction of an assignment,
before choosing a value v for a variable X}, « (resp. 3) is set by choosing a value
i € I, (resp. i € Ig) with respect to a probability po(Xk,) (resp. pg(Xk,i))
which is proportional to the amount of pheromone laying on i for Xy, i.e.,

) esp. (1) = 2D

Pa(Xpyi) = =———= -~
( ) >jez, Ta(Xk, J jez, T8(Xk, J)



Nb Name X|D C| B|INb Name X|D| C
brock-400-1 {401| 2|20477|378 rand-2-40-16-250-350-30{40{16|250
brock-400-2 [401| 2|20414|378 rand-2-40-25-180-500-0 |40{25[180
2
2

mann-a27 [379 1080|252 rand-2-40-40-135-650-10{40{40{135
san-400-0.5-1{401]| 2|40300|392 rand-2-40-40-135-650-22|40{40|135

|||~ 3

=Wl =
Q0| [ S| Ot

Table 1. For each instance, Name, X, D, C, and B respectively give the name, the
number of variables, the size of the variable domains, the number of constraints, and the
number of violated constraints in the best solution found during the 2006 competition.

Pheromone trails update. The pheromone trails associated with av and 3 are up-
dated at each cycle, between lines 7 and 8 of algorithm 1. First, each pheromone
trail 7 (Xk,7) (resp. 75(Xg,)) is evaporated by multiplying it by (1 — pag).
Then, some pheromone is laid on the pheromone trails associated with the val-
ues of a and [ that have been used to build the best assignment of the cycle
(Apest): for each variable Xy € X, if « (resp. 3) has been set to i for choosing the
value to assign to X when constructing Apes:, then 7o (X, ) (resp. 753(Xk, 1))
is incremented by 1/cost(Apest)-

4 Experimental results

4.1 Test suite

We illustrate our reactive framework on a benchmark of maxCSP which has
been used for the CSP 2006 competition [12]. We have considered the 686 bi-
nary maxCSP instances defined in extension. Among these 686 instances, 641
are solved to optimality? both by the static version of Ant Solver and the two
reactive versions, whereas CPU times are not significantly different. Hence, we
concentrate our experimental study of section 4.3 on the 25 harder instances
that are not always solved to optimality. Among these 25 hard instances, we
have chosen 10 representative ones which features are described in Table 1. We
shall give more experimental results, for all instances of the benchmark of the
competition, in section 4.4, when comparing our reactive ACO framework with
the best solvers of the competition.

4.2 Experimental setup

We have tuned parameters for Ant Solver by running it on a representative subset
of 100 instances (including the 25 hardest ones) among the 686 instances of the
competition, with different parameter settings. We have selected the setting that
allowed Ant Solver to find the best results on average,i.e.,a« =2, 3 =8, p = 0.01,

2 For most of these instances, the optimal solution is known. However, for a few
instances optimal solutions are not known. For these instances, we have considered
the best known solution.



AS(Tuned) AS(Static) AS(GPL) AS(DPL)
Nb|#const (sdv) |a|B||#const (sdv) ||#const (sdv) ||#const (sdv)
1| 374.84 (0.7) |1|6][ 374.92 (0.39)|[374. (1.01)|[374. (1.01)
2 | 373.12 (0.26) | 1| 5|| 374.68 (1.09) || 371.82 (1.09) || 371.48 (1.31)
3| 253.88 (0.26) | 1| 6]| 254.62 (0.49) || 253.74 (0.44) || 253.96 (0.28)
13872 (0.11)|1]8][ 388.04 (1.77)|[387. (0.) ||387. (0,
5 1. o) [2[8] 1. (0) 1.02 (0.14)| 1. (0.
6 02 (0.02) [2[6]] 1.02 (0.14)] 1.04 (0.19) 1. (0.)
7 1. (0) [1[6][ 1.12 (032)| 1.66 (0.47)|| 1.48 (0.5)
8] 1. (0) |15 1.08(027)] 1.12(0.32) 08 (0.27)

Table 2. Experimental comparison of best found solutions. Each line gives, for each
variant of Ant Solver, the number of violated constraints in the best found solution
(average on 50 runs and standard deviation). For AS(Tuned), we also give the values
of a and ( that have been considered.

Tmin = 0.1, Tmaz = 10, and nbAnts = 15. We have set the maximum number of
cycles to 10000, but the number of cycles needed to converge to the best solution
is often much smaller. In this section, AS(Static) refers to Ant Solver with this
static parameter setting.

We also have tuned « and (8 for every instance separately (while keeping the
other parameters to the same values). In this section, AS(Tuned) refers to Ant
Solver with the best static parameter setting for the considered instance.

For the two reactive variants of Ant Solver (AS(GPL) and AS(DPL)), we
have kept the same parameter setting for the “old” parameters, i.e., p = 0.01,
Tmin = 0.1, Tae = 10, and nbAnts = 15. For the new parameters, that have
been introduced to dynamically adapt a and 3, we have set Z, and Zg to the
set of values that gave reasonably good results with Static Ant Solver, i.e., Z,, =
{0,1,2} and Z3 = {0, 1,2,3,4,5,6,7,8}. For the evaporation rate and the lower
and upper pheromone bounds, we have used the same values as for static AS,
i.e., pap = 0.01, Tin., = 0.1, Trmaz,, = 10.

4.3 Experimental comparison of AS(Tuned), AS(Static), AS(GPL)
and AS(DPL)

Table 2 gives the best setting for v and g that have been considered when
running AS(Tuned). It shows us that this best setting is clearly different from
one instance to another. We also noticed that, at the end of the search process
of AS(GPL), pheromone trails used to set « and [ have rather different values
from one instance to another. This is more particularly true for 3, thus showing
that the relevancy of the heuristic factor depends on the considered instance.
Table 2 also compares the number of violated constraints in the best found
solution after 10000 cycles, for the four variants of Ant Solver. As differences
between the different variants are rather small on some instances, we have per-
formed statistical significance tests. Table 3 gives the results of these statis-
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Table 3. Results of statistical significance tests: each line compares two variants X/Y
and gives for every instance the result of the test for 50 runs, i.e., = (resp. < and >)
if X is not significantly different from Y (resp. worse and better than V).

AS(Tuned) AS(Static) AS(GPL) AS(DPL) ]

cycles |time|| cycles |time|| cycles |time|| cycles |time
Nb|| avg (sdv)| avg|| avg (sdv)| avg|| avg (sdv)| avg|| avg (sdv)| avg
1 4 (7)| 4| 30 (4)| 22717 (516)| 98||2501 (491)| 93
2 |[2247 (477)| 140]] 323 (194)] 12|[2668 (463)] 963322 (415)] 125
3 (12193 (309)| 542[[1146 (335)] 160|[2714 (432)] 399][2204 (295)] 328
4 |[ 710 (213)[ 123]] 347 (174)] 39| 316 (38)] 34| 112 (14)] 12
5[ 394 (32)] 5| 394 (32)] 4| 379 (44)| 5| 412 (37)] 5
6 || 476 (19)] 26]] 606 (23)] 13|[ 507 (49)| 18|| 579 (23)] 15
7 (/2436 (166)| 160({1092 (152)| 31|| 736 (126)| 39||1557 (266)| 52
8 |[1944 (120)| 140]] 884 (65)| 29|[1302 (286)| 66|[1977 (252)] 87

Table 4. Experimental comparison of the number of cycles (average and standard
deviation on 50 runs) and the CPU time in seconds (average on 50 runs) spent to find
the best solution.

tical tests. It shows us that reactive variants are always at least as good as
AS(Static), except for instances 5 and 7 which are better solved by AS(Static)
than AS(GPL). It also shows us that both reactive variants are able to reach
the performances of AS(Tuned), and even outperform it, on many instances
(all but 2 for AS(DPL) and all but 3 for AS(GPL)). Finally, it also shows us
that AS(DPL) is not significantly different from AS(GPL) for 5 instances, and
outperforms it on 3 instances.

Table 4 compares the number of cycles and the CPU time spent to find
the best solution. We first note that the computational overhead due to the
reactive framework is not significant so that the four Ant Solver variants spend
comparable CPU times for performing one cycle on one given instance. We note
also that the number of cycles needed to converge is different from one instance
to another, but also from one variant of Ant Solver to another. In particular,
AS(Static) often converges quicker than AS(Tuned).

In order to allow us to compare the four Ant Solver variants during the
whole search process, and not only at the end of the 10000 cycles, Figure 1 plots
the evolution of the percentage of runs that have found the optimal solution
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Fig. 1. Evolution of the percentage of runs that have found the optimal solution with
respect to the number of cycles.

with respect to the number of cycles®. It shows that AS(Static) is able to solve
to optimality more than half of the runs within the 2000 first cycles. However,
after 2000 or so cycles, the percentage of runs solved to optimality by AS(Static)
does not increase a lot. AS(Tuned) exhibits a rather different behavior: if it is
able to solve to optimality less runs at the beginning of the search process, it
has significantly outperformed AS(Static) at the end of the 10000 cycles. Let us
consider for example instances 2, 3 and 8: Table 2 shows us that AS(Tuned) is
able to find better solutions than AS(Static); however, Table 4 shows us that
AS(Tuned) needs much more cycles than AS(Static) to find these solutions.

Figure 1 also shows us that AS(GPL) outperforms the three other variants
during the 2000 first cycles, whereas after 2000 cycles AS(GPL), AS(DPL) and
AS(Tuned) are rather close and all of them clearly outperform AS(Static). Fi-
nally, at the end of the search process AS(DPL) slightly outperforms AS(GPL)
which itself slightly outperforms AS(Tuned).

Figure 2 plots the evolution of the percentage of runs that have found so-
lutions that are close to optimality, i.e., optimal solutions or solutions which
violates one more constraint than the optimal solution. It shows that AS(GPL)
more quickly finds nearly optimal solutions than AS(DPL), which itself is better
than the static variants of Ant Solver. AS(Static) is better than AS(Tuned) at

3 As proof of optimality has not been done for all the considered instances, we consider
the best known solution for the instances which optimal solution is not known.
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Fig. 2. Evolution of the percentage of runs that have found a solution that violates
one more constraint than the optimal solution with respect to the number of cycles.

the beginning of the search process, but it is outperformed by AS(Tuned) after
1000 cycles or so.

4.4 Experimental comparison of AS(DPL) with state-of-the-art
solvers

We now compare AS(DPL) with the MaxCSP solvers of the 2006 competition.
There was 9 solvers, among which 8 are based on complete branch and propagate
approaches, and 1 is based on incomplete local search. For the competition, each
solver has been given a time limit of 40 minutes on a 3GHz Intel Xeon (see
[12] for more details). For each instance, we have compared AS(DPL) with the
best result found during the competition (by any of the 9 solvers). We have also
limited AS(DPL) to 40 minutes, but it has been run on a less powerful computer
(a 1.7 GHz P4 Intel Dual Core). We do not report CPU times as they have been
obtained on different computers. The goal here is to evaluate the quality of the
solutions found by AS(DPL).

This comparison has been done on the 686 binary instances defined in exten-
sion. These instances have been grouped into 45 benchmarks. Among these 45
benchmarks, there was 31 benchmarks for which AS(DPL) and the best solver
of the competition have found the same values for every instance of the bench-
mark. Hence, we only display results for the 14 benchmarks for which AS(DPL)



Competition || AS(DPL)

Bench  [#I]  #C[Y best known|| > cost|#I°°5 |3 cost #1105
brock 4| 56381 1111 1123 2|l 1111 4
hamming | 4| 14944 460|463 1|[ 460 4
mann 2| 1197 281|| 281 2] 283 1
p-hat 3[312249 1472|1475 1| 1472 3
san 3] 48660 687 692 2[] 687 3
sanr 1] 6232 182 183 off 182 1
dsjc 1] 736 19 20 0 19 1

le 2| 11428 2869|2925 1| 2869 2
graphw 6] 16993 416]] 420 4] 416 6
scenw | 27| 29707 809 904] 25| 809] 27
tightness0.5 | 15| 2700 15 15[ 15 16] 14
tightness0.65] 15| 2025 15 15 15 18] 12
tightness0.8 | 15| 1545 21 22 13 25 10
tightness0.9 | 15| 1260 26 30 11 31 10

Table 5. Experimental comparison of AS(DPL) with the solvers of the 2006 compe-
tition. Each line gives the name of the benchmark, the number of instances in this
benchmark (#I), the total number of constraints in these instances (#C), and the to-
tal number of violated constraints when considering, for each instance, its best known
solution (3 best known). Then, we give the best results obtained during the competition:
for each instance, we have considered the best result over the 9 solvers of the compe-
tition and we give the total number of constraints that are violated (3 cost) followed
by the number of instances for which the best known solution has been found (#1°¢!).
Finally, we give the results obtained by AS(DPL): the total number of constraints that
are violated (3 cost) followed by the number of instances for which the best known
solution has been found (#1°°%).

and the best solver of the competition obtained different results (for at least one
instance of the benchmark).

Table 5 gives results for these 14 benchmarks. It shows that AS(DPL) out-
performs the best solvers of the competition for 9 benchmarks. More precisely,
AS(DPL) has been able to improve the best solutions found by a solver of the
competition for 19 instances. However, it has not found the best solution for
15 instances; among these 15 instances, 14 belong to the tightness* benchmarks
which appear to be difficult ones for AS(DPL).

5 Conclusion

We have introduced two reactive frameworks for dynamically and automatically
tuning the pheromone factor weight o and the heuristic factor weight 8 which
have a strong influence on intensification/diversification of ACO searches. The
goal is twofold: first, we aim at freeing the user from the unintuitive problem of
tuning these parameters; second, we aim at improving the search process and
reaching better performances on difficult instances.



First experimental results are very encouraging. Indeed, in most cases our
reactive ACO reaches performances of a static variant, and even outperforms it
on some instances.

Related work. There exists a lot of work on reactive approaches, that dynam-
ically adapt parameters during the search process [2]. Many of these reactive
approaches have been proposed for local search approaches, thus giving rise to
reactive search. For example, Battiti and Protasi have proposed in [13] to use
resampling information in order to dynamically adapt the length of the tabu list
in a tabu search.

There also exists reactive approaches for ACO algorithms. In particular, Ran-
dall has proposed in [14] to dynamically adapt ACO parameters by using ACO
and our approach borrows some features from this reactive ACO framework.
However, parameters are learnt at a different level. Indeed, in [14] parame-
ters are learnt at the ant level so that each ant evolves its own parameters
and considers the same parameter setting during a solution construction. In
our approach, paramaters are learnt at the colony level, so that every ant uses
the same pheromone trails to set parameters. Moreover, we have compared two
frameworks, a first one where the same parameters are used during a solution
construction, and a second one where parameters are tailored for every variable,
and we have shown that this second framework actually improves the search pro-
cess on some instances, thus bringing to the show that, when solving constraint
satisfaction problems, the relevancy of the heuristic and the pheromone factors
depend on the variable to be assigned.

Further work. We plan to evaluate our reactive framework on other ACO algo-
rithms in order to evaluate its genericity. In particular, it will be interesting to
compare the two reactive frameworks on other problems: for some problems such
as the Traveling Salesman Problem, it is most probable that tailoring parameters
for every solution component is not interesting, whereas on other problems, such
as the multidimensional knapsack or the car sequencing problems, we conjecture
that this should improve the search process.

A limit of our reactive framework lies in the fact that the search space for the
parameter values must be known in advance and discretized. As pointed out by
a reviewer, it would be preferable to solve the meta-problem as what it is, i.e.,
a continuous optimization problem. Hence, further work will address this issue.

Finally, we plan to integrate a reactive framework for dynamically adapting
the other parameters, p, Tinin, and T4 Which have strong dependencies with o
and 3. This could be done, for example, by using intensification/diversification
indicators, such as the similarity ratio or resampling information.
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